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Motivation

The goal is to recover a 3D “contextual frame” from a single image.

Global scene context is also important for object detection.12

1Antonio Torralba. Contextual priming for object detection. Int. J. Comput. Vision,
53(2):169–191, July 2003

2A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object
detection using boosted random fields. In Advances in Neural Information Processing
Systems 17 (NIPS), pages 1401–1408, 2005



Approach

3D geometry estimation is treated as a statistical learning problem.

The system models geometric classes that depend on the orientation
of a physical scene.

For example, plywood lying on the ground and the same plywood
propped by a board are in different geometric classes.

The geometric structure is built progressively.



Observations on the training/testing data

Over 97% of pixels belonged to one of three geometric classes:

the ground plane
surfaces roughly perpendicular to the ground
sky

The camera axis was roughly parallel to the ground plane in most of
the images.



Observations on the training/testing data

3

3from Derek Hoiem’s presentation “Automatic Photo Popup”,
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Overview of the Algorithm
Raw image

Every patch of an image is
induced by a surface with
some orientation in the real
world.

All available cues are
necessary to determine the
most likely orientations.



Overview of the Algorithm
Superpixels

Each superpixel is assumed
to belong to a single
geometric class.

To estimate the orientation
of large-scale surfaces, it’s
necessary to compute more
complex geometric features
over large regions of the
image.



Overview of the Algorithm
Multiple Hypotheses

A small number of
segmentations from all
possible superpixel
segmentations are sampled.

The likelihood of each
superpixel label is
determined.



Overview of the Algorithm
Geometric Labels

There are 3 main geometric
labels:

ground
vertical
sky

And 5 subclasses of vertical:

left (�)
center (�)
right (�)
porous (◯)
solid (×)



Overview of the Algorithm
Features

C1 captures the red,
green and blue
values, as expected

C2 represents the hue
and “grayness” of
a pixel

T1-4 Derivative of
oriented Gaussian
filters



Training Data

300 publicly available images from the Internet

Images are often cluttered and span several environments.

Each image is over-segmented, and each segment is labeled
according to its geometric class.

50 images are used to train the segmentation algorithm.

250 image are used to train and test the system using 5-fold cross
validation.



Generating Multiple Segmentations

An image is to be segmented into nr geometrically homogeneous
(and not necessarily contiguous) regions.

The superpixels are shuffled.

The first nr superpixels are assigned to different regions.

Each of the remaining superpixels are iteratively assigned based on a
learned pairwise affinity function.

The algorithm was run with nine different values for nr , ranging
from 3 to 25.



Training the Pairwise Affinity Function

Pairs of superpixels were sampled.

2500 same-label pairs
2500 different-label pairs

The probability that two superpixels share a label given the absolute
difference of their feature vectors is derived:

P (yi = yj ∣ ∣xi − xj ∣)



Training the Pairwise Affinity Function

The pairwise likelihood function is estimated using the logistic
regression form of Adaboost4.

Each weak learner fm is based on the naive density estimates of the
absolute feature differences:

fm(x1,x2) =
nf

∑
i

log
P (y1 = y2, ∣x1i − x2i ∣)
P (y1 ≠ y2, ∣x1i − x2i ∣)

4A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. International
Journal of Computer Vision, V40(2):123–148, November 2000



Training the Pairwise Affinity Function
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Geometric Labeling

Each superpixel will belong to several regions, one per hypothesis.

The confidence of the superpixel label is the average label likelihood
of the regions containing it, weighted by the homogeneity likelihoods:

C(yi = v ∣x) =
nh

∑
j

P (yj = v ∣x,hji)P (hji ∣x)



Training the Label and Homogeneity Likelihood Functions

Several segmented Hypotheses are generated as described above.

Each region is labeled with one of the main geometric classes or
“mixed”.

Each region that is “vertical” is labeled with one of the vertical
subclasses or “mixed”.



Training the Label and Homogeneity Likelihood Functions

The label likelihood function is learned as one-versus-many.

The homogeneity likelihood function is learned as
mixed-versus-homogeneously labeled.

Both functions are learned using the logistic regression form of
Adaboost with weak learners based on eight-node decision trees6.

6J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical
view of boosting, 1998



Training the Label and Homogeneity Likelihood Functions
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Training the Label and Homogeneity Likelihood Functions
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Geometric Classification

The overall accuracy for
main geometric classes was
86%.

The overall accuracy for
vertical subclasses was 52%.

The difficulty of classifying
vertical subclasses is mostly
due to ambiguity of ground
truth labeling.



Importance of Structure Estimation

Accuracy increases with the complexity of the intermediate structure
estimation.

CPrior only class priors were used
Loc only pixel positions were used

Pixel only pixel-level colors and textures were used
SPixel all features are used at superpixel-level
OneH only used a single 9-segmented hypothesis

MultiH used the full multi-hypothesis framework



Importance of Cues

Location features have
the strongest effect on
the system’s accuracy.

Location features
aren’t sufficient for
classification.



Object Detection

Using a local detector9 that uses GentleBoost to form a classifier
based on fragment templates to detect multiple-oriented cars on the
PASCAL10 training set, sans grayscale images.

One version of the system only used 500 local features, while the
other added 40 contextual features form the geometric context.

9Kevin P. Murphy, Antonio B. Torralba, and William T. Freeman. Graphical model
for recognizing scenes and objects. In Sebastian Thrun, Lawrence K. Saul, and
Bernhard Schlkopf, editors, NIPS. MIT Press, 2003

10The pascal object recognition database collection, Website, PASCAL Challenges
Workshop, 2005, http://www.pascal-network.org/challenges/VOC/.



Object Detection



Automatic Single-View Reconstruction

The automatically generated 3D model is comparable to the
manually specified model11.

11D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural models from
images. Computer Graphics Forum, pages 39–50, September 1999



Failures
Reflection Failures
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Failures
Shadow Failures
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Failures
Catastrophic Failures
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