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Semantic Labeling

Labelings are evaluated with AP score.

I Measured against two competing methods.
I (A+P), (A + L + P) outperform in all cases except for bed

detection.

DPM 1 Alternate 2 (A + L) (P) (A + P) (A + L + P)
Wall - 75 76 76 82 81
Ceiling - 47 53 52 69 69
Floor - 59 64 65 76 76
Bed 31 12 14 21 27 26
Sofa/Armchar 26 26 34 32 44 43
Coffee Table 11 11 11 12 17 17
Chair 9.5 6.3 8.3 5.8 11 12
Table 15 18 17 16 22 22
Wardrobe/Cupboard 27 27 28 22 36 36
Christmas Tree 50 55 72 20 76 77
Other Object 12 11 7.9 13 16 16
Average 23 31 35 30 43 43

1Felzenszwalb et al. [2010]
2Hedau et al. [2009]
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