343H: Honors Al

Lecture 24: ML: Decision trees and neural networks 4/22/2014

Kristen Grauman UT Austin

Slides courtesy of Dan Klein, UC Berkeley

Last time

Perceptrons

- MIRA
- Dual/kernelized perceptron
- Support vector machines
- Nearest neighbors
- Clustering
 - K-means
 - Agglomerative

Quiz

- What distinguishes the learning objectives for MIRA and SVMs?
- What is a support vector?
- Why do we care about kernels?
- Does k-means converge?
- How would we know which of two runs of k-means is better?
- What does it mean to have a parametric vs. nonparametric model?
- How would clusters with k-means differ from those found with agglomerative using "closest-pair" similarity?
- How can clustering achieve feature space discretization?

Today

- Formalizing learning
 - Consistency
 - Simplicity
- Decision trees
 - Expressiveness
 - Information gain
 - Overfitting
- Neural networks

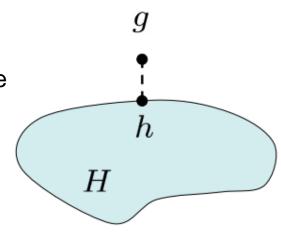
Inductive learning

Simplest form: learn a function from examples

- A target function: g
- Examples: input-output pairs (x, g(x))
 - E.g., x is an email and g(x) is spam/ham
 - E.g., x is a house and g(x) is its selling price

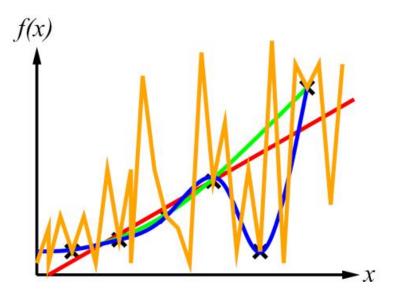
Problem:

- Given a hypothesis space H
- Given a training set of examples x_i
- Find a hypothesis h(x) such that h~g
- Includes
 - Classification, Regression
- How do perceptron and naïve Bayes fit in?



Inductive learning

Curve fitting (regression, function approximation)



- Consistency vs. simplicity
- Ockham's razor

Consistency vs. simplicity

Fundamental tradeoff: bias vs. variance

- Usually algorithms prefer consistency by default
- Several ways to operationalize "simplicity"
 - Reduce the hypothesis space
 - Assume more: e.g., independence assumptions, as in Naïve Bayes
 - Have fewer, better features/attributes: feature selection
 - Other structural limitations
 - Regularization
 - Smoothing: cautious use of small counts
 - Many other generalization parameters (pruning cutoffs today)
 - Hypothesis space stays big, but harder to get to the outskirts

Reminder: features

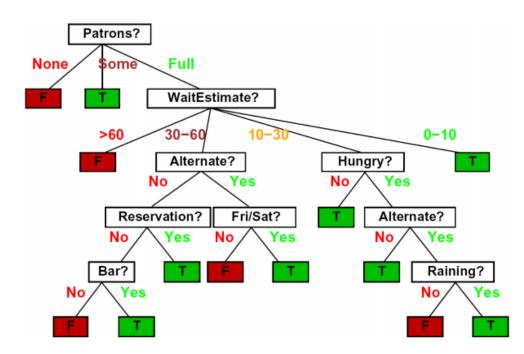
Features, aka attributes

- Sometimes: TYPE = French
- Sometimes $f_{\text{TYPE=French}}(x) = 1$

Example					At	tributes	;				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	T	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	T	F	Т	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	T	ltalian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	T	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	T	Т	Т	Т	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

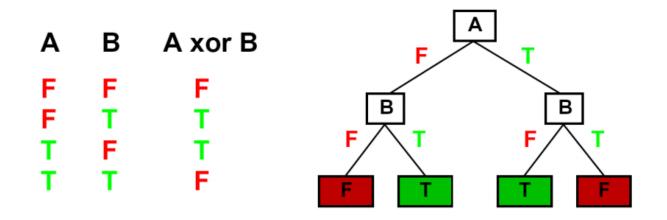
Decision trees

- Compact representation of a function
 - Truth table
 - Conditional probability table
 - Regression values
- True function
 - Realizable: in H



Expressiveness of DTs

Can express any function of the features



However, we hope for compact trees

Comparison: Perceptrons

What is expressiveness of perceptron over these features?

