Social Interactions: A First-Person Perspective.

> A. Fathi, J. Hodgins, J. Rehg Presented by Jacob Menashe

> > November 16, 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Objective: Detect social interactions from video footage.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Objective: Detect social interactions from video footage.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Consider faces and attention

Objective: Detect social interactions from video footage.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Consider faces and attention
- Account for temporal context

Objective: Detect social interactions from video footage.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Consider faces and attention
- Account for temporal context
- Analyze first-person movements cues

#### Introduction

#### Overview Features

Temporal Context

Experiments

(ロ)、(型)、(E)、(E)、 E、のQの

## Video Example

| Red        | Dialogue           |
|------------|--------------------|
| Yellow     | Walking Dialogue   |
| Green      | Discussion         |
| Light Blue | Walking Discussion |
| Dark Blue  | Monologue          |
| None       | Background         |

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Link

Features are constructed based on first- and third-person information.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Features are constructed based on first- and third-person information.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. Dense optical flow (first-person movement).

Features are constructed based on first- and third-person information.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)

Features are constructed based on first- and third-person information.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)
- 3. Attention and Roles. For each person *x*:

Features are constructed based on first- and third-person information.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)
- 3. Attention and Roles. For each person *x*:
  - Faces looking at x

Features are constructed based on first- and third-person information.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)
- 3. Attention and Roles. For each person *x*:
  - Faces looking at x
  - Whether first person looks at x

Features are constructed based on first- and third-person information.

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)
- 3. Attention and Roles. For each person *x*:
  - Faces looking at x
  - Whether first person looks at x
  - Mutual attention between x and first person

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Features are constructed based on first- and third-person information.

- 1. Dense optical flow (first-person movement).
- 2. Face locations (relative to first person)
- 3. Attention and Roles. For each person *x*:
  - Faces looking at x
  - Whether first person looks at x
  - Mutual attention between x and first person
  - Number of faces looking at where x is looking

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Feature Example







(b)















(e)

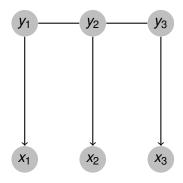


(f)

CRFs are described in Lafferty et al. [2001].

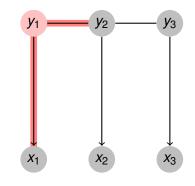
CRFs are described in Lafferty et al. [2001].

- Observations and labels form a Markov chain.
- Nodes pend on neighbors.



CRFs are described in Lafferty et al. [2001].

- Observations and labels form a Markov chain.
- Nodes pend on neighbors.

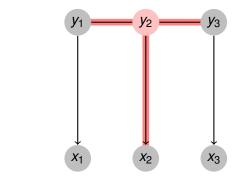


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

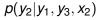
 $p(y_1|x_1,y_2)$ 

CRFs are described in Lafferty et al. [2001].

- Observations and labels form a Markov chain.
- Nodes pend on neighbors.

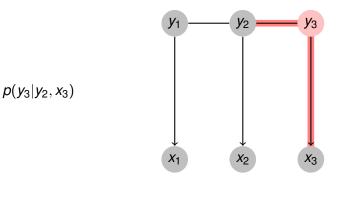


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



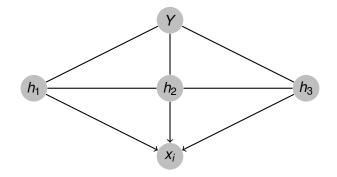
CRFs are described in Lafferty et al. [2001].

- Observations and labels form a Markov chain.
- Nodes pend on neighbors.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

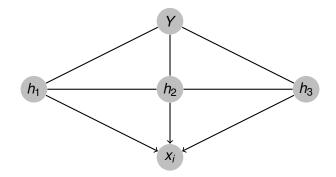
A micro view of the HCRF model as described in Quattoni et al. [2007].



