
343H: Honors AI

Lecture 24: 

ML: Decision trees and neural networks

4/22/2014

Kristen Grauman

UT Austin

Slides courtesy of Dan Klein, UC Berkeley



Last time

 Perceptrons

 MIRA

 Dual/kernelized perceptron

 Support vector machines

 Nearest neighbors

 Clustering

 K-means

 Agglomerative



Quiz

 What distinguishes the learning objectives for MIRA and 

SVMs?

 What is a support vector?

 Why do we care about kernels?

 Does k-means converge?

 How would we know which of two runs of k-means is 

better?

 What does it mean to have a parametric vs. non-

parametric model?

 How would clusters with k-means differ from those found 

with agglomerative using “closest-pair” similarity?

 How can clustering achieve feature space discretization?



Today

 Formalizing learning

 Consistency

 Simplicity

 Decision trees

 Expressiveness

 Information gain

 Overfitting

 Neural networks



Inductive learning

 Simplest form: learn a function from examples

 A target function: g

 Examples: input-output pairs (x, g(x))

 E.g., x is an email and g(x) is spam/ham

 E.g., x is a house and g(x) is its selling price

 Problem:

 Given a hypothesis space H

 Given a training set of examples xi

 Find a hypothesis h(x) such that h~g

 Includes

 Classification, Regression

 How do perceptron and naïve Bayes fit in? 



Inductive learning

 Curve fitting (regression, function approximation)

 Consistency vs. simplicity

 Ockham’s razor



Consistency vs. simplicity

 Fundamental tradeoff: bias vs. variance

 Usually algorithms prefer consistency by default

 Several ways to operationalize “simplicity”

 Reduce the hypothesis space

 Assume more: e.g., independence assumptions, as in Naïve Bayes

 Have fewer, better features/attributes: feature selection

 Other structural limitations

 Regularization

 Smoothing: cautious use of small counts

 Many other generalization parameters (pruning cutoffs today)

 Hypothesis space stays big, but harder to get to the outskirts

H1 H2

g



Reminder: features

 Features, aka attributes

 Sometimes: TYPE = French

 Sometimes 



Decision trees

 Compact representation of a function

 Truth table

 Conditional probability table

 Regression values

 True function

 Realizable: in H



Expressiveness of DTs

 Can express any function of the features

 However, we hope for compact trees



Comparison: Perceptrons

 What is expressiveness of perceptron over these features?

 For a perceptron, feature’s contribution either pos or neg

 If you want one feature’s effect to depend on another, you have to 

add a new conjunction feature

 DTs automatically conjoin features/attributes

 Features can have different effects in different branches of the tree!



Hypothesis spaces

 How many distinct decision trees with n Boolean 

attributes?

 = number of Boolean functions over n attributes

 = number of distinct truth tables with 2^n rows

 = 2^(2^n)

 E.g., with 6 Boolean attributes, there are 

18,446,744,073,709,551,616 trees

 How many trees of depth 1 (decision stumps)?

 = number of Boolean functions over 1 attribute

 = number of truth tables with 2 rows, times n

 =4n

 E.g. with 6 Boolean attributes, there are 24 decision stumps



Hypothesis spaces

 More expressive hypothesis space:

 Increases chance that target function can be 

expressed (good)

 Increases number of hypotheses consistent with 

training set (bad)

 Means we can get better predictions (lower bias)

 But we may get worse predictions (higher variance)



Decision tree learning

 Aim: find a small tree consistent with the training examples

 Idea: (recursively) choose “most significant” attribute as root 

of (sub)tree



Choosing an attribute

 Idea: a good attribute splits the examples into 

subsets that are (ideally) “all positive” or “all 

negative”

 So: we need a measure of how “good” a split is, 

even if the results aren’t perfectly separated



Entropy and information

 Information answers questions

 The more uncertain about the answer initially, the more 

information in the answer

 Scale: bits

 Answer to a Boolean question with prior <1/2,1/2>?

 Answer to a 4-way question with prior <¼, ¼, ¼, ¼>?

 Answer to a 4-way question with prior <0,0,0,1>?

 Answer to a 3-way question with prior <1/2,1/4,1/4>?

 A probability p is typical of:

 A uniform distribution of size 1/p

 A code of length log 1/p



Entropy

 General answer: if prior is <p1,…,pn>

 Information is the expected code length

 Also called the entropy of the distribution

 More uniform = higher entropy

 More values = higher entropy

 More peaked = lower entropy

 Rare values almost “don’t count”



Information gain

 Back to decision trees!

 For each split, compare entropy before and after

 Difference is the information gain

 Problem: there’s more than one distribution after split!

 Solution: use expected entropy, weighted by the 

number of samples



Next step: Recurse

 Now we need to keep growing the tree

 What to do under “full”?



Example: learned tree

 Decision tree learned from these 12 examples:

 Substantially simpler than “true” tree

 A more complex hypothesis isn’t justified by data



Example: Miles per gallon



Find the first split

 Look at information gain for 

each attribute

 Note that each attribute is 

correlated with the target

 What do we split on?



Result: Decision stump



Second level





Reminder: overfitting

 Overfitting:

 When you stop modeling the patterns in the training 

data (which generalize)

 And start modeling the noise (which doesn’t)

 We had this before:

 Naïve Bayes: needed to smooth

 Perceptron: early stopping







Significance of a split

 Starting with:

 Three cars with 4 cylinders, from Asia, with medium HP

 2 bad MPG, 1 good MPG

 What do we expect from a three-way split?

 Maybe each example in its own subset?

 Maybe just what we saw on the last slide?

 Probably shouldn’t split if the counts are so small 

they could be due to chance

 A chi-squared test can tell us how likely it is that 

deviations from a perfect split are due to chance

 Each split will have a significance value, pCHANCE



Keeping it general

 Pruning:

 Build the full decision tree

 Begin at the bottom of the tree

 Delete splits in which 

pCHANCE > Max pCHANCE

 Continue working upward until 

there are no prunable nodes

 Note: some chance nodes may 

not get pruned because they 

were “redeemed” later



Pruning example

 With Max pCHANCE = 0.1 :



Regularization

 Max pCHANCE is a regularization parameter

 Generally, set it using held-out data (as usual)



Two ways to control overfitting

 Limit the hypothesis space

 E.g., limit the max depth of trees

 Regularize the hypothesis selection

 E.g., chance cutoff

 Disprefer most of the hypotheses unless data is clear

 Usually done in practice



Reminder: Perceptron

 Inputs are feature values

 Each feature has a weight

 Sum is the activation

 If the activation is:

 Positive, output +1

 Negative, output -1



Two-layer perceptron network



Two-layer perceptron network



Two-layer perceptron network



Learning w

 Training examples

 Objective:

 Procedure: 

 Hill climbing



Hill climbing

 Simple, general idea:

 Start wherever

 Repeat: move to the best 

neighboring state

 If no neighbors better than 

current, quit

 Neighbors = small 

perturbations of w

 What’s bad?

 Complete?

 Optimal?



Two-layer neural network



Neural network properties

 Theorem (Universal function approximators): A 

two-layer network with a sufficient number of 

neurons can approximate any continuous 

function to any desired accuracy

 Practical considerations:

 Can be seen as learning the features

 Large number of neurons

 Danger for overfitting

 Hill-climbing procedure can get stuck in bad local 

optima



Summary

 Formalization of learning

 Target function

 Hypothesis space

 Generalization

 Decision trees

 Can encode any function

 Top-down learning (not perfect!)

 Information gain

 Bottom-up pruning to prevent overfitting

 Neural networks

 Learn features

 Universal function approximators

 Difficult to train


