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Previously

« Filters allow local image neighborhood to
influence our description and features

— Smoothing to reduce noise

— Derivatives to locate contrast, gradient

« Seam carving application:

— use image gradients to measure “interestingness” or
“energy”

— remove 8-connected seams so as to preserve
image’s energy.

Today

» Edge detection and matching

— process the image gradient to find curves/contours
— comparing contours

* Binary image analysis
— blobs and regions

Edge detection

« Goal: map image from 2d array of pixels to a set of
curves or line segments or contours.

* Why?
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Figure from J. Shotton et al., PAMI 2007

Figure from D. Lowe

* Main idea: look for strong gradients, post-process

Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

Determine which local maxima from filter output
are actually edges vs. noise

¢ Threshold, Thin

Thresholding

« Choose a threshold value t
« Set any pixels less than t to zero (off)

« Set any pixels greater than or equal to t to one
(on)
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Original image

Gradient magnitude image

Thresholding gradient with a lower threshold
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Thresholding gradient with a higher threshold
‘ i,— - |

;o A . ;

Canny edge detector

Filter image with derivative of Gaussian

Find magnitude and orientation of gradient
Non-maximum suppression:

— Thin wide “ridges” down to single pixel width
Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them

MATLAB: edge(image, “canny’);
>>help edge

Source: D. Lowe, L. Fei-Fei

The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz
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The Canny edge detector The Canny edge detector

norm of the gradient thresholding
The Canny edge detector Non-maximum suppression
How to turn . * . UI‘.
these thick
regions of the M . -
gradient into q
curves? Gradient /
[ ] L I ] [ ]
T
[ ) L L ] [ )
Check if pixel is local maximum along gradient direction,
select single max across width of the edge
« requires checking interpolated pixels p and r
The Canny edge detector Hysteresis thresholding
» Use a high threshold to start edge curves,
and a low threshold to continue them.
Problem:
pixels along
this edge
didn't
survive the
thresholding
thinning
(non-maximum suppression)
Source: Steve Seitz
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Hysteresis thresholding Hysteresis thresholding

high threshold low threshold hysteresis threshold
— (strong edges) (weak edges)
high threshold low threshold hysteresis threshold
(strong edges) (weak edges)
Source: L. Fei-Fei Source: L. Fei-Fei
Recap: Canny edge detector Low-level edges vs. perceived contours

*  Filter image with derivative of Gaussian
» Find magnitude and orientation of gradient
¢ Non-maximum suppression:
— Thin wide “ridges” down to single pixel width
e Linking and thresholding (hysteresis):

— Define two thresholds: low and high

— Use the high threshold to start edge curves and
the low threshold to continue them

¢ MATLAB: edge(image, “canny’);

= >>help edge Background Texture Shadows

Source: D. Lowe, L. Fei-Fei

Low-level edges vs. perceived contours Learn from

humans which
combination of
features is most
indicative of a
“good” contour?

image human segmentation gradient magnitude

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Source: L. Lazebnif [D. Martin et al. PAMI 2004] Human-marked segment boundaries




What features are responsible for
perceived edges?
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Today

« Edge detection and matching
— process the image gradient to find curves/contours
— comparing contours

« Binary image analysis
— blobs and regions
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What features are responsible for
perceived edges?
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State-of-the-Art in Contour Detection

Human

Canny agreement

Prewitt,
Sobel, RS - Learned

Roberts Ny with

combined
features

Source: Jitendra Malik:

UC Berkeley
http://www.cs.berkeley.edu/~malik/malik-talks-ptrs. html

Computer Vision Group

S S

Fig. 1. Examples of two handwritten digits, In torms of phskto-pheol
comparisons, these two images are quite dierert, but 15 the human
‘sbasrvar, Me SREDSS SPOSAF 15 B Simiar

Figure from Belongie et al.
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Chamfer distance Chamfer distance

* Average distance to nearest feature

1
Deparnger T )= 5y dy(f) @)
! I ,Z; o 1o

| = Setof points in image

T = Set of points on (shifted) template
d. (t) = Minimum distance between point t I

: ( ) and some point in / Doamper T 1) = Gl Zfr‘;{r]