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

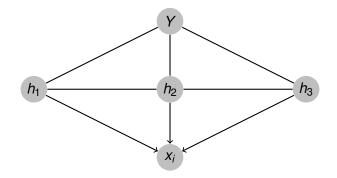
A micro view of the HCRF model as described in Quattoni et al. [2007].

> Y is a label for the whole sequence.



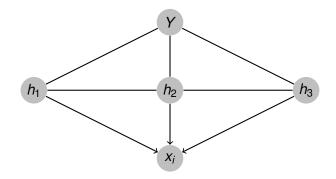
A micro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- $x_i$  is a single observation in the sequence.

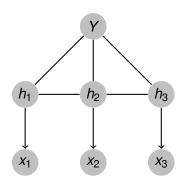


A micro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- $x_i$  is a single observation in the sequence.
- Each  $h_i$  is a possible hidden state.

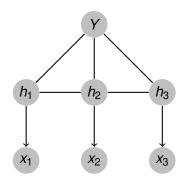


A macro view of the HCRF model as described in Quattoni et al. [2007].



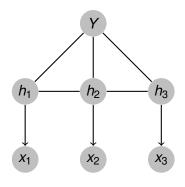
A macro view of the HCRF model as described in Quattoni et al. [2007].

> Y is a label for the whole sequence.



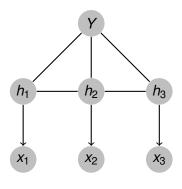
A macro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.



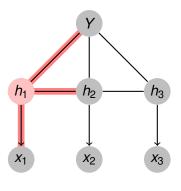
A macro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.
- Each  $h_i$  is the hidden state label assigned to  $x_i$ .



A macro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.
- Each  $h_i$  is the hidden state label assigned to  $x_i$ .

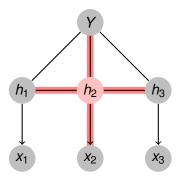


・ コット (雪) ( 小田) ( コット 日)

 $p(h_1|Y, h_2, x_1)$ 

A macro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.
- Each  $h_i$  is the hidden state label assigned to  $x_i$ .

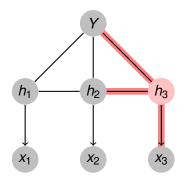


・ コット (雪) ( 小田) ( コット 日)

 $p(h_2|Y, h_1, h_3, x_2)$ 

A macro view of the HCRF model as described in Quattoni et al. [2007].

- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.
- Each  $h_i$  is the hidden state label assigned to  $x_i$ .

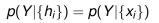


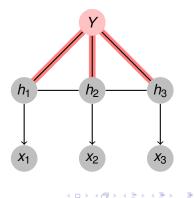
・ コット (雪) ( 小田) ( コット 日)

 $p(h_3|Y, h_2, x_3)$ 

A macro view of the HCRF model as described in Quattoni et al. [2007].

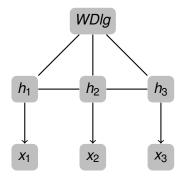
- > Y is a label for the whole sequence.
- Each  $x_i$  is a single observation in the sequence.
- Each  $h_i$  is the hidden state label assigned to  $x_i$ .





# HCRF Example

Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

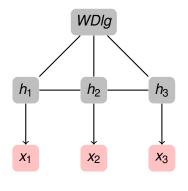


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# HCRF Example

Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

► Each *x<sub>i</sub>* is now a feature extracted from video frames.

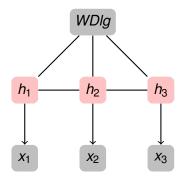


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# HCRF Example

Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

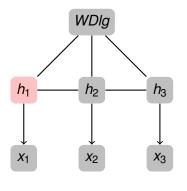
- ► Each *x<sub>i</sub>* is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

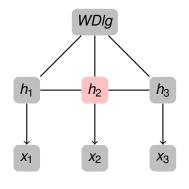
Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - $h_1$ : John wants to hear about my weekend.