Example	Attributes									Target	
r	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F

For a perceptron, feature's contribution either pos or neg

- If you want one feature's effect to depend on another, you have to add a new conjunction feature
- DTs automatically conjoin features/attributes
 - Features can have different effects in different branches of the tree!

Hypothesis spaces

- How many distinct decision trees with n Boolean attributes?
 - = number of Boolean functions over n attributes
 - = number of distinct truth tables with 2ⁿ rows
 - = 2^(2^n)
 - E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
- How many trees of depth 1 (decision stumps)?
 - = number of Boolean functions over 1 attribute
 - = number of truth tables with 2 rows, times n
 - =4n
 - E.g. with 6 Boolean attributes, there are 24 decision stumps

Hypothesis spaces

- More expressive hypothesis space:
 - Increases chance that target function can be expressed (good)
 - Increases number of hypotheses consistent with training set (bad)
 - Means we can get better predictions (lower bias)
 - But we may get worse predictions (higher variance)

Decision tree learning

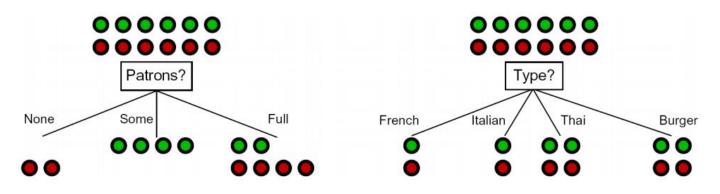
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree

```
function DTL(examples, attributes, default) returns a decision tree
```

```
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else
best \leftarrow CHOOSE-ATTRIBUTE(attributes, examples)
tree \leftarrow a new decision tree with root test best
for each value v_i of best do
examples_i \leftarrow \{elements of examples with <math>best = v_i\}
subtree \leftarrow DTL(examples_i, attributes - best, MODE(examples))
add a branch to tree with label v_i and subtree subtree
return tree
```

Choosing an attribute

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



 So: we need a measure of how "good" a split is, even if the results aren't perfectly separated

Entropy and information

- Information answers questions
 - The more uncertain about the answer initially, the more information in the answer
 - Scale: bits
 - Answer to a Boolean question with prior <1/2,1/2>?
 - Answer to a 4-way question with prior $<\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} > ?$
 - Answer to a 4-way question with prior <0,0,0,1>?
 - Answer to a 3-way question with prior <1/2,1/4,1/4>?
- A probability p is typical of:
 - A uniform distribution of size 1/p
 - A code of length log 1/p

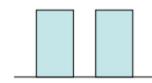
Entropy

- General answer: if prior is <p₁,...,p_n>
 - Information is the expected code length

 $H(\langle p_1,\ldots,p_n\rangle) = E_p \log_2 1/p_i$

$$=\sum_{i=1}^{n} -p_i \log_2 p_i$$

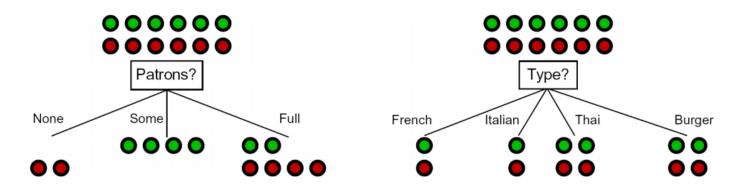
- More uniform = higher entropy
- More values = higher entropy
- More peaked = lower entropy
- Rare values almost "don't count"



0.5 bit

Information gain

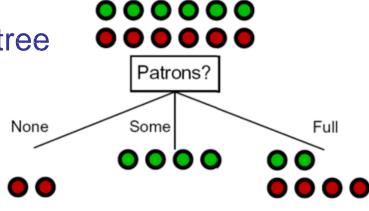
- Back to decision trees!
- For each split, compare entropy before and after
 - Difference is the information gain



