343H: Honors Al

Lecture 15: Bayes Nets Independence 3/18/2014 Kristen Grauman UT Austin

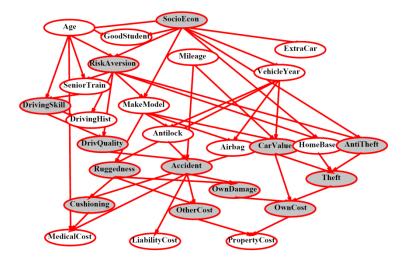
Slides courtesy of Dan Klein, UC Berkeley

Probability recap

- Conditional probability $P(x|y) = \frac{P(x,y)}{P(y)}$
- Product rule P(x,y) = P(x|y)P(y)
- Chain rule $P(x_1, x_2, ..., x_n) = \prod_i P(x_i | x_1 ..., x_{i-1})$
- X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if: $\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$ $X \perp \!\!\!\perp Y|Z$

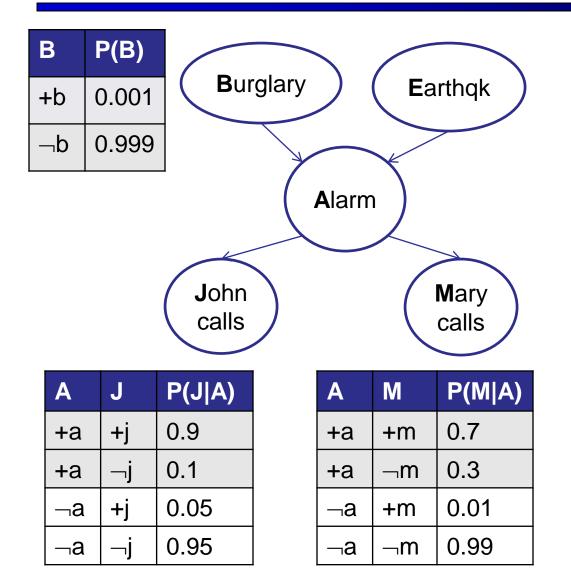
Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain



- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Example: Alarm Network



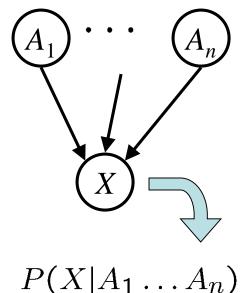
Е	P(E)
+e	0.002
⊸e	0.998

В	Е	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	−a	0.05
+b	−e	+a	0.94
+b	−e	−a	0.06
−b	+e	+a	0.29
−b	+e	−a	0.71
−b	−e	+a	0.001
−b	⊸е	−a	0.999

Bayes' Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$



- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Recall: Probabilities in BNs

• Why are we guaranteed that setting $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$

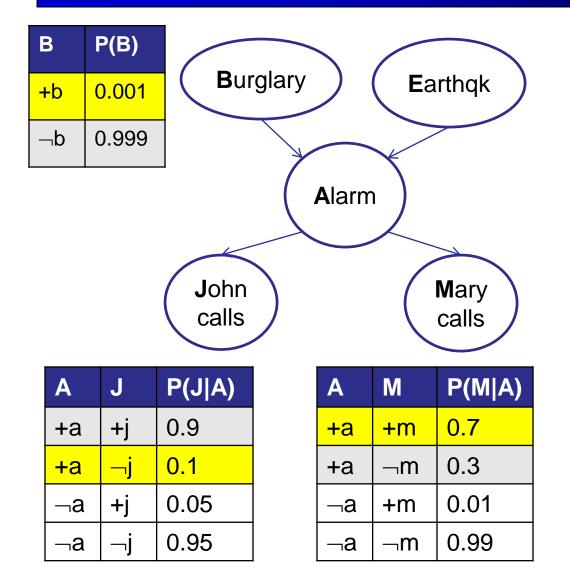
results in a proper distribution?

