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Context in Detection 

Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 

Myopic View of 
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Using the Forest to See the Trees 

Exploiting Context for Visual Object Detection and Localization 

A. Torralba, K. P. Murphy,  W. T. Freeman 
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Overview 

 Past Approach 

◦ associate objects with other 

objects in the image 

◦ presence of pedestrians given 

presence of cars 

 

 Holistic Approach 

◦ associate objects with the scene 

category as a single entity 

◦ presence of pedestrians given 

street scene 

Image Credit: A. Olivia, A. Torralba. – Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope 
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Goals 

 Use global features to obtain contextual prior 

for object categories 

 Develop a probabilistic framework for 

combining local (bottom-up) and global (top-

down) features 

 

 Target Problems 

◦ object presence detection (is there a car?) 

◦ object localization (where is the car?) 
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Global Feature - GIST 
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Image Idea: http://cybertron.cg.tu-berlin.de/pdci11ws/scene_completion/implementation.html  

Polar Form 

Spatial 

Envelope 
. . . Vectorize 



Local Features 

 Preview of next week’s paper on multiclass and 

multiview object detection 

◦ local feature boosting using part-model 
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Car Model Screen Model 

Image Credit: http://people.csail.mit.edu/torralba/shortCourseRLOC/CVPR2007_part3.ppt 



Local Features 
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Image Credit: http://people.csail.mit.edu/torralba/shortCourseRLOC/CVPR2007_part3.ppt 
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8-Scene Dataset 

Image Credit: A. Olivia, A. Torralba. – Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope 
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Coast Fields Forests Mountains 

Highways Streets Inside City Skyscrapers 



Object Presence 

 Is the object in the image? 

◦ binary classifier 

◦ prob. of object presence given gist 
 

 How many objects are in the image? 

◦ categorize the scene from gist (quantization) 

◦ prob. of having n objects given scene 
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Image Credit: A. Olivia, A. Torralba. – Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope 



Object Localization 

 Where are the objects? 

◦ local feature descriptors 

◦ confidence score 𝑐𝑖
𝑡 per region 𝑖 

◦ use top D (~10) most confident regions for evaluation 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 



Object Localization 

 Location trimming using gist 

◦ mixture of experts model 

◦ predict most likely vertical location 

◦ “mask out” unlikely regions for individual objects 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 



Integrated Model 

 Combine global and local features 
 

 Without location trimming 

 Prob. of object being present given confidence 

scores and gist 

◦ find the number of objects present using gist (global) 

◦ show that many confidence scores (local) 
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Integrated Model 

 With location trimming 

 Add a location term 𝑙𝑖
𝑡 given presence of object 

and gist 

◦ suppress or boost confidence scores according to 

location of confidence region 
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Toy Demo 
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Toy Demo 
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Toy Demo 



Results 

 2688 images with 8 scenes 

◦ half for training, half for testing 

 Focused solely on car identification 

 Integrated model is better than local features only 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 
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Results 

 Improves precision but not recall 

◦ removes false-positives 

 Context oracle doesn’t improve the performance 

as much for localization 
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Evaluation - Strength 

 Probabilistic information fusion 

 Boost confidence of probable regions 

◦ suppress confidence of non-probable regions 

 Location priming makes intuitive sense 

 Better performance than with only local features 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 



Evaluation - Weakness 

 Tested with only cars 

 Boost false positives within probable regions 

 75% accuracy on scene detector 

◦ better than object detector but not perfect 

 Still relies heavily on object detector accuracy 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 



Evaluation - Weakness 

 Scenes with less spatial regularity 

◦ suppress true positives within non-probable regions 
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Image Credit: A. Torralba, K.P. Murphy, W.T. Freeman – Using Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization 



Summary 

 Overall thoughts 

◦ successfully incorporated scene information into a 

probabilistic model  

◦ scene context helps to reduce false-positives 

◦ localization is much harder than presence detection 

◦ object detector accuracy is still crucial 

 Extension 

◦ more datasets, more objects 

◦ multiple objects in the same image 
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Multi-Class Segmentation with Relative Location Prior 

S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller 
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Overview 

 Multiclass image segmentation 

◦ classify all pixels in an image 

◦ leverage context information for spatial relationships 
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior 



Conditional Random Fields 

 Discriminative undirected probabilistic model 

◦ pair-wise neighbors, no long range dependencies 

 Node potentials 

◦ object class likelihood 

 Pair-wise potentials 

◦ label smoothness preference 
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior 



Relative Location Prior 

 Encodes relative location between object classes 

◦ conditioned on offset 

 Each superpixel votes for the most likely label 

for all other superpixels 

27 
Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior 

𝑝(𝑐𝑖 = 𝑐𝑎𝑟|𝑐𝑗 = 𝑟𝑜𝑎𝑑, 𝐷 𝑆𝑖 , 𝑆𝑗 ) 
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Relative Location Prior 

 Encodes relative location between object classes 

◦ conditioned on offset 

 Each superpixel votes for the most likely label 

for all other superpixels 
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior 

𝑝(𝑐𝑖 = 𝑐𝑎𝑟|𝑐𝑗 = 𝑟𝑜𝑎𝑑, 𝐷 𝑆𝑖 , 𝑆𝑗 ) 
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Relative Location Prior 
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Image Credit: S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller – Multi-class Segmentation with Relative Location Prior 

  



Connections 

 Probabilistic framework 

 Leveraging contextual relationships 

◦ location priming vs. relative location prior 

 Sensitive to first stage errors 

◦ scene detector vs. appearance classifier 
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