1T

Kiisten Grauman, UT-Austin) Kiisten Grauman, UT-Austinl

Chamfer distance Distance transform

» Average distance to nearest feature

Image features (2D) Distance Transform

1{0(1]2]|3[4|3][2

1 How is the measure 1]10/1)2]3/3[2]1

Doyanjer T 1) = TZ'I’;{'] different than just 1l0/1]2[3]2[1]0
P filtering with a mask 1Tofo 1 21 o1

having the shape 2]1)1)2]1j0]1|2

points? 32022100112

G Mbend 4l3[3]2[1l0(1]2

EE1EL) 5[4lal3[2]1[0]1

How expensive is a

a-_utts By naive

- ?i - implementation? i ) i .

S -‘«T»;;S%J Distance Transform is a function D() that for each image
N

pixel passigns a non-negative number D(p) corresponding to
Edge image distance from p to the nearest feature in the image |

Features could be edge points, foreground points,...

Source: Yuri Boykov
Kisien Grauman UT-AuSiin

Distance transform Distance transform (1D)
Two pass O(n) algorithm for 1D L; norm
1. Initialize: For all j
D[j] « 1p[i] /1 0if jis in P, infinity otherwise
original distance transform

Value at (x,y) tells how far

that position is from the

nearest edge point (or other|

binary mage structure)

>> help bwdist

L risten Grauman UT-AUSID Adapted from D. Huttenlocher
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Distance Transform (2D) Chamfer distance
= 2D case analogous to 1D » Average distance to nearest feature
- Initialization 1
- Forward and backward pass Dovamger T 1) = W S di(h)
+ Fwd pass finds closest above and to left TeeT

*» Bwd pass finds closest below and to right

T [ME = HFE
EHE = B EREH BRRB o |1 ;\J

2 )

Edge image Distance transform image
AdaEted from D. Huttenlocher Kristen Grauman, UT-Austin)
Chamfer distance Chamfer distance:
properties

» Sensitive to scale and rotation

» Tolerant of small shape changes, clutter
* Need large number of template shapes
¢ Inexpensive way to match shapes

F@ii:‘.‘?":’.i T
‘?ﬁ.ﬁ = L—ﬁ"é;::
. =i
N
Edge image Distance transform image
Fig from D. Gavrila, DAGM 1999 Kiisten Grauman UTAUSIo
Today Binary images

— O

« Edge detection and matching
— process the image gradient to find curves/contours
— comparing contours

~a o 4] € 0y B
o) et W -o

e Binary image analysis
— blobs and regions

Kiisten Grauman, UT-Austiol
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Binary image analysis:
basic steps

» Convert the image into binary form

— Thresholding
 Clean up the thresholded image

— Morphological operators
» Extract separate blobs

— Connected components

« Describe the blobs with region properties

Kiisten Grauman, UT-Austin)

Binary images

» Two pixel values
— Foreground and background
— Mark region(s) of interest

L{1jofi1foji1]o
1frjrjrjojofo
ojoflojolo]ol0
[ N
[ N

[ K

Thresholding

» Grayscale -> binary mask

Useful if object of interest’s intensity distribution
is distinct from background

. (1t Fl4=T
FTUJ]*[ 0 otherwise.

L a1 T=FL, A< T,
P, 717[ 0 otherwise,

.. 1 if Fli ez
FT[I’]]_t 0 otherwise.

* Example
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/

simplebinary.html

Thresholding

¢ Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: edge detection

Gradient magnitude Tg_pix = find(gradient_mag > t);

Looking for pixels where gradient is strong.

Kristen Grauman |T-Aushiol

Thresholding

« Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: background subtraction

Looking for pixels that differ significantly
from the “empty” background.

fg_pix = find(diff > t);

risten Grauman UT-Austin

Thresholding

« Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: intensity-based detection

fg_pix = find(im < 65);

Looking for dark pixels

Kiisten Grauman, UT-Austiol




Thresholding

* Given a grayscale image or an intermediate matrix >
threshold to create a binary output.

Example: color-based detection

fg_pix = Find(hue > t1 & hue < €2);

Looking for pixels within a certain hue range.