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \ldots x_n) = \prod_i P(x_i | x_1 \ldots x_{i-1})$$

- Due to <u>assumed</u> conditional independences: $P(x_i|x_1...x_{i-1}) = P(x_i|parents(X_i))$
- Consequence:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Е	P(E)
+e	0.002
<mark>⊸</mark> e	0.998

В	Е	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	−a	0.05
+b	⊸е	+a	0.94
+b	−e	−a	0.06
−b	+e	+a	0.29
−b	+e	−a	0.71
−b	−e	+a	0.001
−b	−e	−a	0.999

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?
 2^N
- How big is an N-node net if nodes have up to k parents?
 O(N * 2^{k+1})
- Both give you the power to calculate $P(X_1, X_2, ..., X_n)$
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also turns out to be faster to answer queries (coming)

Bayes' Net

- Representation
 - Conditional independences
 - Probabilistic inference
 - Learning Bayes' Nets from data

Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) - - - \rightarrow X \bot \!\!\!\perp Y$$

- X and Y are conditionally independent given Z $\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \rightarrow X \perp Y|Z$
- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke$

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond the above ("chain-rule→Bayes net") conditional independence assumptions
 - Often have many more conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Example

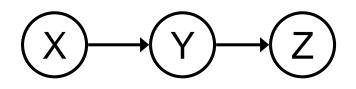
$$(X \rightarrow Y \rightarrow Z \rightarrow W)$$

 Conditional independence assumptions directly from simplifications in chain rule:

Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:



- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)

D-separation: Outline

- D-Separation: a condition/algorithm for answering such queries
- Study independence properties for triples
- Analyze complex cases in terms of member triples – reduce big question to one of the base cases.

Causal Chains (1 of 3 structures)

This configuration is a "causal chain"

$$(X \rightarrow Y \rightarrow Z)$$

X: Low pressure Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

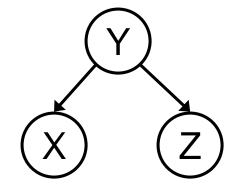
Common Cause (2 of 3 structures)

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

P(z|y)

Yes!



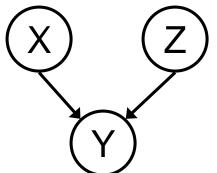
Y: Project due X: Piazza busy

Z: Lab full

Observing the cause blocks influence between effects.

Common Effect (3 of 3 structures)

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation



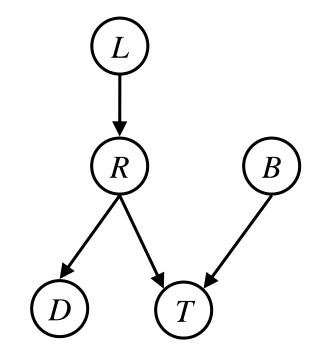
- X: Raining Z: Ballgame
- Y: Traffic
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be analyzed using these three canonical cases

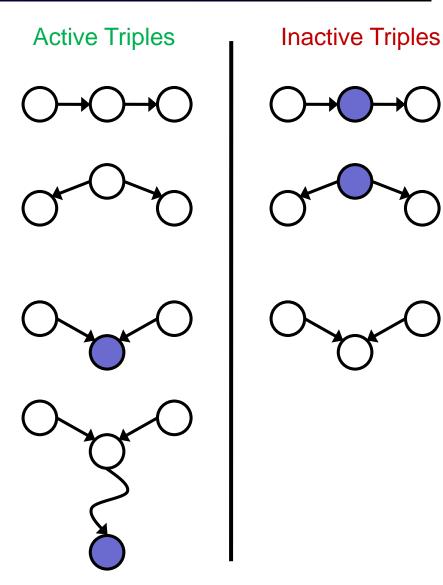
Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"



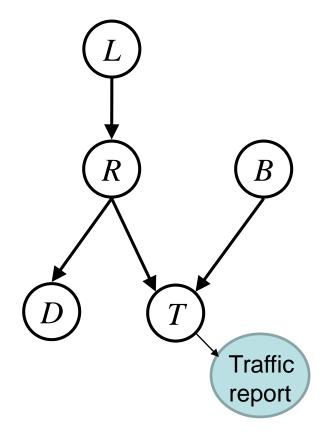
Active / Inactive paths

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Consider all undirected paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment



