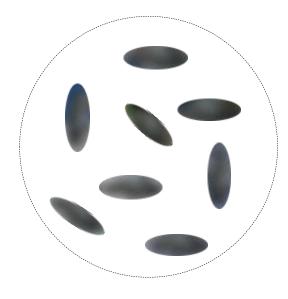
CS 395T – Visual Recognition Context and Scenes

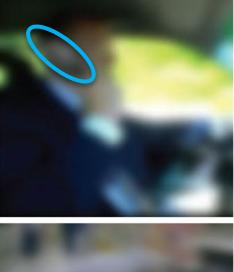
Aron Yu Oct 5, 2012

0

Context in Detection

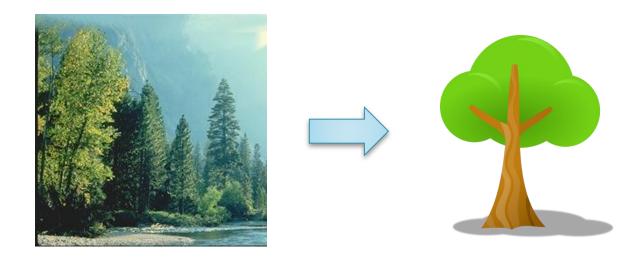
Myopic View of Local Objects





Using the Forest to See the Trees Exploiting Context for Visual Object Detection and Localization

A. Torralba, K. P. Murphy, W.T. Freeman



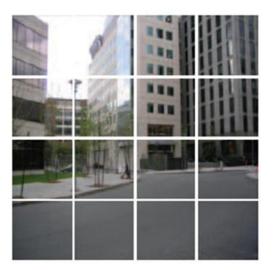
Overview

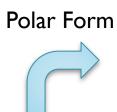
- Past Approach
 - associate objects with other objects in the image
 - presence of pedestrians given presence of cars
- Holistic Approach
 - associate objects with the scene category as a single entity
 - presence of pedestrians given street scene

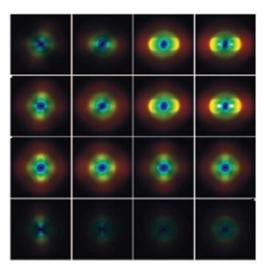
Goals

- Use global features to obtain contextual prior for object categories
- Develop a probabilistic framework for combining local (bottom-up) and global (topdown) features
- Target Problems
 - object presence detection (is there a car?)
 - object localization (where is the car?)

