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Abstract

In principle, zero-shot learning makes it possible to train a recognition model
simply by specifying the category’s attributes. For example, with classifiers for
generic attributes like striped and four-legged, one can construct a classifier for
the zebra category by enumerating which properties it possesses—even without
providing zebra training images. In practice, however, the standard zero-shot
paradigm suffers because attribute predictions in novel images are hard to get
right. We propose a novel random forest approach to train zero-shot models that
explicitly accounts for the unreliability of attribute predictions. By leveraging
statistics about each attribute’s error tendencies, our method obtains more robust
discriminative models for the unseen classes. We further devise extensions to han-
dle the few-shot scenario and unreliable attribute descriptions. On three datasets,
we demonstrate the benefit for visual category learning with zero or few training
examples, a critical domain for rare categories or categories defined on the fly.

1 Introduction

Visual recognition research has achieved major successes in recent years using large datasets and
discriminative learning algorithms. The typical scenario assumes a multi-class task where one has
ample labeled training images for each class (object, scene, etc.) of interest. However, many real-
world settings do not meet these assumptions. Rather than fix the system to a closed set of thoroughly
trained object detectors, one would like to acquire models for new categories with minimal effort
and training examples. Doing so is essential not only to cope with the “long-tailed” distribution of
objects in the world, but also to support applications where new categories emerge dynamically—for
example, when a scientist defines a new phenomenon of interest to be detected in her visual data.

Zero-shot learning offers a compelling solution. In zero-shot learning, a novel class is trained via
description—not labeled training examples [10, 18, 8]. In general, this requires the learner to have
access to some mid-level semantic representation, such that a human teacher can define a novel
unseen class by specifying a configuration of those semantic properties. In visual recognition, the
semantic properties are attributes shared among categories, like black, has ears, or rugged. Sup-
posing the system can predict the presence of any such attribute in novel images, then adding a new
category model amounts to defining its attribute “signature” [8, 3, 18, 24, 19]. For example, even
without labeling any images of zebras, one could build a zebra classifier by instructing the system
that zebras are striped, black and white, etc. Interestingly, computational models for attribute-based
recognition are supported by the cognitive science literature, where researchers explore how humans
conceive of objects as bundles of attributes [25, 17, 5].

So, in principle, if we could perfectly predict attribute presence1, zero-shot learning would offer
an elegant solution to generating novel classifiers on the fly. The problem, however, is that we
can’t assume perfect attribute predictions. Visual attributes are in practice quite difficult to learn

1and have an attribute vocabulary rich enough to form distinct signatures for each category of interest
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accurately—often even more so than object categories themselves. This is because many attributes
are correlated with one another (given only images of furry brown bears, how do we learn furry and
brown separately? [6]), and abstract linguistic properties can have very diverse visual instantiations
(compare a bumpy road to a bumpy rash). Thus, attribute-based zero-shot recognition remains in the
“proof of concept” realm, in practice falling short of alternate transfer methods [23].

We propose an approach to train zero-shot models that explicitly accounts for the unreliability of
attribute predictions. Whereas existing methods take attribute predictions at face value, our method
during training acknowledges the known biases of the mid-level attribute models. Specifically,
we develop a random forest algorithm that, given attribute signatures for each category, exploits
the attribute classifiers’ receiver operating characteristics to select discriminative and predictable
decision nodes. We further generalize the idea to account for unreliable class-attribute associations.
Finally, we extend the solution to the “few-shot” setting, where a small number of category-labeled
images are also available for training.

We demonstrate the idea on three large datasets of object and scene categories, and show its clear
advantages over status quo models. Our results suggest the valuable role attributes can play for
low-cost visual category learning, in spite of the inherent difficulty in learning them reliably.

2 Related Work

Most existing zero-shot models take a two-stage classification approach: given a novel image, first its
attributes are predicted, then its class label is predicted as a function of those attributes. For example,
in [3, 18, 30], each unseen object class is described by a binary indicator vector (“signature”) over its
attributes; a new image is mapped to the unseen class with the signature most similar to its attribute
predictions. The probabilistic Direct Attribute Prediction (DAP) method [8] takes a similar form, but
adds priors for the classes and attributes and computes a MAP prediction of the unseen class label.
A topic model variant is explored in [31]. The DAP model has gained traction and is often used in
other work [23, 19, 29]. In all of the above methods, as in ours, training an unseen class amounts to
specifying its attribute signature. In contrast to our approach, none of the existing methods account
for attribute unreliability when learning an unseen category. As we will see in the results, this has a
dramatic impact on generalization.

