BlockDrop: Dynamic Inference Paths in Residual Networks (Supplemental Material)

Zuxuan Wu^{1*}, Tushar Nagarajan^{2*}, Abhishek Kumar³, Steven Rennie⁴ Larry S. Davis¹, Kristen Grauman², Rogerio Feris³ ¹ UMD, ² UT Austin, ³ IBM Research, ⁴ Fusemachines Inc.

Details of BlockDrop-seq (Ours-seq)

We construct a sequential version of BlockDrop for dropping blocks, where the decision $\mathbf{a}_i \in \{0, 1\}$ to drop or keep the *i*-th block is conditioned on the activations of its previous block, y_{i-1} . Unlike BlockDrop, where all the actions are predicted in one shot, this model predicts one action at a time, which is a typical reinforcement learning setting. We follow the procedure to generate the *halting scores* in [1], and arrive at an equivalent per-block *skipping score* according to:

$$\mathbf{p}_i = \texttt{softmax}(W^i \texttt{pool}(y_{i-1}) + b^i),$$

where pool is a global average pooling operation. For fair comparisons, Ours-seq is compared to a BlockDrop model, which attains equivalent accuracy, with the same number of blocks.

Implementation Details

- On CIFAR, we train the model for 5000 epochs during curriculum learning with a batch size of 2048 and a learning rate of 1e 4. We further jointly finetune the model for 1600 epochs with a batch size of 256 and a learning rate of 1e 4, which is annealed to 1e 5 for 400 epochs.
- On ImageNet, the policy network is trained for 45 epochs for curriculum learning with a batch size of 2048 and a learning rate of 1e 4. We then use a batch size of 320 during joint finetuning for 10 epochs.

Detailed Results on CIFAR-10 and ImageNet

We present detailed results of our method on CIFAR-10 (Table 1) and ImageNet (Table 2). We highlight the accuracy, block usage and speed up for variants of our model compared to full ResNets.

Network	FLOPs	Block Usage	Accuracy	Speed-up
ResNet-32	$1.38E\text{+}08 \pm 0.00E\text{+}00$	15.0 ± 0.0	92.3	_
ResNet-110	$5.06\text{E+08} \pm 0.00\text{E+00}$	54.0 ± 0.0	93.2	-
BlockDrop-32 ($\gamma = 5$)	$8.66E+07 \pm 1.40E+07$	6.9 ± 1.6	91.3	37.2%
BlockDrop-110 ($\gamma = 2$)	$1.18E\text{+}08 \pm 2.46E\text{+}07$	10.3 ± 2.7	91.9	76.7%
BlockDrop-110 ($\gamma = 5$)	$1.51E$ +08 \pm 3.24E+07	13.8 ± 3.5	93.0	70.1%
BlockDrop-110 ($\gamma = 10$)	$1.81\text{E+}08 \pm 3.43\text{E+}07$	16.9 ± 3.7	93.6	64.3%

Table 1: Results of different architectures on CIFAR-10. Depending on the base ResNet architecture, speedups ranging from 37% to 76% are observed with little to no degradation in performance.

^{*} Authors contributed equally

Network	FLOPs	Block Usage	Accuracy	Speed-up
ResNet-72	$1.17E+10 \pm 0.00E+00$	24.0 ± 0.0	75.8	_
ResNet-75	$1.21E+10 \pm 0.00E+00$	25.0 ± 0.0	75.9	_
ResNet-84	$1.34\text{E+10} \pm 0.00\text{E+00}$	28.0 ± 0.0	76.1	-
ResNet-101	$1.56\text{E+10} \pm 0.00\text{E+00}$	33.0 ± 0.0	76.4	-
BlockDrop ($\gamma = 2$)	$9.85E+09 \pm 3.34E+08$	18.8 ± 0.8	75.2	36.9%
BlockDrop ($\gamma = 5$)	$1.25E+10 \pm 4.26E+08$	24.8 ± 1.0	76.4	19.9%
BlockDrop ($\gamma = 10$)	$1.47E+10 \pm 4.02E+08$	29.7 ± 0.9	76.8	5.7%

Table 2: Results of different architectures on ImageNet. BlockDrop is built upon ResNet-101, and can achieve around 20% speedup on average with $\gamma = 5$.

References

 M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhutdinov. Spatially adaptive computation time for residual networks. In CVPR, 2017. 1