Kiisten Grauman, UT-Austin)

Not so nice cases

Two distinet modes Overlapped modes

Shapiro and Stockman

Morphological operators

» Change the shape of the foreground regions via
intersection/union operations between a
scanning structuring element and binary image.

Useful to clean up result from thresholding
» Basic operators are:

— Dilation

— Erosion

2/1/2011

A nice case: bimodal intensity

histograms
background
frequency

Ideal histogram,
light object on

H abject dark background

grey level
frequency|

Actual observed
histogram with
noise

Images: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT2/node3.htm|

pixel value

Issues
¢ What to do with “noisy” binary
outputs?
— Holes

— Extra small fragments

* How to demarcate multiple
regions of interest?
— Count objects

— Compute further features per
object

Kristen Grauman T

ustin

Dilation

« Expands connected components
* Grow features
¢ Fill holes

Before dilation

After dilation

Kiisten Grauman, UT-Austiol



Erosion

« Erode connected components
¢ Shrink features
* Remove bridges, branches, noise

Before erosion After erosion

2/1/2011

Structuring elements

* Masks of varying shapes and sizes used to
perform morphology, for example:

il A1 [ [ ]
..... = R

¢ Scan mask across foreground pixels to
transform the binary image

>>help strel

Dilation vs. Erosion

At each position:

« Dilation: if current pixel is foreground, OR the
structuring element with the input image.

Example for Dilation (1D)

Input image |1 ‘0 |0 |0 ‘1 |1 ‘1 |0 ‘1 ‘1 |

L
S ing Elerpibnt|1 |1
tructuring e g(x)=f(x)®SE

Output Image |1 ‘1 | | ‘ | ‘ | ‘ ‘ |

Adapted from T. Moeslund

Example for Dilation

Input image |1 ‘0 |0 ‘0 |1 ‘1 ‘1 |0 ‘1 |l |

Structuring Element

Output Image |1 ‘1 | ‘ | ‘ ‘ | ‘ | |

Example for Dilation

Input image |1 ‘0 |0 |0 ‘1 |l ‘1 |O ‘1 ‘1 |

Structuring Element

Output Image |l ‘l |0 | ‘ | ‘ | ‘ ‘ |

10



Example for Dilation

Input image |1 ‘0 |0 ‘0 |1 ‘1 ‘1 |O ‘1 |1 |

Structuring Element

Output Image Il ‘1 |0 ‘0 | ’ ‘

Example for Dilation
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Input image |1 ‘0 |0 |0 ‘1 |1 ‘1 |O ‘l ‘1 |

Structuring Element

Output Image |l ’1 |0 |l ‘1 |l ’ | ’

Example for Dilation

Input image |1 ‘0 |0 ‘O |1 ‘1 ‘1 |0 ‘1 |1 |

L]

Structuring Element

!

Output Image |1 ‘1 |O ‘1 |1 ‘1 ‘1 |

Example for Dilation

Input image |1 ‘0 |0 |0 ‘1 |1 ‘1 |O ‘1 ‘1 |

:
Structuring Element

!

Output Image |1 ‘1 |O |1 ‘1 |1 ‘1 |1 ‘

Example for Dilation

Input image |1 ‘O |0 ‘0 |1 ’1 ‘1 |0 ‘1 |1 |

Structuring Element

outputimage (1 [1 o [1 1 [1 1 [1 ]

Example for Dilation

Input image |1 ’0 |0 |0 ‘1 |l ’1 |0 ’1 ‘1 |

Structuring Element

!

outputimage (1 [1 o [1 o [1 1 [1 1 [1]

Note that the object gets bigger and holes are filled.

>> help imdilate




2D example for dilation
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Shapiro & Stockman

Example for Erosion (1D)

Input image

[1 Jofofof1]1]1]ofa]a]

L

Structuring Element l g(x) —f (X)@SE

Output Image |0 ‘ | ‘ | ’ ‘ | ‘

2/1/2011

Dilation vs. Erosion

At each position:

« Dilation: if current pixel is foreground, OR
the structuring element with the input image.