We stress that attribute unreliability is distinct from attribute strength. The former (our focus) per-
tains to how reliable the mid-level classifier is, whereas the latter pertains to how strongly an image
exhibits an attribute (e.g., as modeled by relative [19] or probabilistic [8] attributes). PAC bounds
on the tolerable error for mid-level classifiers are given in [18], but that work does not propose a
solution to mitigate the influence of their uncertainty.

While the above two-stage attribute-based formulation is most common, an alternative zero-shot
strategy is to exploit external knowledge about class relationships to adapt classifiers to an unseen
class. For example, an unseen object’s classifier can be estimated by combining the nearest exist-
ing classifiers (trained with images) in the ImageNet hierarchy [23, 14], or by combining classifiers
based on label co-occurrences [13]. In a similar spirit, label embeddings [1] or feature embed-
dings [4] can exploit semantic information for zero-shot predictions. Unlike these models, we focus
on defining new categories through language-based description (with attributes). This has the ad-
vantage of giving a human supervisor direct control on the unseen class’s definition, even if its
attribute signature is unlike that observed in any existing trained model.

Acknowledging that attribute classifiers are often unreliable, recent work abandons purely semantic
attributes in favor of discovering mid-level features that are both detectable and discriminative for
a set of class labels [11, 22, 26, 15, 30, 27, 1]. However, there is no guarantee that the discovered
features will align with semantic properties, particularly “nameable” ones. This typically makes
them inapplicable to zero-shot learning, since a human supervisor can no longer define the unseen
class with concise semantic terms. Nonetheless, one can attempt to assign semantics post-hoc (e.g.,
[30]). We demonstrate that our method can benefit zero-shot learning with such discovered (pseudo)-
attributes as well.

Our idea for handling unreliable attributes in random forests is related to fractional tuples for han-
dling missing values in decision trees [21]. In that approach, points with missing values are dis-
tributed down the tree in proportion to the observed values in all other data. Similar concepts are
explored in [28] to handle features represented as discrete distributions and in [16] to propagate
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instances with soft node memberships. Our approach also entails propagating training instances in
proportion to uncertainty. However, our zero-shot scenario is distinct, and, accordingly, the training
and testing domains differ in important ways. At training time, rather than build a decision tree from
labeled data points, we construct each tree using the unseen classes’ attribute signatures. Then, at
test time, the inputs are attribute classifier predictions. Furthermore, we show how to propagate both
signatures and data points through the tree simultaneously, which makes it possible to account for
inter-dependencies among the input dimensions and also enables a few-shot extension.

3 Approach

Given a vocabulary of M visual attributes, each unseen class k is described in terms of its attribute
signature Ak, which is an M -dimensional vector where Ak(i) gives the association of attribute
i with class k.2 Typically the association values would be binary—meaning that the attribute is
always present/absent in the class—but they may also be real-valued when such fine-grained data
is available. We model each unseen class with a single signature (e.g., whales are big and gray).
However, it is straightforward to handle the case where a class has a multi-modal definition (e.g.,
whales are big and gray OR whales are big and black), by learning a zero-shot model per “mode”.
Whether the attribute vocabulary is hand-designed [8, 3, 19, 29, 23] or discovered [30, 11, 22], our
approach assumes it is expressive enough to discriminate between the categories.

Suppose there areK unseen classes of interest, for which we have no training images. Our zero-shot
method takes as input the K attribute signatures and a dataset of images labeled with attributes, and
produces a classifier for each unseen class as output. At test time, the goal is to predict which unseen
class appears in a novel image.

In the following, we first describe the initial stage of building the attribute classifiers (Sec. 3.1).
Then we introduce a zero-shot random forest trained with attribute signatures (Sec. 3.2). Next we
explain how to augment that training procedure to account for attribute unreliability (Sec. 3.2.2) and
signature uncertainty (Sec. 3.2.3). Finally, we present an extension to few-shot learning (Sec. 3.3).

