
Learning Compressible 360◦ Video Isomers

Yu-Chuan Su Kristen Grauman
The University of Texas at Austin

Abstract

Standard video encoders developed for conventional
narrow field-of-view video are widely applied to 360◦ video
as well, with reasonable results. However, while this ap-
proach commits arbitrarily to a projection of the spheri-
cal frames, we observe that some orientations of a 360◦

video, once projected, are more compressible than others.
We introduce an approach to predict the sphere rotation
that will yield the maximal compression rate. Given video
clips in their original encoding, a convolutional neural net-
work learns the association between a clip’s visual content
and its compressibility at different rotations of a cubemap
projection. Given a novel video, our learning-based ap-
proach efficiently infers the most compressible direction in
one shot, without repeated rendering and compression of
the source video. We validate our idea on thousands of
video clips and multiple popular video codecs. The results
show that this untapped dimension of 360◦ compression
has substantial potential—“good” rotations are typically
8−10% more compressible than bad ones, and our learn-
ing approach can predict them reliably 82% of the time.

1. Introduction
Both the technology and popularity of 360◦ video has

grown rapidly in recent years, for emerging Virtual Reality
(VR) applications and others. Sales of 360◦ cameras are
expected to grow by 1500% from 2016 to 2022 [45]. Fore-
seeing the tremendous opportunities in 360◦ video, many
companies are investing in it. For example, Facebook and
YouTube have offered 360◦ content support since 2015.
Facebook users have since uploaded more than one million
360◦ videos [8], and YouTube plans to bring 360◦ videos to
even broader platforms (TV, gaming consoles). 360◦ edit-
ing tools are now available in popular video editors such
as PowerDirector and Premiere Pro. Meanwhile, on the re-
search side, there is strong interest in improving 360◦ video
display [22, 26, 21, 41, 40, 19, 29], and performing visual
processing efficiently on the new format [23, 14, 39]. All
together, these efforts make 360◦ video production and dis-
tribution easier and more prevalent than ever.

At the core of all video technologies is the data format.

x y

z

T

Ω1

z Ω2
z Ω3

z
Ω4 z

ΩV
id

eo
S

iz
e

Figure 1: Our approach learns to automatically rotate the
360◦ video axis before storing the video in cubemap for-
mat. While the 360◦ videos are equivalent under rotation
(“isomers”), the bit-streams are not because of the video
compression procedures. Our approach analyzes the video’s
visual content to predict its most compressible isomer.

In particular, a compressed video bit-stream format is the
basis for all video related applications, ranging from video
capture, storage, processing to distribution. Without ad-
equate compression, all of the above suffer. 360◦ video
is no exception. Thus far, the focus for 360◦ video com-
pression is to find a proper projection that transforms a
360◦ frame into a rectangular planar image that will have
a high compression rate. A current favorite is to project the
sphere to a cubemap and unwrap the cube into a planar im-
age [27, 10, 32] (see Fig. 2). Cubemaps can improve the
compression rate by up to 25% compared to the previously
popular equirectangular projection [28].

One unique property of 360◦ video is that each spheri-
cal video has an infinite number of equivalents related by
a rotation. Therefore, each 360◦ video could be trans-
formed into multiple possible cubemaps by changing the
orientation of the cube, yet all of them represent the very
same video content. We refer to these content-equivalent
rotations as 360◦ isomers.1 The isomers, however, are not

1Strictly speaking isomers are equivalent only theoretically, because
pixels are discretely sampled and rotating a cubemap requires interpolating
the pixels. Nevertheless, as long as the pixel density, i.e. video resolution,
is high enough, the information delta is negligible.

1

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018

equivalents in terms of compression. Different isomers in-
teract differently with a given compression algorithm and
so yield different compression rates (See Fig. 1). This is
because the unwrapped cubemap is not a homogenous per-
spective image. Therefore, some of the properties that cur-
rent compression algorithms exploit in perspective images
do not hold. For example, while the content is smooth
and continuous in perspective images, this need not be true
along an inter-face boundary in an unwrapped cubemap.
The discontinuity can introduce artificial high frequency
signals and large abrupt motions, both of which harm the
compression rate (cf. Sec. 3.2 and Fig. 5). In short, our key
insight is that the compression rate of a 360◦ video will de-
pend on the orientation of the cubemap it is projected on.

