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Probability recap

 Conditional probability

 Product rule

 Chain rule

 X, Y independent if and only if:

 X and Y are conditionally independent given Z if and only if:



Bayes’ Nets

 A Bayes’ net is an

efficient encoding

of a probabilistic

model of a domain

 Questions we can ask:
 Inference: given a fixed BN, what is P(X | e)?

 Representation: given a BN graph, what kinds of 
distributions can it encode?

 Modeling: what BN is most appropriate for a given 
domain?



Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99



Bayes’ Net Semantics

 A directed, acyclic graph, one node per 
random variable 

 A conditional probability table (CPT) for 
each node
 A collection of distributions over X, one for 

each combination of parents’ values

 Bayes’ nets implicitly encode joint 
distributions
 As a product of local conditional distributions
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 Why are we guaranteed that setting

results in a proper distribution?

 Chain rule (valid for all distributions):

 Due to assumed conditional independences:

 Consequence:

Recall: Probabilities in BNs
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Example: Alarm Network

Burglary Earthqk

Alarm

John 

calls
Mary 

calls

B P(B)

+b 0.001

b 0.999

E P(E)

+e 0.002

e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e a 0.05

+b e +a 0.94

+b e a 0.06

b +e +a 0.29

b +e a 0.71

b e +a 0.001

b e a 0.999

A J P(J|A)

+a +j 0.9

+a j 0.1

a +j 0.05

a j 0.95

A M P(M|A)

+a +m 0.7

+a m 0.3

a +m 0.01

a m 0.99

P(+b, -e, +a, -j, +m) =

P(+b) P(-e) P(+a | +b, -e) P(-j | +a) P(+m | +a) =

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Size of a Bayes’ Net

 How big is a joint distribution over N Boolean variables?

2N

 How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

 Both give you the power to calculate

 BNs: Huge space savings!

 Also easier to elicit local CPTs

 Also turns out to be faster to answer queries (coming)
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Bayes’ Net

 Representation

 Conditional independences

 Probabilistic inference

 Learning Bayes’ Nets from data
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Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a 
distribution

 Example: 
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Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes 

net when given the graph:

 Beyond the above (“chain-ruleBayes net”) conditional 

independence assumptions 

 Often have many more conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 

when choosing a Bayes net graph
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Example

 Conditional independence assumptions directly from 

simplifications in chain rule:

 Additional implied conditional independence 

assumptions?
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Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?

 If yes, can prove using algebra (tedious in general)

 If no, can prove with a counter example

 Example:

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.

 X can influence Z, Z can influence X (via Y)

X Y Z



D-separation: Outline

 D-Separation: a condition/algorithm for 

answering such queries

 Study independence properties for triples

 Analyze complex cases in terms of member 

triples – reduce big question to one of the base 

cases.
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Causal Chains (1 of 3 structures)

 This configuration is a “causal chain”

 Is X independent of Z given Y?

 Evidence along the chain “blocks” the influence

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic
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Common Cause (2 of 3 structures)

 Another basic configuration: two 
effects of the same cause
 Are X and Z independent?

 Are X and Z independent given Y?

 Observing the cause blocks 
influence between effects.

X

Y

Z

Yes!

Y: Project due

X: Piazza busy

Z: Lab full



Common Effect (3 of 3 structures)

 Last configuration: two causes of 

one effect (v-structures)

 Are X and Z independent?

 Yes: the ballgame and the rain cause traffic, 

but they are not correlated

 Are X and Z independent given Y?

 No: seeing traffic puts the rain and the 

ballgame in competition as explanation

 This is backwards from the other cases

 Observing an effect activates influence 

between possible causes.

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic



The General Case

 General question: in a given BN, are two 

variables independent (given evidence)?

 Solution: analyze the graph

 Any complex example can be analyzed using 

these three canonical cases
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Reachability

 Recipe: shade evidence nodes, 
look for paths in the resulting 
graph

 Attempt 1: if two nodes are 
connected by an undirected path 
blocked by a shaded node, they 
are conditionally independent

 Almost works, but not quite
 Where does it break?

 Answer: the v-structure at T doesn’t 
count as a link in a path unless 
“active”

R

T

B

D

L
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Active / Inactive paths
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z

 Consider all undirected paths from 
X to Y

 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)

 Common cause A  B  C 
where B is unobserved

 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Active Triples Inactive Triples



Reachability

 Recipe: shade evidence nodes, 
look for paths in the resulting 
graph

R

T

B

D

L

Traffic 

report



D-Separation

 Given query

 For all (undirected!) paths between Xi and Xj

 Check whether path is active

 If active return

 Otherwise (i.e., if all paths are inactive) then 

independence is guaranteed.

 Return 
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Example 1

Yes
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R

T

B

T’

Active Triples



Example 2

R

T

B

D

L

T’

Yes

Yes

Yes
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Active Triples



Example 3

 Variables:

 R: Raining

 T: Traffic

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

R

Yes
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Structure implications

 Given a Bayes net structure, can run d-separation to 

build a complete list of conditional independences that 

are necessarily true of the form

 This list determines the set of probability distributions 

that can be represented by this BN
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Computing all independences
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Topology Limits Distributions

 Given some graph 

topology G, only certain 

joint distributions can 

be encoded

 The graph structure 

guarantees certain 

(conditional) 

independences

 (There might be more 

independence)

 Adding arcs increases 

the set of distributions, 

but has several costs

 Full conditioning can 

encode any distribution

X
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Z

X

Y

Z

X

Y

Z
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Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution
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Bayes’ Net

 Representation

 Conditional independences

 Probabilistic inference

 Learning Bayes’ Nets from data
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