- Problem: there's more than one distribution after split!
- Solution: use expected entropy, weighted by the number of samples

Next step: Recurse

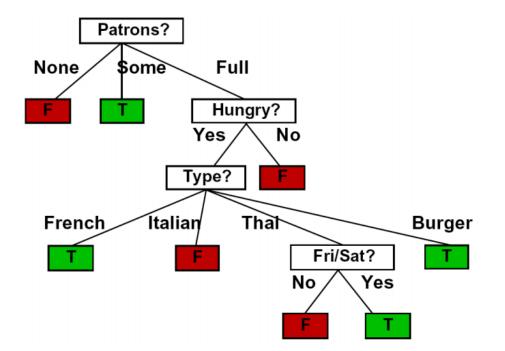
- Now we need to keep growing the tree
- What to do under "full"?



Example	Attributes							Target			
Litempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Example: learned tree

Decision tree learned from these 12 examples:



- Substantially simpler than "true" tree
 - A more complex hypothesis isn't justified by data

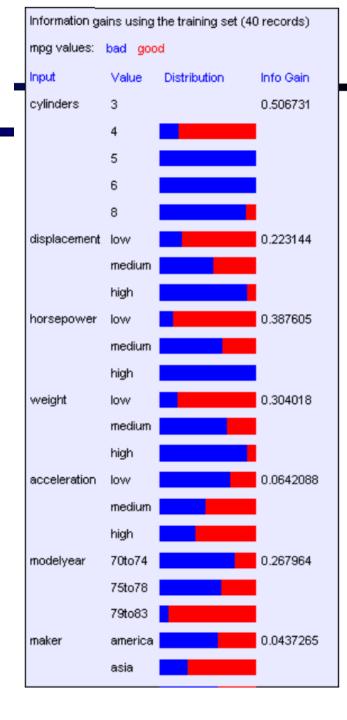
Example: Miles per gallon

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

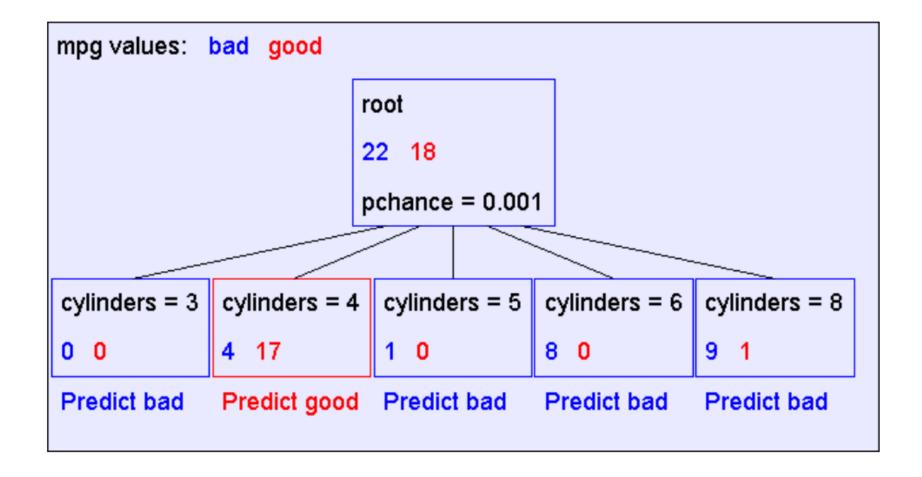
40 Examples

Find the first split

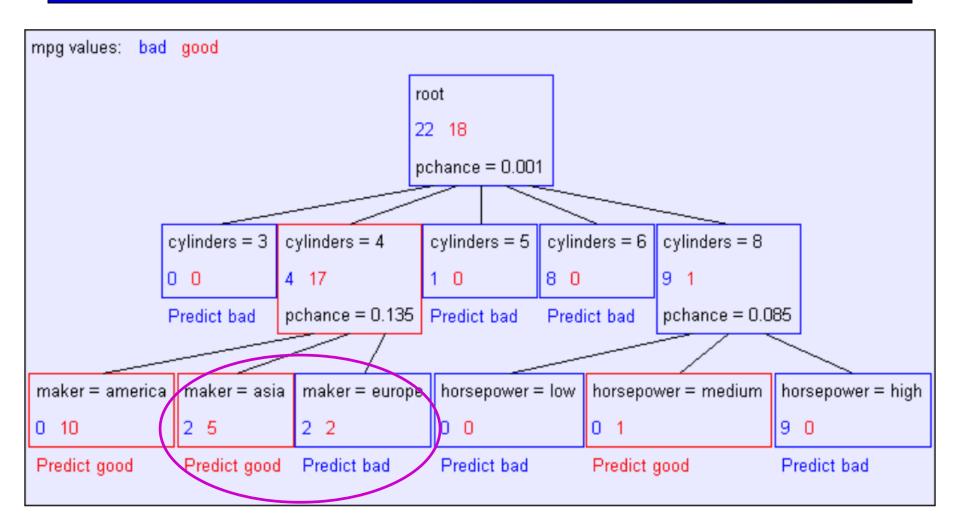
- Look at information gain for each attribute
- Note that each attribute is correlated with the target
- What do we split on?