We propose a learning-based approach to predict—from
the video’s visual content itself—the cubemap orientation
that will minimize the video size. First we demonstrate em-
pirically that the orientation of a cubemap does influence
the compression rate, and the difference is not an artifact of
a specific encoder but a general property over a variety of
popular video formats. Based on that observation, we pro-
pose to automatically re-orient the cubemap for every group
of pictures (GOP).2 A naive solution would enumerate each
possible orientation, compress the GOP, and pick the one
with the lowest encoded bit-stream size. However, doing so
would incur substantial overhead during compression, pro-
hibitively costly for many settings. Instead, our approach
renders the GOP for a single orientation after predicting
the optimal orientation from the video clip rendered in its
canonical orientation. Given encoded videos in a fixed ori-
entation, we train a Convolutional Neural Network (CNN)
that takes both the segmentation contours and motion vec-
tors in the encoded bit-stream and predicts the orientation
that will yield the minimum video size. By avoiding ren-
dering and encoding the video clip in all possible orienta-
tions, our approach greatly reduces the computational cost
and strikes a balance between speed and compression rate.

The key benefit of our approach is a higher compression
rate for 360◦ video that requires only to re-render the cube-
map. In particular, our idea does not require changing the
video format nor the compression algorithm, which makes
it fully compatible with any existing video codec. This is
especially important in the realm of video compression, be-
cause a new video format often takes years to standardize
and deploy, and so changing the bit-stream format would
incur very high overhead. The only additional information
that our method needs to encode is the selected orientation
of each GOP, which can easily be encoded as meta data (and
may become part of the standard in the future [12]).

We evaluate our approach on 7,436 clips containing
varying content. We demonstrate our idea has consistent
impact across three popular encoders, with video size re-
ductions up to 77% and typical reductions of about 8%.

2a collection of successive pictures within a coded video stream.

Across all videos, our learning approach achieves on av-
erage 82% of the best potential compression rate available
for all feasible isomers.

2. Related Work
360◦ video analysis Recent research explores ways to im-
prove the user experience of watching 360◦ videos, includ-
ing stabilizing the videos [22, 26, 21] or directing the field-
of-view (FOV) automatically [41, 40, 19, 29]. Other works
study visual features in 360◦ images such as detecting
SIFT [18] or learning a CNN either from scratch [23, 14]
or from an existing model trained on ordinary perspective
images [39]. All of these methods offer new applications of
360◦ videos, and they assume the inputs are in some given
form, e.g., equirectangular projection. In contrast, we ad-
dress learning to optimize the data format of 360◦ video,
which can benefit many applications.

360◦ video compression 360◦ video has sparked initial
interest in new video compression techniques. A Call for
Evidence this year for a meeting on video standards [46]
calls attention to the need for compression techniques spe-
cific to 360◦ video, and responses indicate that substantial
improvement can be achieved in test cases [13, 17, 7, 15].
Whereas these efforts aim for the next generation in video
compression standards, our method is compatible with ex-
isting video formats and can be applied directly without any
modification of existing video codecs. For video streaming,
some work studies the value in devoting more bits to the re-
gion of 360◦ content currently viewed by the user [42, 38].
However, they require the current viewing direction of the
user and reduce the video quality beyond the user’s field of
view. In contrast, our method does not know where the user
will look and encodes the entire video with the same quality.

Projection of spherical images 360◦ image projection
has long been studied in the field of map projection. As
famously proven by Gauss, no single projection can project
a sphere to a plane without introducing some kind of distor-
tion. Therefore, many different projections are proposed,
each designed to preserve certain properties such as dis-
tance, area, direction, etc. [37]. For example, the popular
equirectangular projection preserves the distance along lon-
gitude circles. Various projection models have been devel-
oped to improve perceived quality for 360◦ images. Prior
work [47] studies how to select or combine the projec-
tions for a better display, and others develop new projection
methods to minimize visual artifacts [24, 11]. Our work is
not about the human-perceived quality of a projected 360◦

image; rather, the mode of projection is relevant to our prob-
lem only in regards to how well the resulting stack of 2D
frames can be compressed.

Cubemap is adopted as one of the two presentations for
360◦ video in the MPEG Omnidirectional MediA Format

x y

z

x y

z

Figure 2: Cubemap format transformation. The 360◦ video is first projected to a cube enclosing the unit sphere and then
unwrapped into 6 faces. The 6 faces are re-arranged to form a rectangular picture to fit video compression standards (2×3
frame on the right).