Global Feature - GIST







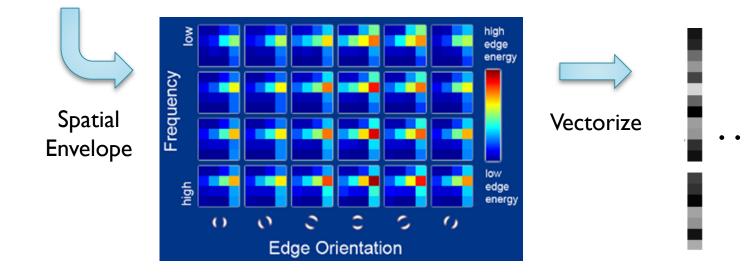
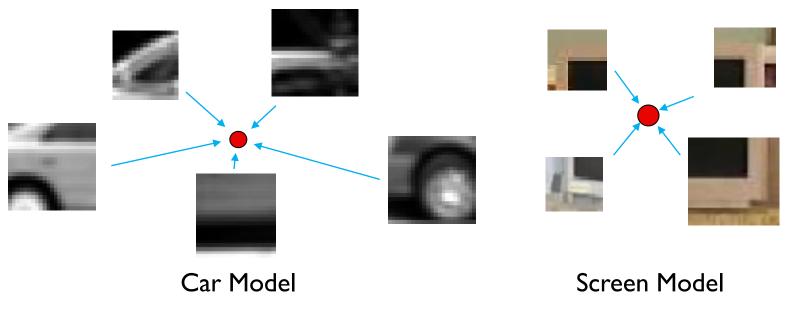
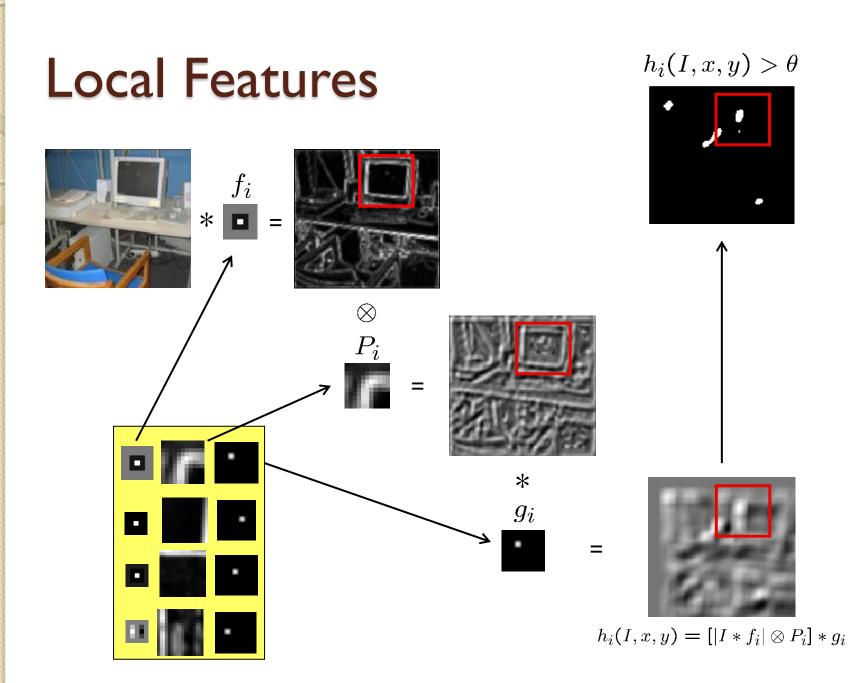


Image Idea: http://cybertron.cg.tu-berlin.de/pdci11ws/scene_completion/implementation.html

Local Features

- Preview of next week's paper on multiclass and multiview object detection
 - local feature boosting using part-model



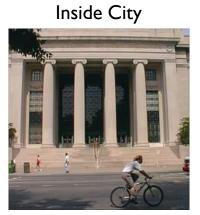


8-Scene Dataset



Highways

Streets

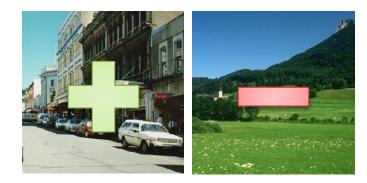


Skyscrapers

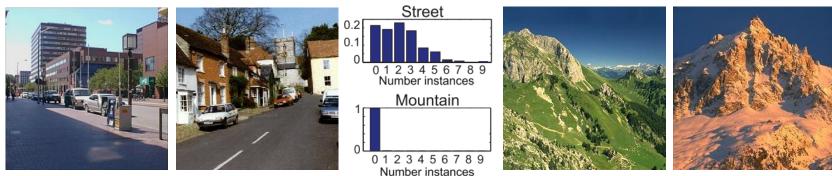
Image Credit: A. Olivia, A. Torralba. - Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope

Object Presence

- Is the object in the image?
 - binary classifier

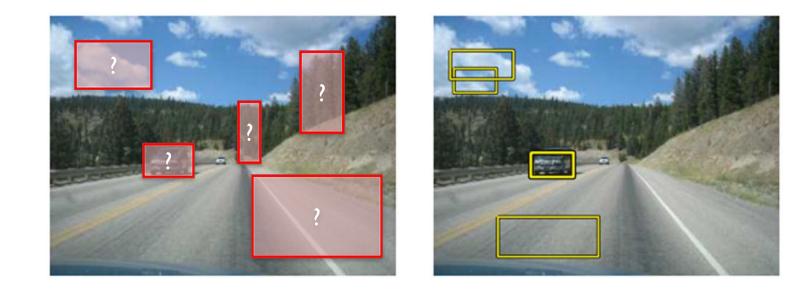


- prob. of object presence given gist
- How many objects are in the image?
 categorize the scene from gist (quantization)
 prob. of having *n* objects given scene