3.1 Learning the attribute vocabulary

As in any attribute-based zero-shot method [3, 8, 18, 23, 19, 7, 29], we first must train classifiers to
predict the presence or absence of each of the M attributes in novel images. Importantly, the images
used to train the attribute classifiers may come from a variety of objects/scenes and need not contain
any instances of the unseen categories. The fact that attributes are shared across category boundaries
is precisely what allows zero-shot learning.

We train one SVM per attribute, using a training set of images xi (represented with standard de-
scriptors) with binary M -dimensional label vectors yi, where yi(m) = 1 indicates that attribute m
is present in xi. Let âm(x) denote the Platt probability score from the m-th such SVM applied to
test input x.

3.2 Zero-shot random forests

Next we introduce our key contribution: a random forest model for zero-shot learning.

3.2.1 Basic formulation: Signature random forest

First we define a basic random forest training algorithm for the zero-shot setting. The main idea is
to train an ensemble of decision trees using attribute signatures—not image descriptors or vectors
of attribute predictions. In the zero-shot setting, this is all the training information available. Later,
at test time, we will have an image in hand, and we will apply the trained random forest to estimate
its class posteriors.

Recall that the k-th unseen class is defined by its attribute signature Ak ∈ <M . We treat each such
signature as the lone positive “exemplar” for its class, and discriminatively train random forests to
distinguish all the signatures, A1, . . . , AK . We take a one-versus-all approach, training one forest
for each unseen class. So, when training class k, the K − 1 other class signatures are the negatives.

2We use “class” and “category” to refer to an object or scene, e.g., zebra or beach, and “attribute” to refer
to a property, e.g., striped or sunny. “Unseen” means we have no training images for that class.

3



For each class, we build an ensemble of decision trees in a breadth-first manner. Each tree is learned
by recursively splitting the signatures into subsets at each node, starting at the root. Let In denote
an indicator vector of length K that records which signatures appear at node n. For the root node,
all K signatures are present, so we have In = [1, . . . , 1]. Following the typical random forest
protocol [2], the training instances are recursively split according to a randomized test; it compares
one dimension of the signature against a threshold t, then propagates each one to the left child l
or right child r depending on the outcome, yielding indicator vectors Il and Ir. Specifically, if
In(k) = 1, then if Ak(m) > t, we have Ir(k) = 1. Otherwise, Ir(k) = 0. Further, Il = In − Ir.

Thus, during training we must choose two things at each node: the query attribute m and the thresh-
old t, represented jointly as the split (m, t). We sample a limited number of (m, t) combinations3

and choose the one that maximizes the expected information gain IGbasic:

IGbasic(m, t) = H(pIn)−
`
P (Ai(m) > t|In(i) = 1)H(pIl) + P (Ai(m) ≤ t|In(i) = 1)H(pIr )

´
(1)

= H(pIn)−
„
‖Il‖1
‖In‖1

H(pIl) +
‖Ir‖1
‖In‖1

H(pIr )

«
, (2)

where H(p) = −
∑

i p(i) log2 p(i) is the entropy of a distribution p. The 1-norm on an indicator
vector I sums up the occurrences I(k) of each signature, which for now are binary, I(k) ∈ {0, 1}.
Since we are training a zero-shot forest to discriminate class k from the rest, the distribution over
class labels at node n is a length-2 vector:

pIn =
[
In(k)
‖In‖1

,

∑
i 6=k In(i)
‖In‖1

]
. (3)

We grow each tree in the forest to a fixed, maximum depth, terminating a branch prematurely if less
than 5% of training samples have reached a node on it. We learn J = 100 trees per forest.

Given a novel test image xtest, we compute its predicted attribute signature â(xtest) =
[â1(xtest), . . . , âM (xtest)] by applying the attribute SVMs. Then, to predict the posterior for
class k, we use â(xtest) to traverse to a leaf node in each tree of k’s forest. Let P j

k (`) denote
the fraction of positive training instances at a leaf node ` in tree j of the forest for class k. Then
P (k|â(xtest)) = 1

J

∑
jP

j
k (`), the average of the posteriors across the ensemble.

If we somehow had perfect attribute classifiers, this basic zero-shot random forest (in fact, one such
tree alone) would be sufficient. Next, we show how to adapt the training procedure defined so far to
account for their unreliability.

