CS 395T: Visual Recognition Exploiting Context for Object Detection

5th October 2012 Aashish Sheshadri

Components Analyzed

- 1. Scene Classification using GIST Descriptors.
- 2. Contextual Priming.

Scene Classification

- Dataset : 15 Scene Categories The Ponce Research Group
 [1].
 - Indoor and Outdoor Scenes.
- Descriptor : GIST Discriptor.
 - Matlab code by A. Oliva [2].

- [1] <u>http://www-cvr.ai.uiuc.edu/ponce_grp/data/</u>
- [2] http://people.csail.mit.edu/torralba/code/spatialenvelope/

Scene Classification

- Classifiers :
 - K-Nearest Neighbors (KNN)
 - Consensus among five neighbors.
 - Euclidean distance.
 - Netlab Toolbox for Matlab [1].
 - Support Vector Machine (SVM)
 - One vs All.
 - RBF Kernel.
 - LIBSVM package for Matlab [2].

- [1] http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/
- [2] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Neighbor Presence

5																
4																
3	_															
	_															
2	_															
	_														L	
1													II			
			 	l			<u></u>									
		d'r.		×	Nav Inside	^{CitN} Mount	ain Copen Co	ountry		uildine Offic	Bedroot	n ris		EROOM Store		
	♦ Sult	ourb Coart	↓ Foree	+Highv	< Inside	◆ Mout	open s	treet +	allB	offic	Bedro	Industria	chelivin	€ store		

Nearest Neighbors

Nearest Neighbors

Nearest Neighbors

Confusion Matrix (SVM) SUDUR COST FOREST HIER MONTH OF STREET SUDURING BEAR WORTH THE INTRE STORE Suburb Coast **Forest** Highway **Inside City** Mountain **Open Country** Street Tall Building Office Bedroom Industrial Kitchen Living Room Store

Average Classification Rate : 56.13%

Inferring Object Presence and Location

- Identifying scene category enables object inference.
- Using scene information to infer object location.
- Statistical inference of object location using GIST of the scene to enable contextual priming [1].

- [1] Contextual Priming for Object Detection by Antonio Torralba.

Mixture Density Networks (MDN)

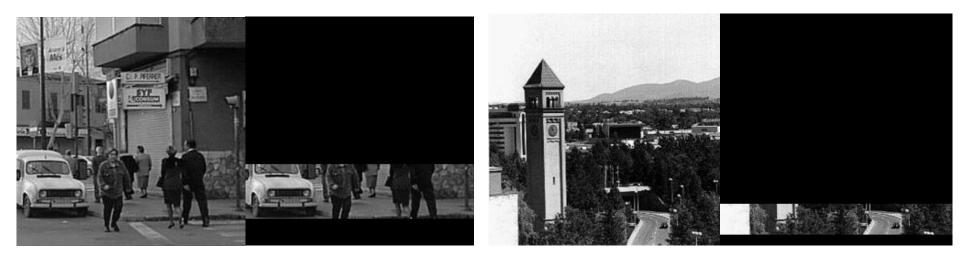
- Combination of mixture model and a neural network.
- Learning conditional distributions by training the network.
- Input GIST vector and train network to learn desired probability distribution.
- MDN implementation used from Netlab Toolbox [1].

- [1] http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

Segmented and Annotated Dataset [1]

[1] http://labelme.csail.mit.edu/Release3.0/

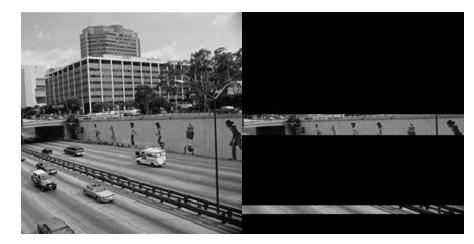
Inferring Location of Cars


- Scene categories with cars Mountains, Street, Open Country
 - We've Travelled Everywhere!

Learning Distributions

- 566 Training Examples.
- Distributions Learnt:
 - P(Y|g).
 - P(s|g).
- Set P(X|g) to be uniform across the image.

Single Instance

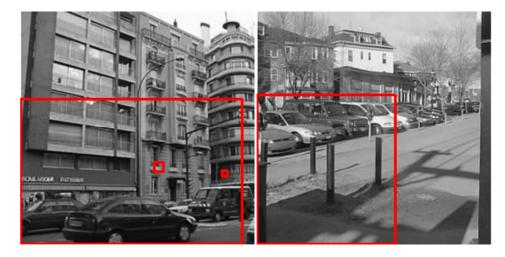


Multiple Instances

• Multiple modes ?

Difficult Scenes

Where are the Cars?



Predicting Scale

Failed Scenes

What's Important

- Car side view.
- Present but occluded.
- Frontal view.
- Just right.

Finding People ?

Pedestrians

Faces

Failed Instances

Something Challenging.. Lamps?

Lamps Better Results?

Closing Points

- When does it work ?
- Why does it work ?
- How can we improve inference?