Object Localization

- Where are the objects?
 - local feature descriptors
 - confidence score c_i^t per region i
 - use top D (~10) most confident regions for evaluation



Object Localization

- Location trimming using gist
 - mixture of experts model
 - predict most likely vertical location
 - "mask out" unlikely regions for individual objects

Integrated Model

- Combine global and local features
- Without location trimming
- Prob. of object being present given confidence scores and gist
 - find the number of objects present using gist (global)
 - show that many confidence scores (local)

$$p(O_{1:D}^{t}|c_{1:D}^{t},g) \propto p(O_{1:D}^{t}|g) \prod_{i=1}^{D} p(c_{i}^{t}|O_{i}^{t})$$

$$presence of object$$

$$given gist$$

$$confidence scores$$

$$given presence of$$

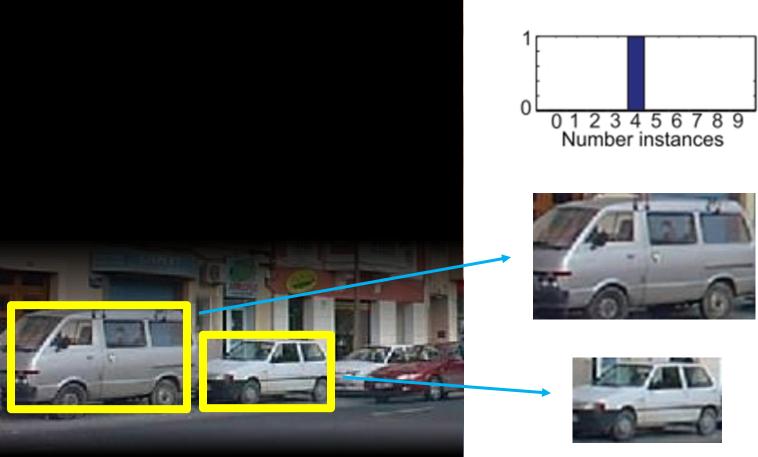
$$object$$

Integrated Model

- With location trimming
- Add a location term l_i^t given presence of object and gist
 - suppress or boost confidence scores according to location of confidence region

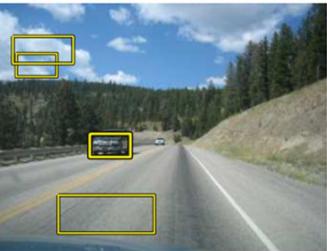
$$p(O_{1:D}^{t}|c_{1:D}^{t}, \ell_{1:D}^{t}, g) \propto p(O_{1:D}^{t}|g) \prod_{i=1}^{D} p(c_{i}^{t}|O_{i}^{t}) p(\ell_{i}^{t}|O_{i}^{t}, g)$$

location given presence of object and gist



- 2688 images with 8 scenes
 - half for training, half for testing
- Focused solely on car identification
- Integrated model is better than local features only