3.2.2 Accounting for attribute prediction unreliability
While our training “exemplars” are the true attribute signatures for each unseen class, the test im-
ages will have only approximate estimates of the attributes they contain. We therefore augment the
zero-shot random forest to account for this unreliability during training. The main idea is to gener-
alize the recursive splitting procedure above such that a given signature can pursue multiple paths
down the tree. Critically, those paths will be determined by the false positive/true positive rates of
the individual attribute predictors. In this way, we expand each idealized training signature into a
distribution in the predicted attribute space. Essentially, this preemptively builds in the appropriate
“cushion” of expected errors when choosing discriminative splits.

Implementing this idea requires two primary extensions to the formulation in Sec. 3.2.1: (i) we
inject attribute validation data and its associated attribute classification error statistics into the tree
formation process, and (ii) we redefine the information gain to account for the partial propagation
of training signatures. We explain each of these components in turn next.

First, in addition to signatures, at each node we maintain a set of validation data in order to gauge
the error tendencies of each attribute classifier. For the experiments in this paper (Sec 4), our method
reserves some attribute classifier training data for this purpose. Denote this set of attribute-labeled
images as DV . During random forest training, this data is recursively propagated down the tree
following each split once it is chosen. Let DV (n) ⊆ DV denote the set of validation data inherited
at node n. At the root, DV (n) = DV .

3With binary Ai(m), all 0 < t < 1 are equivalent in Sec 3.2.1. Selecting t becomes important in Sec 3.2.2.
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With validation data thus injected, we can estimate the test-time receiver operating characteristic
(ROC)4 for an attribute classifier at any node in the tree. For example, the estimated false positive
rate at node n for attribute m at threshold t is FP(n,m, t) = Pn(âm(x) > t | y(m) = 0), which is
the fraction of examples in DV (n) for which the attribute m is absent, but the SVM predicts it to be
present at threshold t. Here, y(m) denotes the m-th attribute’s label for image x.

For any node n, let I ′n be a real-valued indicator vector, such that I ′n(k) ∈ [0, 1] records the fractional
occurrence of the training signature for class k at node n. At the root node, I ′n(k) = 1, ∀k. For a
split (m, t) at node n, a signature Ak splits into the right and left child nodes according to its ROC
for attribute m at the operating point specified by t. In particular, we have:

I ′
r(k) = I ′

n(k)Pn(âm(x) > t | y(m) = Ak(m)), and I ′
l(k) = I ′

n(k)Pn(âm(x) ≤ t | y(m) = Ak(m)),
(4)

where x ∈ DV (n) . When Ak(m) = 1, the probability terms are TP(n,m, t) and FN(n,m, t)
respectively; when Ak(m) = 0, they are FP(n,m, t) and TN(n,m, t). In this way, we channel all
predicted negatives to the left child node. In contrast, a naive random forest (RF) trained on signa-
tures assumes ideal attribute classifiers and channels all ground truth negatives—i.e., true negatives
and false positives—through the left node.

To illustrate the meaning of this fractional propagation, consider a class “elephant” known to have
the attribute “gray”. If the “gray” attribute classifier fires only on 60% of the “gray” samples in the
validation set, i.e., TP=0.6, then only 0.6 fraction of the “elephant” signature is passed on to the
positive (i.e., right) node. This process repeats through more levels until fractions of the single “ele-
phant” signature have reached all leaf nodes. Thus, a single class signature emulates the estimated
statistics of a full training set of class-labeled instances with attribute predictions.

We stress two things about the validation data propagation. First, the data in DV is labeled by
attributes only; it has no unseen class labels and never features in the information gain computation.
Its only role is to estimate the ROC values. Second, the recursive sub-selection of the validation data
is important to capture the dependency of TP/FP rates at higher level splits. For example, if we were
to select split (m, t) at the root, then the fractional signatures pushed to the left child must all have
A(m) < t, meaning that for a candidate split (m, s) at the left child, where s > t, the correct TP and
FP rates are both 0. This is accounted for when we use DV (n) to compute the ROC, but would not
have been, had we just usedDV . Thus, our formulation properly accounts for dependencies between
attributes when selecting discriminative thresholds, an issue not addressed by existing methods for
missing [21] or probabilistically distributed features [28].