« Erosion: if every pixel under the structuring
element’s nonzero entries is foreground, OR
the current pixel with S.

Example for Erosion (1D)

Input image |1 ‘0 |0 |0 ‘1 |l ‘1 |0 ‘1 ‘1 |

L 2

Structuring Element l

g(x) = f(X)OSE

Output Image |0 ’0 | | ‘ | ’ | ’ ‘ |

Example for Erosion

Input image

[1fofofofafrafolfafs]

!

Structuring Element

Output Image |0 ‘0 |0‘ | ‘

Example for Erosion

[1fofofofifeifofafs]

!

ofofofo] |

Input image

Structuring Element

Output Image

12



Example for Erosion

Input image |1 ‘0 |0 ‘0 |1 ‘1 ‘1 |O ‘1 |1 |

!

Output Image IO ‘O |0 ‘0 |0’ ‘ | ‘ | |

Structuring Element

2/1/2011

Example for Erosion

Input image |1 ‘0 |0 |0 ‘1 |1 ‘1 |O ‘l ‘1 |

!

Output Image |0 ’0 |0 |0 ‘O |l ’ | ’ ‘ |

Structuring Element

Example for Erosion

Input image |1 ‘0 |0 ‘O |1 ‘1 ‘1 |0 ‘1 |1 |
1

Output Image |0 ‘O |O ‘O |O ‘1 ‘O | ‘ | |

Structuring Element

Example for Erosion

Input image |1 ‘0 |0 |0 ‘1 |1 ‘1 |O ‘1 ‘1 |
|

Output Image |O ‘O |O |O ‘O |1 ‘O |O ‘ ‘ |

Structuring Element

Example for Erosion

Input image |1 ‘O |0 ‘0 |1 ’1 ‘1 |0 ‘1 |1 |

!

outputimage [0 o [0 Jo Jo 1 Jo Jo Jo | ]

Structuring Element

Example for Erosion

Input image |1 ’0 |0 |0 ‘1 |l ’1 |0 ’1 ‘1 |

Structuring Element

outputimage [0 0 [0 Jo Jo [1 Jo Jo o [1 ]

Note that the object gets smaller

>> help imerode

13



2D example for erosion
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Shapiro & Stockman

Opening

* Erode, then dilate
* Remove small objects, keep original shape

Before opening After opening

Closing

« Dilate, then erode
« Fill holes, but keep original shape

Before closing After closing

Applet: http:/bigwww.epfl.ch/demo/jmorpho/start.php

Morphology operators on
grayscale images
 Dilation and erosion typically performed on binary
images.

« If image is grayscale: for dilation take the
neighborhood max, for erosion take the min.

<& A

original dilated eroded

Kristen Grauman |T-Aushiol

Issues
¢ What to do with “noisy” binary
outputs?
— Holes

— Extra small fragments

* How to demarcate multiple
regions of interest?
— Count objects

— Compute further features per
object

Kiisten Grauman UT-Austin

Connected components

« Various algorithms to compute
— Recursive (in memory)

— Two rows at a time (image not necessarily in
memory)

— Parallel propagation strategy

14
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Recursive connected components Connected components

« ldentify distinct regions of “connected pixels”

+ Find an unlabeled pixel, assign it a new I
label NEY RN RN A

i[iJofiJiJi]o]z

« Search to find its neighbors, and o
recursively repeat to find their neighbors til it

there are no more a) binary image b) connected components labelis
* Repeat | |

1
1
T

1

T
1
T
1

3

° DemO http://www.cosc.canterbury.ac.nz/mukundan/covn/Label.html

¢} binary image and labeling, expanded for viewing

Shapiro and Stockman

Connectedness Connected components

« We'll consider a sequential

« Defining which pixels are considered neighbors
algorithm that requires only
m @ 2 passes over the image.

o o ¢ Input: binary image
M . @ w 6.0 ﬁ « Output: “label” image,

where pixels are numbered

g § @ % per their component

* Note: foreground here is
denoted with black pixels.

4-connected 8-connected

Source: Chaitanya Chandra

Sequential connected components Sequential connected components

« Labeling a pixel only requires to
consider its prior and superior
neighbors.