Reachability

 Recipe: shade evidence nodes, look for paths in the resulting graph

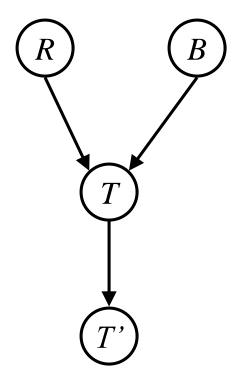


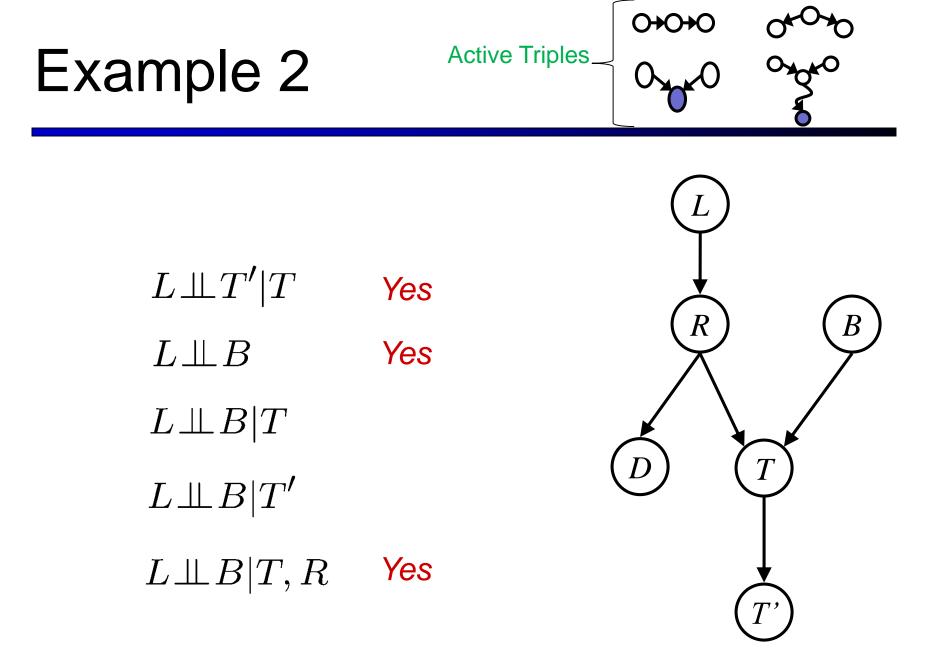
D-Separation

- Given query $X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$
- For all (undirected!) paths between X_i and X_i
 - Check whether path is active
 - If active return $X_i \not \sqcup X_j | \{X_{k_1}, ..., X_{k_n}\}$
- Otherwise (i.e., if all paths are inactive) then independence is guaranteed.
 - Return $X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$

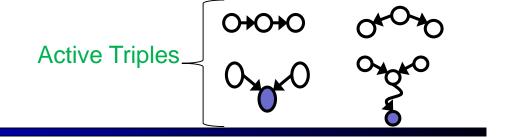


$\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$

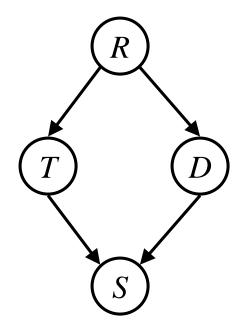




Example 3



- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - $T \bot D$ $T \bot D | R$ Yes $T \bot D | R, S$



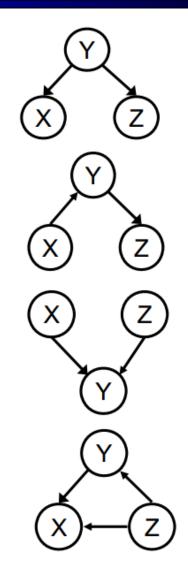
Structure implications

 Given a Bayes net structure, can run d-separation to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

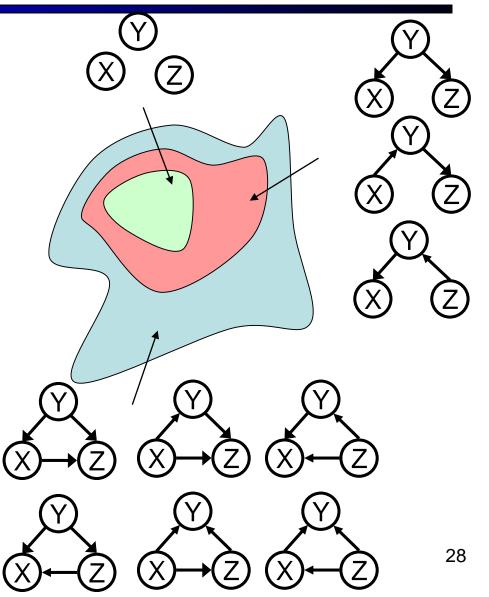
 This list determines the set of probability distributions that can be represented by this BN

Computing all independences



Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution



Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Net

- Representation
 - Conditional independences
 - Probabilistic inference
 - Learning Bayes' Nets from data