Geometric Context from a Single Image

Derek Hoiem Alexei A. Efros Martial Hebert

Carnegie Mellon University

February 26, 2009 Presented by Luis Guimbarda

Outline

- 1 Introduction
 - Motivation
 - Approach
 - Observations on the training/testing data
 - Overview of the Algorithm

2 Learning Segmentations and Labels

- Training Data
- Generating Multiple Segmentations
- Training the Pairwise Affinity Function
- Geometric Labeling
- Training the Label and Homogeneity Likelihood Functions

3 Results

- Geometric Classification
- Importance of Structure Estimation
- Importance of Cues
- Object Detection
- Automatic Single-View Reconstruction
- Failures

The goal is to recover a 3D "contextual frame" from a single image.

Global scene context is also important for object detection.¹²

¹Antonio Torralba. Contextual priming for object detection. *Int. J. Comput. Vision*, 53(2):169–191, July 2003

²A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In *Advances in Neural Information Processing Systems 17 (NIPS)*, pages 1401–1408, 2005

- **3**D geometry estimation is treated as a statistical learning problem.
- The system models geometric classes that depend on the orientation of a physical scene.
 - For example, plywood lying on the ground and the same plywood propped by a board are in different geometric classes.
- The geometric structure is built progressively.

- Over 97% of pixels belonged to one of three geometric classes:
 - the ground plane
 - surfaces roughly perpendicular to the ground
 - sky
- The camera axis was roughly parallel to the ground plane in most of the images.

Observations on the training/testing data

³from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

- Every patch of an image is induced by a surface with some orientation in the real world.
- All available cues are necessary to determine the most likely orientations.

- Each superpixel is assumed to belong to a single geometric class.
- To estimate the orientation of large-scale surfaces, it's necessary to compute more complex geometric features over large regions of the image.

- A small number of segmentations from all possible superpixel segmentations are sampled.
- The likelihood of each superpixel label is determined.

Overview of the Algorithm Geometric Labels

- There are 3 main geometric labels:
 - ground
 - vertical
 - sky
- And 5 subclasses of vertical:
 - left (←)
 center (↑)
 right (→)
 porous (○)
 solid (×)

Feature Descriptions	Num
Color	16
C1. RGB values: mean	3
C2. HSV values: C1 in HSV space	3
C3. Hue: histogram (5 bins) and entropy	6
C4. Saturation: histogram (3 bins) and entropy	4
Texture	15
T1. DOOG filters: mean abs response of 12 filters	12
T2. DOOG stats: mean of variables in T1	1
T3. DOOG stats: argmax of variables in T1	1
T4. DOOG stats: (max - median) of variables in T1	1
Location and Shape	12
L1. Location: normalized x and y, mean	2
L2. Location: norm. x and y, 10th and 90th pctl	4
L3. Location: norm, y wrt horizon, 10th, 90th pctl	2
L4. Shape: number of superpixels in region	1
L5. Shape: number of sides of convex hull	1
L6. Shape: num pixels/area(convex hull)	1
L7. Shape: whether the region is contiguous $\in \{0, 1\}$	1
3D Geometry	35
G1. Long Lines: total number in region	1
G2. Long Lines: % of nearly parallel pairs of lines	1
G3. Line Intsctn: hist. over 12 orientations, entropy	13
G4. Line Intsctn: % right of center	1
G5. Line Intsctn: % above center	1
G6. Line Intsctn: % far from center at 8 orientations	8
G7. Line Intsctn: % very far from center at 8 orient.	8
G8. Texture gradient: x and y "edginess" (T2) center	2

C1 captures the red, green and blue values, as expected

- C2 represents the hue and "grayness" of a pixel
- T1-4 Derivative of oriented Gaussian filters

- 300 publicly available images from the Internet
- Images are often cluttered and span several environments.
- Each image is over-segmented, and each segment is labeled according to its geometric class.
- **5**0 images are used to train the segmentation algorithm.
- 250 image are used to train and test the system using 5-fold cross validation.

- An image is to be segmented into *n_r* geometrically homogeneous (and not necessarily contiguous) regions.
- The superpixels are shuffled.
- The first n_r superpixels are assigned to different regions.
- Each of the remaining superpixels are iteratively assigned based on a learned pairwise affinity function.
- The algorithm was run with nine different values for n_r , ranging from 3 to 25.

