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Predicting Useful Neighborhoods for Lazy Local Learning

Lazy Local Learning

Our Idea

Predicting Useful Neighborhoods Experimental Results

o hard for a single global model to generalize under diverse data

o local model custom tailored for each novel test point

Core Assumption: Instances most useful for building a local model are 
those that are nearest to the test point.

Learn the properties of a “good neighborhood” using a large-scale multi-
label classification framework to enhance local learning.

Phase 1: Generate Training Neighborhoods (offline)

• empirically determine “ground truth” neighborhoods

• weighted and balanced sampling of candidate neighborhoods (K x S candidates)

• select the best point-neighborhood pairs 𝑥𝑛, 𝑦𝑛 based on prediction confidences

Phase 2: Neighborhood Mapping with Compressed Sensing (offline)

• we cast our learning task as a large-scale multi-label classification problem

• learn a prediction function that jointly estimates all useful neighbors

• offline stages require only hours compared to days for the naïve approach

Phase 3: Infer Best Neighborhoods (online)

• infer real-valued indicator vector ( 𝑦𝑞) for each test point

• form candidate neighborhoods using top K inferred points

• determine best neighborhood based on normalized decision values

. . .

... Neighborhood Indicator Vectors (𝑦𝑛)
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SUN Attributes Dataset: 14,340 images, 707 classes, 8 attributes

Key Idea: learn about neighborhoods instead of just neighbors
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o determine distribution of neighborhood

o maintain bias towards local neighbors 
while not strictly adhering to the ranking
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Note: We use the approach of [Kapoor et al. 12]

composition       size

Note: 𝑦𝑛 indexes all M training points

Top-5 Neighbors: Local baseline captures global similarity but not class 
distribution. We capture informative samples specific to the neighborhood.

Project M-dim 𝑦𝑛 onto D-dim space 

using random matrix 𝜙 ∈ ℝ𝐷×𝑀

𝑧𝑛 = 𝜙 ∗ 𝑦𝑛

𝑛 = 1,… , N

Learn D regression functions that 

map 𝑥𝑛 to the 𝑧𝑛’s
Map novel point 𝑥𝑞 to the reduced 

D space and reconstruct M-dim  𝑦𝑞

[𝑓1 𝑥𝑞 , … , 𝑓𝐷 𝑥𝑞 ] ⟹  𝑦𝑞
{𝑥1, … , 𝑥𝑁} {𝑧1, … , 𝑧𝑁}

{𝑓1, … , 𝑓𝐷}

Observation: We outperform all baselines on all attributes by a sizeable 
margin (~25%), esp. on ones with fewer positive samples.
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aPascal Dataset: 6,440 images, 20 classes, 6 attributes
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Observation: We outperform all Local baselines but lag behind Global in 
some cases due to better spatial alignment and lower visual diversity.

Conclusion

o novel lazy local learning approach that predicts the best neighborhood

o enhances learning over large + unbalanced datasets

o outperforms traditional local approaches on 2 challenging datasets

[Bottou & Vapnik 92, Atkeson et al. 97, Zhang et al. 06, 
Geng et al. 08, Banerjee et al. 09, ...]
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Candidate Neighborhoods

Test Point

𝑥𝑞 [   0.92          0.91           0.85        0.84         0.81           0.79         . . . ] 𝑦𝑞
Distribution-Based (ours)

“which set of images would jointly train a good classifier for the test image?”

Similarity-Based (prior work)

“which images are most similar to the test image?”