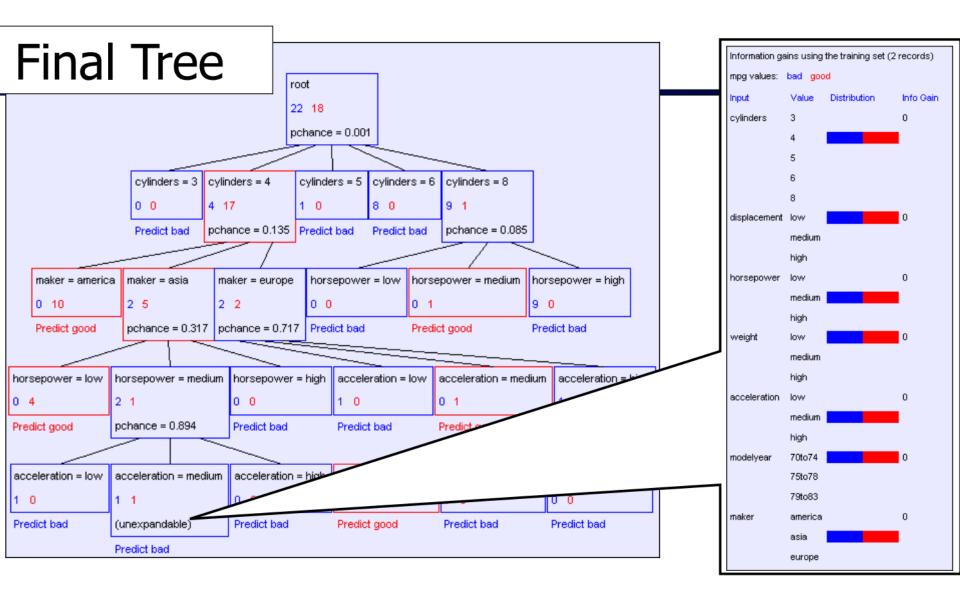


Result: Decision stump



Second level





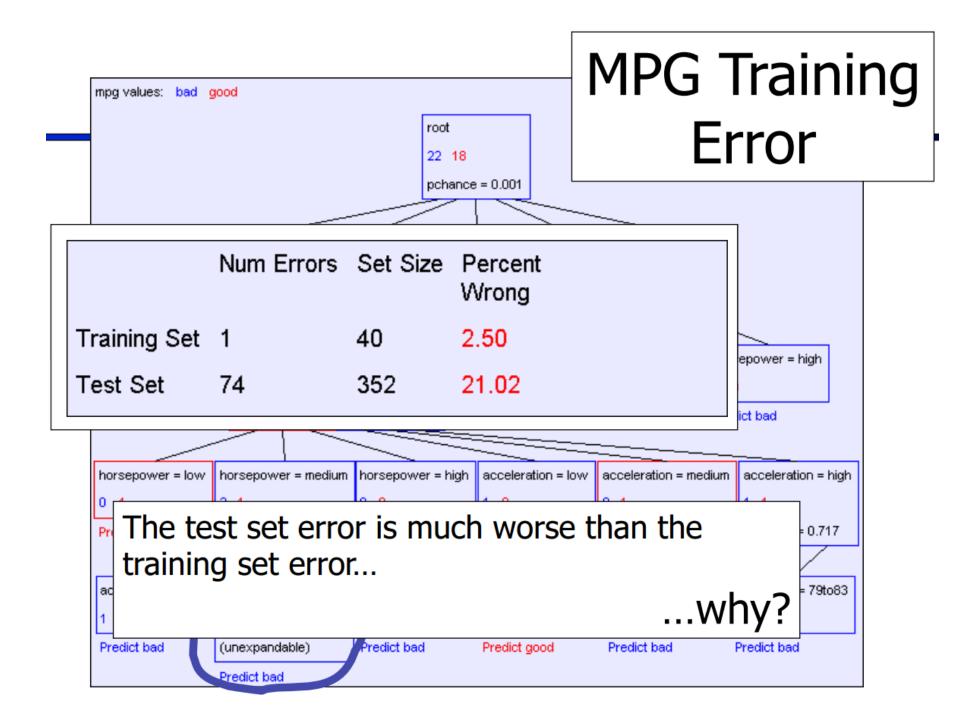
Reminder: overfitting

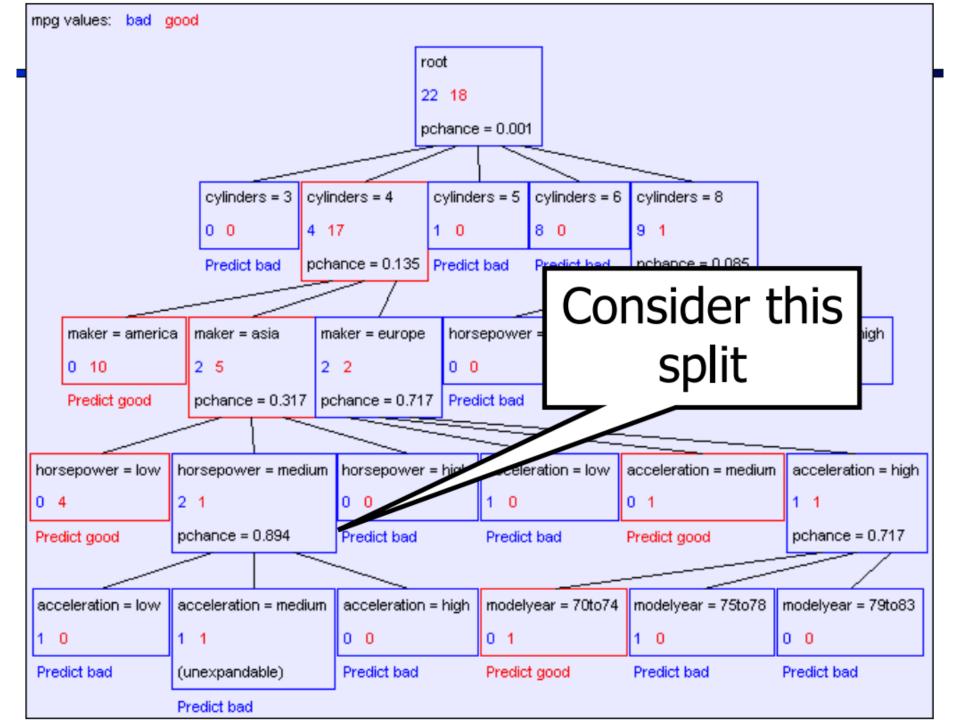
Overfitting:

- When you stop modeling the patterns in the training data (which generalize)
- And start modeling the noise (which doesn't)

• We had this before:

- Naïve Bayes: needed to smooth
- Perceptron: early stopping





Significance of a split

Starting with:

- Three cars with 4 cylinders, from Asia, with medium HP
- 2 bad MPG, 1 good MPG
- What do we expect from a three-way split?
 - Maybe each example in its own subset?
 - Maybe just what we saw on the last slide?
- Probably shouldn't split if the counts are so small they could be due to chance
- A chi-squared test can tell us how likely it is that deviations from a perfect split are due to chance
- Each split will have a significance value, p_{CHANCE}

