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Predicting Useful Neighborhoods Experimental Results

Phase 1: Generate Training Neighborhoods (offline) SUN Attributes Dataset: 14,340 |mages 707 cIasses 8 attrlbutes

X® « empirically determine “ground truth” neighborhoods
&) e « weighted and balanced sampling of candidate neighborhoods (K x S candidates)
o +) e « select the best point-neighborhood pairs (x,,y,,) based on prediction confidences
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Core Assumption: Instances most usefu/ for building a local model are e 1 1 1 0 0 0 1 o 0 0 0 ]
those that are nearest to the test po|nt [Bottou & Vapnik 92, Atkeson et al. 97, Zhang et al. 06, -%
Geng et al. 08, BanerJee et al. 09, ...] sl__
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Our Idea Neighborhood Indicator Vectors (y,)

Note: y, indexes all M training points

Learn the properties of a "good neighborhood” using a large-scale multi- Top-5 Neighbors: Local baseline captures global similarity but not class

label classification framework to enhance local learning. Phase 2: Neighborhood Mapping with Compressed Sensing (offline) distribution. We capture informative samples specific to the neighborhood.
o determine distribution of neighborhood « we cast our learning task as a large-scale multi-label classification problem = || === e e e - - -
e . « learn a prediction function that jointly estimates all useful neighbors ” .
composition size : : . g%  Local
« offline stages require only hours compared to days for the naive approach 5 70 -
o maintain bias towards local neighbors ‘s N O N O Y g o0 " ot
while not strictlv adherinag to the rankin Project M-dim y,, onto D-dim space Learn D regression functions that Map novel point x, to the reduced 50 I Oure Fix i
Y 9 9 using random matrix ¢ € RP*M map x;, to the z,’s D space and reconstruct M-dim 3, 40 !k!g(lm. !!g(IM: Elxerclls!: !m!gl(z: !e!!; S!V!t!:g) s (1016 S
= ¢ *yn {x1, ...,x{} ;Zl’ - 2N} [f1(%q), - fo(xg)] = 74 Observation: We outperform all baselines on all attributes by a sizeable
. i n=1,..,N (Frr o, fo) e iEA 1 margin (~25%), esp. on ones with fewer positive samples.
Similarity-Based (prior work) \_ RN Lo i ARG L e e e o e e e e e e e ————————
“which images are most similar to the test image?” Note: We use the approach of [Kapoor et al. 12] aPascal Dataset: 6,440 images, 20 classes, 6 attributes
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Phase 3: Infer Best Neighborhoods (online)
- infer real-valued indicator vector (y,) for each test point
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« form candidate neighborhoods using top K inferred points IIII IIII Illl IIII IIII IIII = Ours
40 - || Ours Fix-k*

« determine best neighborhood based on normalized decision values Wing (321 Wheel (524) Plastic (616) Cloth (2584 Furry 651) Shiny (1028

Distribution-Based (ours) vo [ 0.92 0.91 0.85 0.84 0.81 0.79 ] Observation: We outperform all Local baselines but lag behind Global in
“which set of images would jointly train a good classifier for the test image?” | 3 some cases due to better spatial alignment and lower visual diversity.
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_ Conclusion
Test Point = ~—
~ ~ ~ o hovel lazy local learning approach that predicts the best neighborhood
- - - o enhances learning over large + unbalanced datasets
Key Idea: learn about neighborhoods instead of just neighbors Candidate Neighborhoods o outperforms traditional local approaches on 2 challenging datasets