Next, we redefine the information gain. When building a zero-shot tree conscious of attribute unre-
liability, we choose the split maximizing the expected information gain according to the fractionally
propagated signatures (compare to Eqn. (2)):

IGzero(m, t) = H(pI′
n
)−

(
‖I ′l‖1
‖I ′n‖1

H(pI′
l
) +
‖I ′r‖1
‖I ′n‖1

H(pI′
r
)
)
. (5)

The distribution pI′
z
, z ∈ {l, r} is computed as in Eqn. (3). For full pseudocode and a schematic

illustration of our method, please see supp.

The discriminative splits under this criterion will be those that not only distinguish the unseen classes
but also persevere (at test time) as a strong signal in spite of the attribute classifiers’ error tenden-
cies. This means the trees will prefer both reliable attributes that are discriminative among the
classes, as well as less reliable attributes coupled with intelligently selected operating points that
remain distinctive. Furthermore, they will omit splits that, though highly discriminative in terms of
idealized signatures, were found to be “unlearnable” among the validation data. For example, in
the extreme case, if an attribute classifier cannot distinguish positives and negatives, meaning that
TPR=FPR, then the signatures of all classes are equally likely to propagate to the left or right, i.e.,
I ′r(k)/I

′
n(k) = I ′r(j)/I

′
n(j) and I ′l(k)/I

′
n(k) = I ′l(j)/I

′
n(j) for all k, j, which yields an informa-

tion gain of 0 in Eqn. (5) (see supp). Thus, our method, while explicitly making the best of imperfect
attribute classification, inherently prefers more learnable attributes.

4The ROC captures the true positive (TP) vs. false positive (FP) rates (equivalently the true negative (TN)
and false negative (FN) rates) as a function of a decision value threshold.
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The proposed approach produces unseen category classifiers with zero category-labeled images.
The attribute-labeled validation data is important to our solution’s robustness. If that data perfectly
represented the true attribute errors on images from the unseen classes (which we cannot access,
of course, because images from those classes appear only at test time), then our training procedure
would be equivalent to building a random forest on the test samples’ attribute classifier outputs.

3.2.3 Accounting for class signature uncertainty
Beyond attribute classifier unreliability, our framework can also deal with another source of zero-
shot uncertainty: instances of a class often deviate from class-level attribute signatures. To tackle
this, we redefine the soft indicators I ′r and I ′l in Eqn. 4, appending a term to account for annotation
noise. Please see supp. for details.

3.3 Extending to few-shot random forests

Our approach also admits a natural extension to few-shot training. Extensions of zero-shot models
to the few-shot setting have been attempted before [31, 26, 14, 1]. In this case, we are given not only
attribute signatures, but also a dataset DT consisting of a small number of images with their class
labels. We essentially use the signatures A1, . . . , AK as a prior for selecting good tree splits that
also satisfy the traditional training examples. The information gain on the signatures is as defined in
Sec. 3.2.2, while the information gain on the training images, for which we can compute classifier
outputs, uses the standard measure defined in Sec. 3.2.1. Using some notation shortcuts, for few-shot
training we recursively select the split that maximizes the combined information gain:

IGfew(m, t) = λ IGzero(m, t){A1, . . . , AK}+ (1− λ) IGbasic(m, t){DT }, (6)

where λ controls the role of the signature-based prior. Intuitively, we can expect lower values of λ to
suffice as the size of DT increases, since with more training examples we can more precisely learn
the class’s appearance. This few-shot extension can be interpreted as a new way to learn random
forests with descriptive priors.

4 Experiments

Datasets and setup We use three datasets: (1) Animals with Attributes (AwA) [8] (M = 85
attributes,K = 10 unseen classes, 30,475 total images), (2) aPascal/aYahoo objects (aPY) [3] (M =
65, K = 12, 15,339 images) (3) SUN scene attributes (SUN) [20] (M = 102, K = 10, 14,340
images). These datasets capture a wide array of categories (animals, indoor and outdoor scenes,
household objects, etc.) and attributes (parts, affordances, habitats, shapes, materials, etc.). The
attribute-labeled images originate from 40, 20, and 707 “seen” classes in each dataset, respectively;
we use the class labels solely to map to attribute annotations. We use the unseen class splits specified
in [9] for AwA and aPY, and randomly select the 10 unseen classes for SUN (see supp.). For all three,
we use the features provided with the datasets, which include color histograms, SIFT, PHOG, and
others (see [9, 3, 20] for details).