Keeping it general

Pruning:

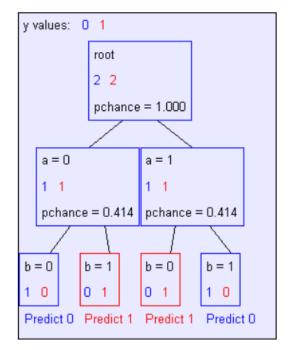
- Build the full decision tree
- Begin at the bottom of the tree
- Delete splits in which

 $p_{CHANCE} > Max p_{CHANCE}$

- Continue working upward until there are no prunable nodes
- Note: some chance nodes may not get pruned because they were "redeemed" later

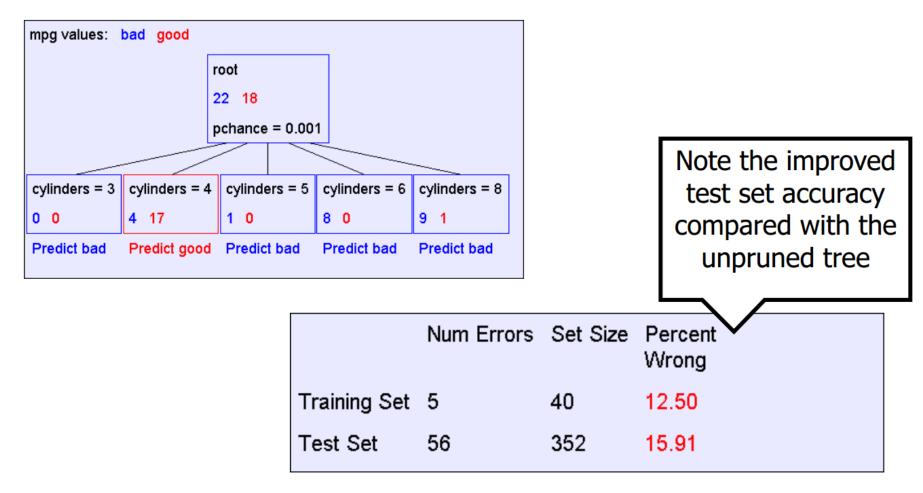
y = a XOR b

а	b	У		
0	0	0		
0	1	1		
1	0	1		
1	1	0		



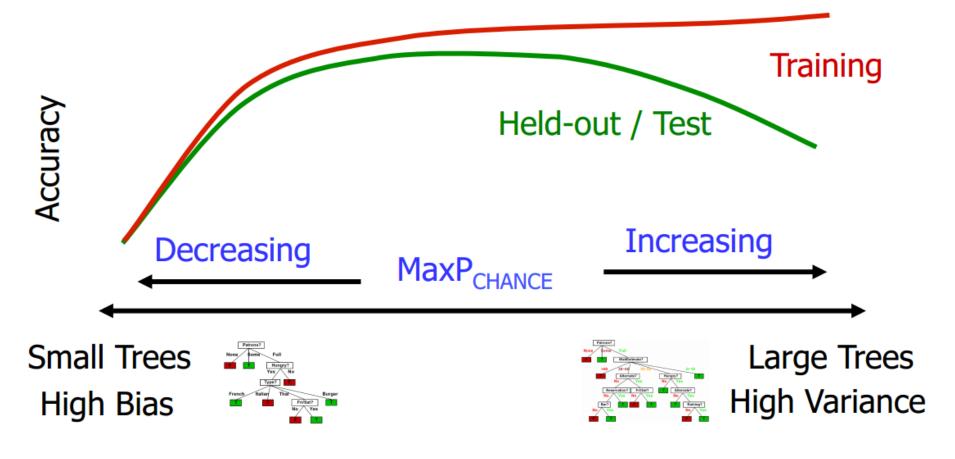
Pruning example

• With Max $p_{CHANCE} = 0.1$:



Regularization

- Max p_{CHANCE} is a regularization parameter
- Generally, set it using held-out data (as usual)