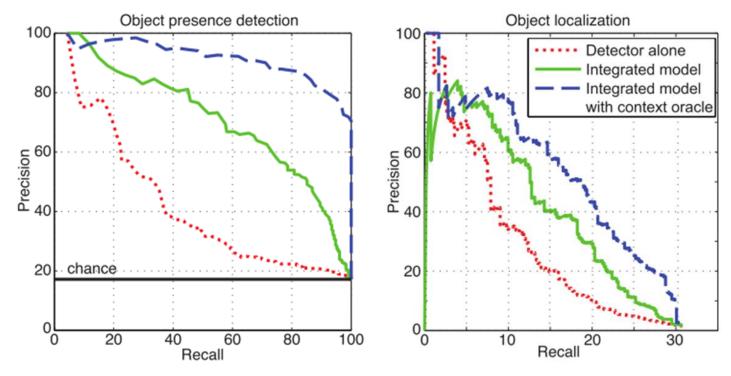
Local



Integrated



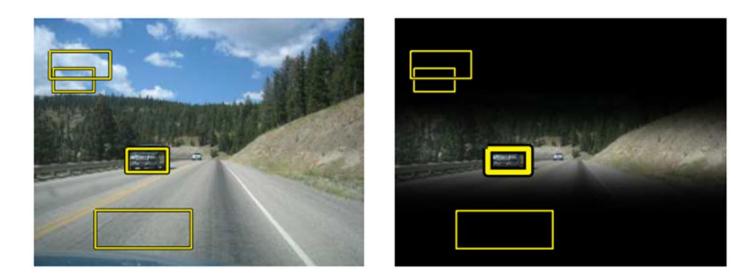
Results



- Improves precision but not recall
 - removes false-positives
- Context oracle doesn't improve the performance as much for localization

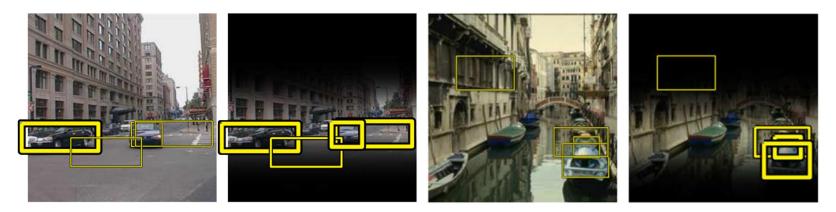
Evaluation - Strength

- Probabilistic information fusion
- Boost confidence of probable regions
 - suppress confidence of non-probable regions
- Location priming makes intuitive sense
- Better performance than with only local features



Evaluation - Weakness

- Tested with only cars
- Boost false positives within probable regions
- 75% accuracy on scene detector
 - better than object detector but not perfect
- Still relies heavily on object detector accuracy



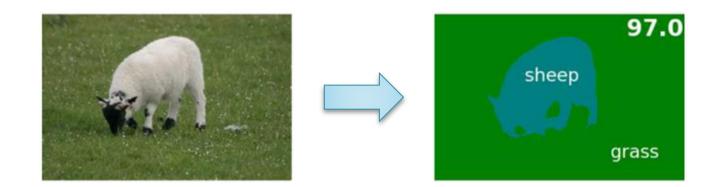
Evaluation - Weakness

- Scenes with less spatial regularity
 - suppress true positives within non-probable regions

Summary

- Overall thoughts
 - successfully incorporated scene information into a probabilistic model
 - scene context helps to reduce false-positives
 - localization is much harder than presence detection
 - object detector accuracy is still crucial
- Extension
 - more datasets, more objects
 - multiple objects in the same image

S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller



Overview

- Multiclass image segmentation
 - classify all pixels in an image
 - leverage context information for spatial relationships

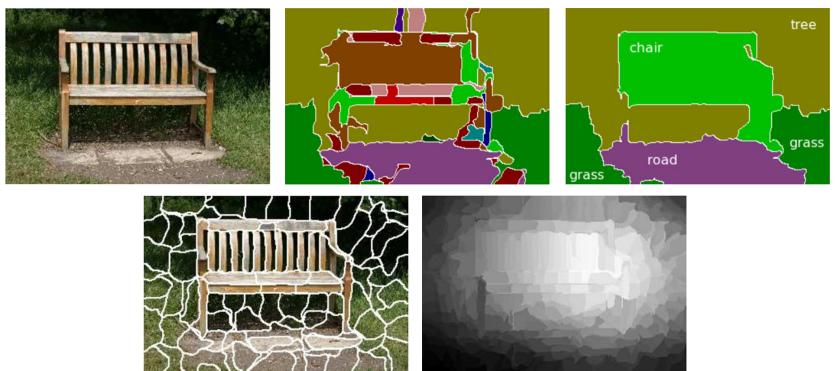


Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior

Conditional Random Fields

- Discriminative undirected probabilistic model
 - pair-wise neighbors, no long range dependencies
- Node potentials
 - object class likelihood
- Pair-wise potentials
 - label smoothness preference