- Pairs of superpixels were sampled.
 - 2500 same-label pairs
 - 2500 different-label pairs
- The probability that two superpixels share a label given the absolute difference of their feature vectors is derived:

$$P\left(y_{i}=y_{j}|\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right)$$

- The pairwise likelihood function is estimated using the logistic regression form of Adaboost⁴.
- Each weak learner f_m is based on the naive density estimates of the absolute feature differences:

$$f_m(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i}^{n_f} \log \frac{P(y_1 = y_2, |x_{1i} - x_{2i}|)}{P(y_1 \neq y_2, |x_{1i} - x_{2i}|)}$$

⁴A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. *International Journal of Computer Vision*, V40(2):123–148, November 2000

Training the Pairwise Affinity Function

⁵from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

- Each superpixel will belong to several regions, one per hypothesis.
- The confidence of the superpixel label is the average label likelihood of the regions containing it, weighted by the homogeneity likelihoods:

$$C(y_i = v | \mathbf{x}) = \sum_{j}^{n_h} P(y_j = v | \mathbf{x}, \mathbf{h}_{ji}) P(\mathbf{h}_{ji} | \mathbf{x})$$

- Several segmented Hypotheses are generated as described above.
- Each region is labeled with one of the main geometric classes or "mixed".
- Each region that is "vertical" is labeled with one of the vertical subclasses or "mixed".

- The label likelihood function is learned as one-versus-many.
- The homogeneity likelihood function is learned as mixed-versus-homogeneously labeled.
- Both functions are learned using the logistic regression form of Adaboost with weak learners based on eight-node decision trees⁶.

⁶J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting, 1998

Training the Label and Homogeneity Likelihood Functions

⁷from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

Training the Label and Homogeneity Likelihood Functions

Labeled Segmentations

8

⁸from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

- The overall accuracy for main geometric classes was 86%.
- The overall accuracy for vertical subclasses was 52%.
- The difficulty of classifying vertical subclasses is mostly due to ambiguity of ground truth labeling.

Geometric Class					
	Ground	Vertical	Sky		
Ground	0.78	0.22	0.00		
Vertical	0.09	0.89	0.02		
Sky	0.00	0.10	0.90		

Table 2: Confusion matrix for the main geometric classes.

Vertical Subclass					
	Left	Center	Right	Porous	Solid
Left	0.15	0.46	0.04	0.15	0.21
Center	0.02	0.55	0.06	0.19	0.18
Right	0.03	0.38	0.21	0.17	0.21
Porous	0.01	0.14	0.02	0.76	0.08
Solid	0.02	0.20	0.03	0.26	0.50

Table 3: Confusion matrix for the vertical structure subclasses.

 Accuracy increases with the complexity of the intermediate structure estimation.

Intermediate Structure Estimation						
11110	CPrior	Loc	Pixel	SPixel	OneH	MultiH
Main	49%	66%	80%	83%	83%	86%
Sub	34%	36%	43%	45%	44%	52%

CPrior only class priors were used

Loc only pixel positions were used

Pixel only pixel-level colors and textures were used

SPixel all features are used at superpixel-level

OneH only used a single 9-segmented hypothesis

MultiH used the full multi-hypothesis framework

Importance of Different Feature Types					
	Color	Texture	Loc/Shape	Geometry	
Main	6%	2%	16%	2%	
Sub	6%	2%	8%	7%	

- Location features have the strongest effect on the system's accuracy.
- Location features aren't sufficient for classification.

Object Detection

- Using a local detector⁹ that uses GentleBoost to form a classifier based on fragment templates to detect multiple-oriented cars on the PASCAL¹⁰ training set, sans grayscale images.
- One version of the system only used 500 local features, while the other added 40 contextual features form the geometric context.

⁹Kevin P. Murphy, Antonio B. Torralba, and William T. Freeman. Graphical model for recognizing scenes and objects. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schlkopf, editors, *NIPS*. MIT Press, 2003

¹⁰The pascal object recognition database collection, Website, PASCAL Challenges Workshop, 2005, http://www.pascal-network.org/challenges/VOC/.

(a) Local Features Only

(b) Geometric Labels

(c) With Context

 The automatically generated 3D model is comparable to the manually specified model¹¹.

Input

Labels

Novel View

Novel View

¹¹D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural models from images. *Computer Graphics Forum*, pages 39–50, September 1999

¹²from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

Input image

Ground Truth

Our Result 13

¹³from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

¹⁴from Derek Hoiem's presentation "Automatic Photo Popup", http://www.cs.uiuc.edu/homes/dhoiem/presentations/index.html

- A. Criminisi, I. Reid, and A. Zisserman. Single view metrology. International Journal of Computer Vision, V40(2):123–148, November 2000.
- [2] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting, 1998.
- [3] D. Liebowitz, A. Criminisi, and A. Zisserman. Creating architectural models from images. *Computer Graphics Forum*, pages 39–50, September 1999.
- [4] Kevin P. Murphy, Antonio B. Torralba, and William T. Freeman. Graphical model for recognizing scenes and objects. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schlkopf, editors, *NIPS*. MIT Press, 2003.
- [5] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted random fields. In *Advances in Neural Information Processing Systems 17 (NIPS)*, pages 1401–1408, 2005.
- [6] Antonio Torralba. Contextual priming for object detection. Int. J. Comput. Vision, 53(2):169–191, July 2003.