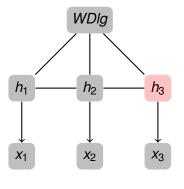
Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - ► *h*<sub>2</sub>: I'm feeling talkative.



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

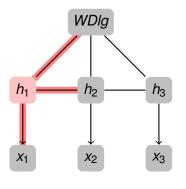
- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - $h_3$ : Mary wants to listen to her iPod.



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - $h_1$ : John wants to hear about my weekend.

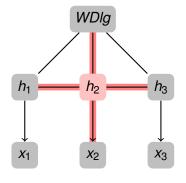
 $p(h_1|Y, h_2, x_1)$ 



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - ► *h*<sub>2</sub>: I'm feeling talkative.

$$p(h_2|Y, h_1, h_3, x_2)$$

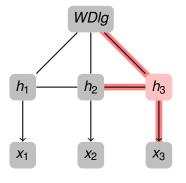


Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:

•  $h_3$ : Mary wants to listen to her iPod.

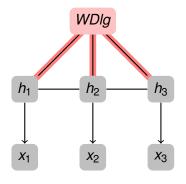
 $p(h_3|Y, h_2, x_3)$ 



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each *h<sub>i</sub>* is determined from training:
  - $h_1$ : John wants to hear about my weekend.
  - h<sub>2</sub>: I'm feeling talkative.
  - $h_3$ : Mary wants to listen to her iPod.

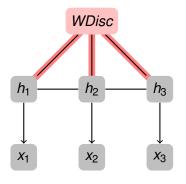
$$p(WDlg|\{h_i\}) = p(WDlg|\{x_i\})$$



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

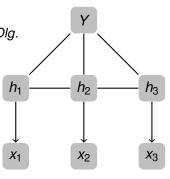
- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - $h_1$ : John wants to hear about my weekend.
  - h<sub>2</sub>: I'm feeling talkative.
  - h<sub>3</sub>: Mary wants to listen to her iPod.

$$p(WDisc|\{h_i\}) = p(WDisc|\{x_i\})$$



Suppose we want to find the likelihood of "walking dialogue" (*WDlg*) vs "walking discussion" (*WDisc*).

- Each x<sub>i</sub> is now a feature extracted from video frames.
- Each  $h_i$  is determined from training:
  - h<sub>1</sub>: John wants to hear about my weekend.
  - $h_2$ : I'm feeling talkative.
  - h<sub>3</sub>: Mary wants to listen to her iPod.
  - If p(WDlg) > p(WDisc), assign Y = WDlg.



Introduction

Overview

Temporal Context Conditional Random Fields Hidden Conditional Random Fields HCRF Example

Experiments



#### Introduction

Overview

**Temporal Context** 

Experiments Experiment Outline Experiment 1: Video Processing Experiment 2: Caltech Dataset Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The following experiments are presented:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The following experiments are presented:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Video Processing

The following experiments are presented:

- Video Processing
- Caltech image dataset

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:
  - Iterations

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:
  - Iterations
  - Hidden States

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:
  - Iterations
  - Hidden States
  - Optimization Function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:
  - Iterations
  - Hidden States
  - Optimization Function

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Clusters

The following experiments are presented:

- Video Processing
- Caltech image dataset
- Adjusted parameters:
  - Iterations
  - Hidden States
  - Optimization Function
  - Clusters
- Compared with linear SVM baseline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

## Experiment 1: Video Processing

| Mine                   | Theirs                                                       |
|------------------------|--------------------------------------------------------------|
| 40 training intervals  | 4,000 training intervals                                     |
| 40 testing intervals   | [unspecified]                                                |
| Dialogue vs Discussion | One vs. All                                                  |
| All Features           | Location<br>First-Person Motion<br>Attention<br>All Features |

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

## Experiment 1: Video Processing

| Mine                   | Theirs                                                       |
|------------------------|--------------------------------------------------------------|
| 40 training intervals  | 4,000 training intervals                                     |
| 40 testing intervals   | [unspecified]                                                |
| Dialogue vs Discussion | One vs. All                                                  |
| All Features           | Location<br>First-Person Motion<br>Attention<br>All Features |