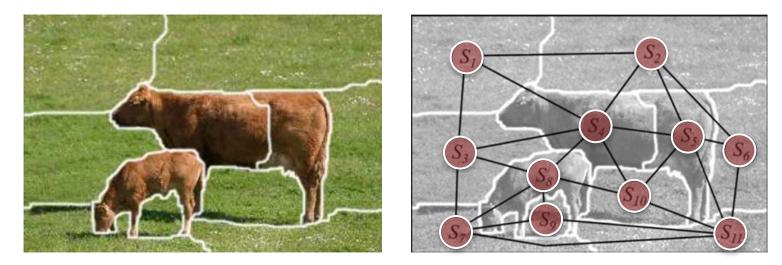
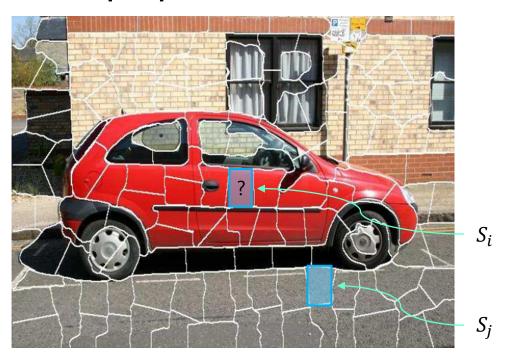


Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior

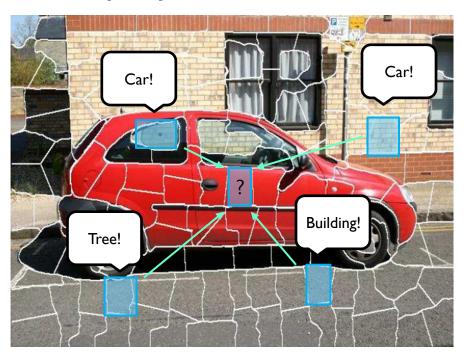
Relative Location Prior

- Encodes relative location between object classes
 - conditioned on offset $p(c_i = car|c_j = road, D(S_i, S_j))$
- Each superpixel votes for the most likely label for all other superpixels



Relative Location Prior

- Encodes relative location between object classes
 - conditioned on offset $p(c_i = car|c_j = road, D(S_i, S_j))$
- Each superpixel votes for the most likely label for all other superpixels



Relative Location Prior

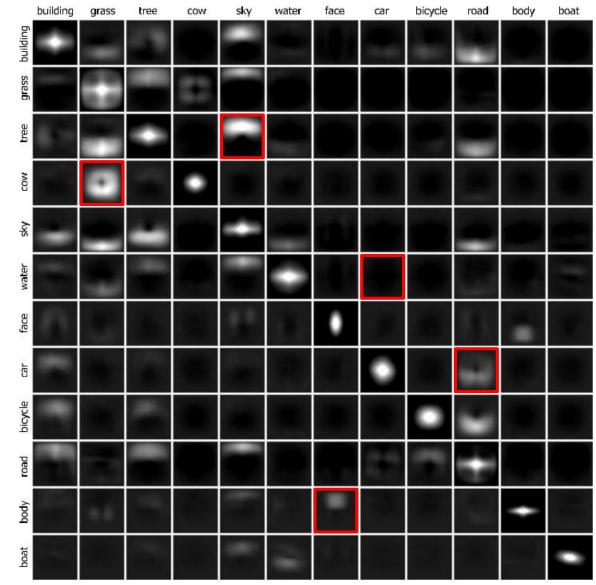


Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior

Connections

- Probabilistic framework
- Leveraging contextual relationships
 - location priming vs. relative location prior
- Sensitive to first stage errors
 - scene detector vs. appearance classifier



References

[1] "Using the Forest to see the Trees: Exploiting Context for Visual Object Detection and Localization" A. Torralba, K.P. Murphy, W.T. Freeman (CACM 2009)

[2] "Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope" A. Oliva, A. Torralba (IJCV 2001)

[3] "Sharing Visual Features for Multiclass and Multiview Object Detection" A. Torralba, K.P. Murphy, W.T. Freeman (PAMI 2007)

[4] "Multi-class Segmentation with Relative Location Prior" S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller (IJCV 2008)

[5] "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data" J. Lafferty, A. McCallum, F. Pereira. (ICML 2001)