Following [8], we train attribute SVMs with combined χ2-kernels, one kernel per feature channel,
and set C = 10. Our method reserves 20% of the attribute-labeled images as ROC validation data,
then pools it with the remaining 80% to train the final attribute classifiers. We stress that our method
and all baselines have access to exactly the same amount of attribute-labeled data.

We report results as mean and standard error measured over 20 random trials. Based on cross-
validation, we use tree depths of (AwA-9, aPY-6, SUN-8), and generate (#m,#t) tests per node
(AwA-(10,7), aPY-(8,2), SUN-(4,5)). When too few validation points (< 10 positives or negatives)
reach a node n, we revert to computing statistics over the full validation set DV rather than DV (n).

Baselines In addition to several state-of-the-art published results and ablated variants of our
method, we also compare to two baselines: (1) SIGNATURE RF: random forests trained on class-
attribute signatures as described in Sec. 3.2.1, without an attribute uncertainty model, and (2) DAP:
Direct Attribute Prediction [8, 9], which is a leading attribute-based zero-shot object recognition
method widely used in the literature [8, 3, 18, 30, 8, 23, 19, 29].5

5We use the authors’ code: http://attributes.kyb.tuebingen.mpg.de/
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Figure 1: Zero-shot accuracy on AwA as a function of attribute uncertainty, in controlled noise
scenarios.

Method/Dataset AwA aPY SUN
DAP 40.50 18.12 52.50
SIGNATURE-RF 36.65 ± 0.16 12.70 ± 0.38 13.20 ± 0.34
OURS W/O ROC PROP, SIG UNCERTAINTY 39.97 ± 0.09 24.25 ± 0.18 47.46 ± 0.29
OURS W/O SIG UNCERTAINTY 41.88 ± 0.08 24.79 ± 0.11 56.18 ± 0.27
OURS 43.01 ± 0.07 26.02 ± 0.05 56.18 ± 0.27
OURS+TRUE ROC 54.22 ± 0.03 33.54 ± 0.07 66.65 ± 0.31

Table 1: Zero-shot learning accuracy on all three datasets. Accuracy is percentage of correct cate-
gory predictions on unseen class images, ± standard error.

4.1 Zero-shot object and scene recognition

Controlled noise experiments Our approach is designed to overcome the unreliability of attribute
classifiers. To glean insight into how it works, we first test it with controlled noise in the test images’
attribute predictions. We start with hypothetical perfect attribute classifier scores âm(x) = Ak(m)
for x in class k, then progressively add noise to represent increasing errors in the predictions. We
examine two scenarios: (1) where all attribute classifiers are equally noisy, and (2) where the average
noise level varies per attribute. See supp. for details on the noise model.

Figure 1 shows the results using AwA. By definition, all methods are perfectly accurate with zero
noise. Once the attributes are unreliable (i.e., noise > 0), however, our approach is consistently
better. Furthermore, our gains are notably larger in the second scenario where noise levels vary
per attribute (right plot), illustrating how our approach properly favors more learnable attributes
as discussed in Sec. 3.2.2. In contrast, SIGNATURE-RF is liable to break down with even minor
imperfections in attribute prediction. These results affirm that our method benefits from both (1)
estimating and accounting for classifier noisiness and (2) avoiding uninformative attribute classifiers.

Real unreliable attributes experiments Next we present the key zero-shot results for our method
applied to three challenging datasets using over 250 real attribute classifiers. Table 1 shows the
results. Our method significantly outperforms the existing DAP method [9]. This is an important
result: DAP is today the most commonly used model for zero-shot object recognition, whether using
this exact DAP formulation [8, 23, 19, 29] or very similar non-probabilistic variants [3, 30]. Note that
our approach beats DAP despite the fact we use only 80% of the attribute-labelled images to train
attribute classifiers. This indicates that modeling how good/bad the attribute classifiers are is even
more important than having better attribute classifiers. Furthermore, this demonstrates that modeling
only the confidence of an attribute’s presence in a test image (which DAP does) is inadequate; our
idea to characterize their error tendencies during training is valuable.