~42 hours = 11,340 intervals 11,340 intervals @ 24 hours per 20 intervals > 18 months

## Experiment 1: Video Processing (cont.)

My Results Their Results DET - different features for detecting dialogue 1 n HCRF Dialogue vs Discussion Detection 0.9 0.9 0.8 0.8 0.7 0.7 Inue positive rate 0.6 물 0.6 0.5 True positive r 70 0.4 0.3 0.3 0.2 Location Features (0.64) 0.2 First-Person Motion Features (0.72) ٥. Attention Features (0.73) 0.1 Al Features (0.82 O. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 False positive rate False positive rate

(a)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

0.9

Experiment 2 focuses on the Caltech image dataset.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Experiment 2 focuses on the Caltech image dataset.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multi-class HCRF evaluated

Experiment 2 focuses on the Caltech image dataset.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.

Experiment 2 focuses on the Caltech image dataset.

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Experiment 2 focuses on the Caltech image dataset.

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering
- Initial parameters are based on Fathi et al. [2012]:

(ロ) (同) (三) (三) (三) (○) (○)

Experiment 2 focuses on the Caltech image dataset.

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering
- Initial parameters are based on Fathi et al. [2012]:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Hidden States: 5

Experiment 2 focuses on the Caltech image dataset.

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering
- Initial parameters are based on Fathi et al. [2012]:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Hidden States: 5
- Window Size: 5

Experiment 2 focuses on the Caltech image dataset.

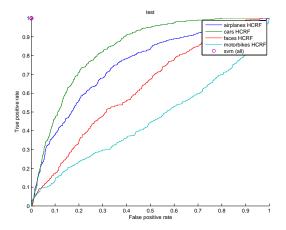
- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering
- Initial parameters are based on Fathi et al. [2012]:

- Hidden States: 5
- Window Size: 5
- Max Iterations: 100

Experiment 2 focuses on the Caltech image dataset.

- Multi-class HCRF evaluated
- Classes are evaluated in isolation.
- Temporal context is simulated with clustering
- Initial parameters are based on Fathi et al. [2012]:
  - Hidden States: 5
  - Window Size: 5
  - Max Iterations: 100
  - Optimizer: Broyden–Fletcher-Goldfarb-Shanno (BFGS)

## Exp. 2a: Initial Settings



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

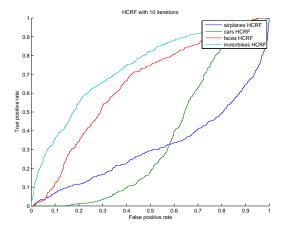
Processing: ~18 minutes, 1 MB

## Exp. 2a: Initial Settings (cont.)



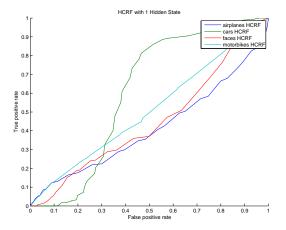
◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

## Exp. 2b: Low Iterations



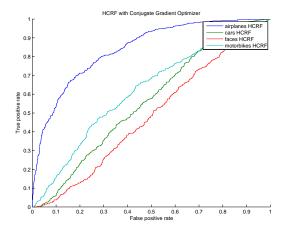
Processing: ~3 minutes, 1 MB

## Exp. 2c: Low Hidden States



Processing: ~2 minutes, 1 MB

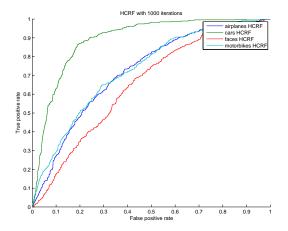
## Exp. 2d: CG Optimizer



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Processing: ~11 minutes, 1 MB