Two ways to control overfitting

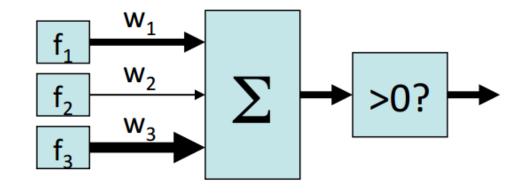
- Limit the hypothesis space
 - E.g., limit the max depth of trees
- Regularize the hypothesis selection
 - E.g., chance cutoff
 - Disprefer most of the hypotheses unless data is clear
 - Usually done in practice

Reminder: Perceptron

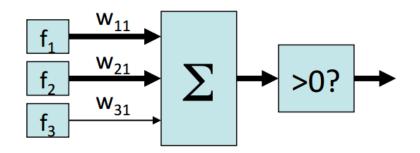
- Inputs are feature values
- Each feature has a weight
- Sum is the activation

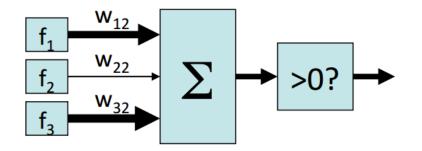
activation_w(x) =
$$\sum_{i} w_i \cdot f_i(x) = w \cdot f(x)$$

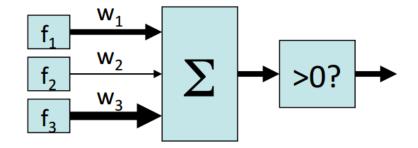
- If the activation is:
 - Positive, output +1
 - Negative, output -1