Our substantial improvements over SIGNATURE-RF also confirm it is imperative to model attribute
classifier unreliability. Our gains over DAP are especially large on SUN and aPY, which have fewer
positive training samples per attribute, leading to less reliable attribute classifiers—exactly where
our method is needed most. On AwA too, we outperform DAP on 7 out of 10 categories, with
largest gains on “giant panda”(10.2%),“whale seal”(9.4%) and “persian cat”(7.4%), classes that are
very different from the train classes. Further, if we repeat the experiment on AwA reducing to 500
randomly chosen images for attribute training, our overall accuracy gain over DAP widens to 8 points
(28.0 ± 0.9 vs. 20.42).
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Method Accuracy
Lampert et al. [8] 40.5
Yu and Aloimonos [31] 40.0
Rohrbach et al. [24] 35.7
Kankuekul et al. [7] 32.7
Yu et al. [30] 48.3
OURS (named attributes) 43.0 ± 0.07
OURS (discovered attributes) 48.7 ± 0.09

(b) Zero-shot vs. state of the art

Figure 2: (a) Few-shot results. (b) Zero-shot results on AwA compared to the state of the art.

Table 1 also helps isolate the impact of two components of our method: the model of signature
uncertainty (see OURS W/O SIG UNCERTAINTY), and the recursive propagation of validation data
(see OURS W/O ROC PROP, SIG UNCERTAINTY). For the latter, we further compute TPR/FPRs
globally on the full validation dataset DV rather than for node-specific subsets DV (n). We see both
aspects contribute to our full method’s best performance (see OURS). Finally, OURS+TRUE ROC
provides an “upper bound” on the accuracy achievable with our method for these datasets; this is the
result attainable were we to use the unseen class images as validation data DV . This also points to
an interesting direction for future work: to better model expected error rates on images with unseen
attribute combinations. Our initial attempts in this regard included focusing validation data on seen
class images with signatures most like those of the unseen classes, but the impact was negligible.

Figure 2b compares our method against all published results on AwA, using both named and discov-
ered attributes. When using standard AwA named attributes, our method comfortably outperforms
all prior methods. Further, when we use the discovered attributes from [30], it performs comparably
to their attribute decoding method, achieving the state-of-the-art on AwA. This result was obtained
using a generalization of our method to handle the continuous attribute strength signatures of [30].

4.2 Few-shot object and scene recognition

Finally, we demonstrate our few-shot extension. Figure 2a shows the results, as a function of both the
amount of labeled training images and the prior-weighting parameter λ (cf. Sec 3.3).6 When λ = 0,
we rely solely on the training imagesDT ; when λ = 1, we rely solely on the attribute signatures i.e.,
zero-shot learning. As a baseline, we compare to a method that uses solely the few training images
to learn the unseen classes (dotted lines). We see the clear advantage of our attribute signature prior
for few-shot random forest training. Furthermore, we see that, as expected, the optimal λ shifts
towards 0 as more samples are added. Still, even with 200 training images in DT , the prior plays
a role (e.g., the best λ = 0.3 on blue curve). The star per curve indicates the λ value our method
selects automatically with cross-validation.

5 Conclusion

We introduced a zero-shot training approach that models unreliable attributes—both due to classifier
predictions and uncertainty in their association with unseen classes. Our results on three challenging
datasets indicate the method’s promise, and suggest that the elegance of zero-shot learning need
not be abandoned in spite of the fact that visual attributes remain very difficult to predict reliably.
Further, our idea is applicable to other uses of semantic mid-level concepts for higher tasks e.g.,
poselets for action recognition [12], discriminative mid-level patches for location recognition [27]
etc., and in domains outside computer vision. In future work, we plan to develop extensions to
accommodate inter-attribute correlations in the random forest tests and multi-label random forests
to improve scalability for many unseen classes.

Acknowledgements: We thank Christoph Lampert and Felix Yu for helpful discussions and sharing
their code. This research is supported in part by NSF IIS-1065390 and ONR ATL.

6These are for AwA; see supp. for similar results on the other two datasets.
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