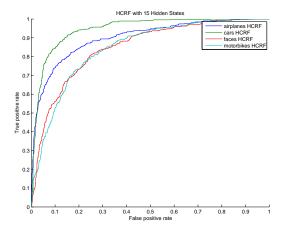
#### Exp. 2e: Increased Iterations



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Processing: ~30 minutes, 1 MB

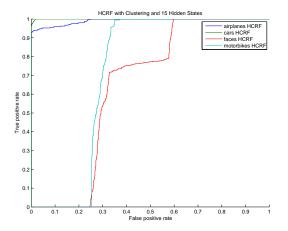
# Exp. 2f: Increased Hidden States



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Processing: ~1 hour, 3 GB

#### Exp. 2g: Clustering + 15 Hidden States



▲□▶▲□▶▲□▶▲□▶ □ のQ@

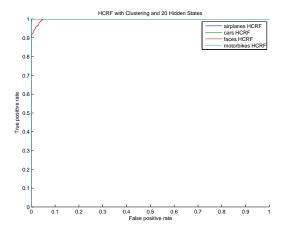
Processing: ~1 hour 10 minutes, 3 GB

## Exp. 2g: Clustering + 15 Hidden States (cont.)



▲□▶▲□▶▲□▶▲□▶ □ のへで

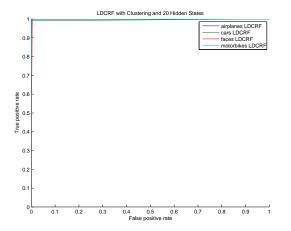
## Exp. 2h: Clustering + 20 Hidden States



Processing: ~1 hour 40 minutes, 5 GB

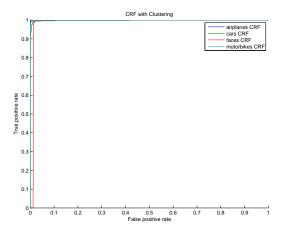
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

## Exp. 2i: LDCRF with 20 Hidden States



Processing: ~5 hours 20 minutes, 5 GB

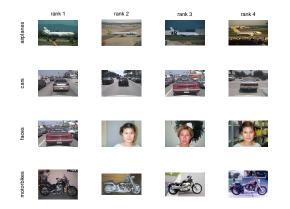
## Exp. 2j: CRF with Initial Parameters



▲□▶▲□▶▲□▶▲□▶ □ のQ@

Processing: ~21 seconds, 1 MB

## Exp. 2j: CRF with Initial Parameters (cont.)



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

## **Overall Results**

#### SVM, CRF, and LDCRF perform best

## **Overall Results**

- SVM, CRF, and LDCRF perform best
- CRF almost outperforms all with negligible memory and processing requirements

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

## **Overall Results**

- SVM, CRF, and LDCRF perform best
- CRF almost outperforms all with negligible memory and processing requirements
- Hidden states increase accuracy but at significant memory cost

(ロ) (同) (三) (三) (三) (○) (○)

## Conclusion

HCRF is accurate, but has a heavy performance cost.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

May be optimal for particular domains.

#### References I

Alireza Fathi, Jessica K. Hodgins, and James M. Rehg. Social interactions: A first-person perspective. In *CVPR*, pages 1226–1233. IEEE, 2012. ISBN 978-1-4673-1226-4. URL http://dblp.uni-trier.de/db/conf/cvpr/ cvpr2012.html#FathiHR12.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *Proceedings of the Eighteenth International Conference on Machine Learning*, ICML '01, pages 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-1. URL http:

//dl.acm.org/citation.cfm?id=645530.655813.

Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Michael Collins, and Trevor Darrell. Hidden conditional random fields. *IEEE Trans. Pattern Anal. Mach. Intell.*, 29 (10):1848–1852, October 2007. ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1124. URL

http://dx.doi.org/10.1109/TPAMI.2007.1124.

(ロ) (同) (三) (三) (三) (○) (○)