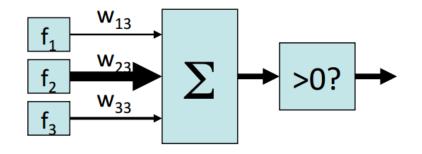


Two-layer perceptron network

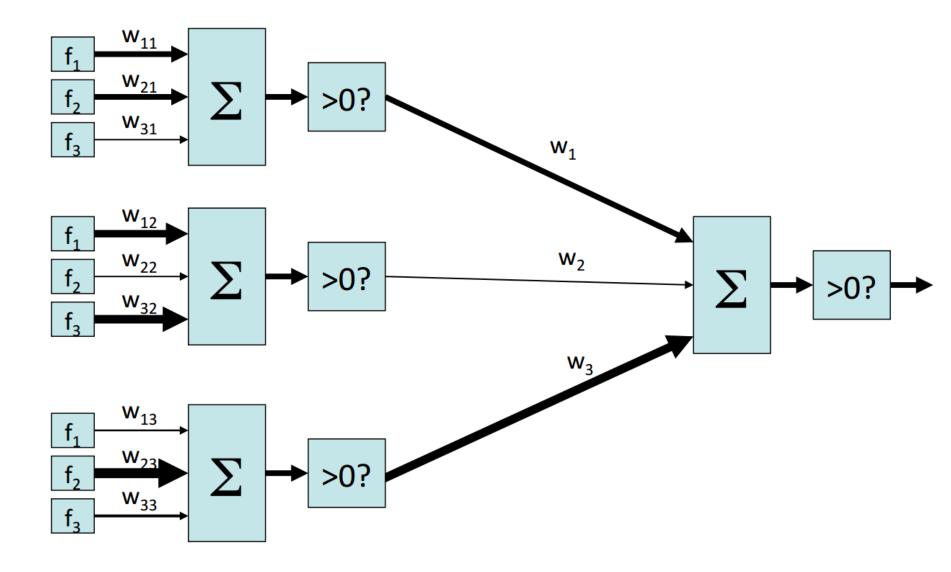




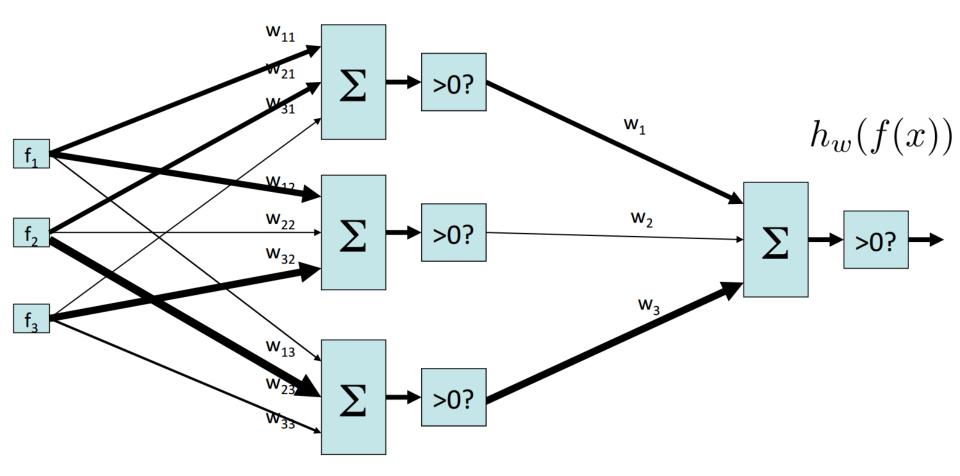




Two-layer perceptron network



Two-layer perceptron network



Learning w

Training examples

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$$

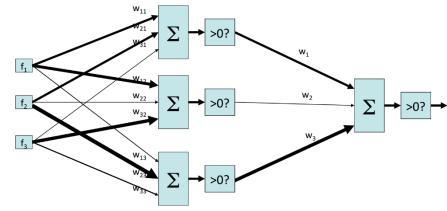
Objective:

$$\min_{w} \sum_{i=1}^{m} \left(y^{(i)} - h_w(f(x^{(i)})) \right)^2$$

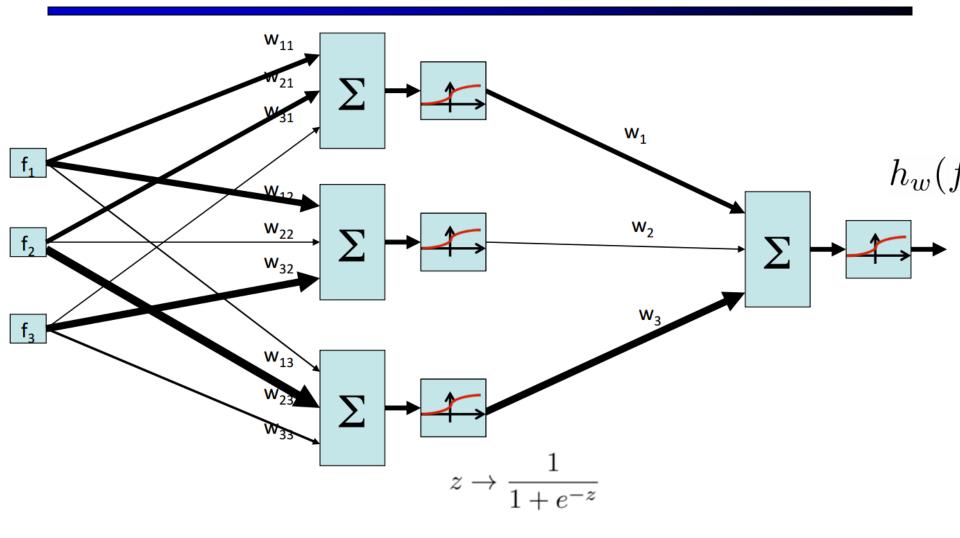
- Procedure:
 - Hill climbing

Hill climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
 - Neighbors = small perturbations of w
- What's bad?
 - Complete?
 - Optimal?



Two-layer neural network



Neural network properties

 Theorem (Universal function approximators): A two-layer network with a sufficient number of neurons can approximate any continuous function to any desired accuracy

Practical considerations:

- Can be seen as learning the features
- Large number of neurons
 - Danger for overfitting
- Hill-climbing procedure can get stuck in bad local optima

Summary

Formalization of learning

- Target function
- Hypothesis space
- Generalization

Decision trees

- Can encode any function
- Top-down learning (not perfect!)
- Information gain
- Bottom-up pruning to prevent overfitting

Neural networks

- Learn features
- Universal function approximators
- Difficult to train