+ It depends on the type of
connectivity used for foreground
(4-connectivity here).

Same object New object

e B W

fa ) (e (d)

What happens in these cases?

Adapted from J. Neira

+ Labeling a pixel only requires to
consider its prior and superior
neighbors.

+ It depends on the type of
connectivity used for foreground
(4-connectivity here).

Same object New object

e B W

fa ) (e (d)

What happens in these cases?

T%L =

15
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Sequential connected components

+ Labeling a pixel only requires to
consider its prior and superior o
neighbors. = E

+ It depends on the type of
connectivity used for foreground
(4-connectivity here).

Same object  New object g =

e B W

fa ) (e (d)

What happens in these cases?

2 o
| I i

: i
T%L -

I -1. If only one of its neighbors

Sequential connected components

* Process the image from left to
right, top to bottom.
1. If the next pixel to process is 1-

pixel Already processed

(superior or left) is 1-pixel, copy
its label.

2. If both are, and have the same
label, copy it

ga. If they have different labels:

superior? smallest?
1. Copy the label from the
rior. + Re-label with the smallest of
2. Reflect the change in the equivalent labels

table of equivalences. .
u + Pixels of the same segment

4. Otw, assign a new label. always have the same label.

2. More pixels? Go to step 1.

Connected components

connected
components
of 1's from
thresholded
image

connected
components
of cluster
labels

Slide credit: Pinar Duygulu

Region properties

¢ Given connected components, can compute
simple features per blob, such as:
— Area (num pixels in the region)
— Centroid (average x and y position of pixels in the region)
— Bounding box (min and max coordinates)
— Circularity (ratio of mean dist. to centroid over std)

Kristen Grauman |T-Aushiol

Circularity

<o second measure uses variation off of a circle
cireularity(2):
G="2
oR
where jig and og® are the mean and variance
of the distance from the centroid of the shape
to the boundary pixels (rg,cs).
mean radial distance:

R = % :)i: (reca) = (#,2)

variance of radial distance:

g 1K s s T
op=— ¥ [[l{re,ce) = (F, &)l = pg]
K

[Haralick]

Shapiro &
Stockman

Binary image analysis:
basic steps (recap)

» Convert the image into binary form

— Thresholding
¢ Clean up the thresholded image

— Morphological operators
« Extract separate blobs

— Connected components

» Describe the blobs with region properties

16



Matlab

N = hist(Y,M)
L = bwlabel (BW,N);
STATS = regionprops(L,PROPERTIES) ;

- "Area”

- “Centroid~

- “BoundingBox"

- "Orientation®, ..
e IM2 = imerode(IM,SE);
e IM2 = imdilate(IM,SE);
e IM2 = imclose(IM, SE);
e IM2 = imopen(IM, SE);

2/1/2011

Example using binary image analysis:

OCR
i

‘ Re[APTCHA Do Beoks one word ata ime

Vilratos

-

[Luis von Ahn et al. http://recaptcha.net/learnmore.html]

Example using binary image analysis:

segmentation of a liver

W \" Threshold [P
W =

Extract Largest
Region Filling Region

Slide credit: Li Shen Application by Jie Zhy, Cornell University

N Extract Largest
Region

Example using binary image analysis:
Bg subtraction + blob detection

Example using binary image analysis:

Bg subtraction + blob detection

University of Southern California
http://iris.usc.edu/~icohen/projects/vace/detection.htm

Binary images

* Pros
— Can be fast to compute, easy to store
— Simple processing techniques available
— Lead to some useful compact shape descriptors

e Cons
— Hard to get “clean” silhouettes
— Noise common in realistic scenarios
— Can be too coarse of a representation
— Not 3d

Kiisten Grauman, UT-Austiol

17
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Summary

 Operations, tools

Derivative filters
Smoothing, morphology
Thresholding
Connected components
Matched filters
Histograms

» Features,
representations

1012111

Edges, gradients
Blobs/regions
Local patterns
Textures (next)
Color distributions

Next

e Texture: read 10.5

e Pset 1 out tonight, due in 2 weeks
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