(OMAF) [32], i.e., the future 360◦ video standard, and ma-
jor 360◦ video sharing sites such as YouTube and Facebook
have turned to the new format [27, 10]. Cubemaps can im-
prove the compression rate by 25% compared to equirect-
angular projection, which suffers from redundant pixels and
distorted motions [28]. The Rotated Sphere Projection is an
alternative to cubemap projection with fewer discontinuous
boundaries [6]. Motivated by the compression findings [28],
our approach is built upon the standard cubemap format.
Our method is compatible with existing data formats and
can further reduce video size at almost zero cost.

Deep learning for image compression Recent work in-
vestigates ways to improve image compression using deep
neural networks. One common approach is to improve pre-
dictive coding using either a feed-forward CNN [35, 34]
or recurrent neural network (RNN) [43, 44, 20]. The con-
cept can also be extended to video compression [35]. An-
other approach is to allocate the bit rate dynamically using
a CNN [30]. While we also study video compression us-
ing a CNN, we are the first to study 360◦ video compres-
sion, and—CNN or otherwise—the first to exploit spherical
video orientation to improve compression rates. Our idea is
orthogonal to existing video compression algorithms, which
could be combined with our approach without any modifi-
cation to further improve performance.

3. Cubemap Orientation Analysis
Our goal is to develop a computationally efficient

method that exploits a cubemap’s orientation for better
compression rates. In this section, we perform a detailed
analysis on the correlation between encoded video size and
cubemap orientation. The intent is to verify that orientation
is indeed important for 360◦ video compression. We then
introduce our method to utilize this correlation in Sec. 4.

First we briefly review fundamental video compression
concepts, which will help in understanding where our idea
has leverage. Modern video compression standards divide a
video into a series of groups of pictures (GOPs), which can
be decoded independently to allow fast seeking and error re-
covery. Each GOP starts with an I-frame, or intra-coded pic-
ture, which is encoded independently of other frames like a

static image. Other frames are encoded as inter-coded pic-
tures, and are divided into rectangular blocks. The encoder
finds a reference block in previous frames that minimizes
their difference. Instead of encoding the pixels directly, the
encoder encodes the relative location of the reference block,
i.e., the motion vector, and the residual. This inter-frame
prediction allows encoders to exploit temporal redundancy.
Note that the encoder has the freedom to fall back to intra-
coding mode for blocks in an inter-coded frame if no refer-
ence block is found.

Just like static image compression, the encoder trans-
forms the pixels in I-frames and residuals in inter-coded
frames into the frequency domain and encodes the coeffi-
cients. The transformation improves the compression rate
because high frequency signals are usually few in natural
images, and many coefficients will be zero. To further re-
duce the video size, video codecs also exploit spatial re-
dundancy through intra-prediction, i.e. predicting values to
be encoded using previously encoded values. The encoder
will encode only the residual between the prediction and
real value. This applies to both the motion vector and trans-
formed coefficients encoding. Most of the residuals will be
small and can be encoded efficiently using entropy coding.
For a more complete survey, see [33].

3.1. Data Preparation

To study the correlation between cubemap orientation
and compression rate, we collect a 360◦ video dataset from
YouTube. Existing datasets [41, 19] contain videos with ar-
bitrary quality, many with compression artifacts that could
bias the result. Instead, we collect only high quality videos
using the 4K filter in YouTube search. We use the key-
word “360 video” together with the 360◦ filter to search
for videos and manually filter out those consisting of static
images or CG videos. The dataset covers a variety of
video content and recording situations, including but not
limited to aerial, underwater, sports, animal, news, and
event videos, and the camera can be either static or mov-
ing. We download the videos in equirectangular projection
with 3,840 pixels width encoded in H264 high profile.

We next transcode the video into cubemap format and
extract the video size in different orientations. Because it

H264 HEVC VP9

Video r (%) Avg. 8.43± 2.43 8.11± 2.03 7.83± 2.34
Range [4.34, 15.18] [4.58, 13.67] [3.80, 14.72]

Clip r (%) Avg. 10.37± 8.79 8.88± 8.23 9.78± 8.62
Range [1.08, 76.93] [1.40, 74.95] [1.70, 75.84]

Table 1: Achievable video size reduction through rotation
for different formats. We can reduce the video size by up to
77% by optimally changing the cubemap orientation.

is impossible to enumerate all possible cubemap orienta-
tions over time, we discretize the problem by dividing the
video into 2 second clips and encode each clip indepen-
dently. This is compliant with the closed GOP structure,
except that video codecs usually have the flexibility to ad-
just the GOP length within a given range. For example, the
default x264 encoder limits the GOP length between 25-
250 frames, i.e. roughly 1-10 seconds, and a common con-
straint for Blu-ray videos is 1-2 seconds [9]. This results
in a dataset consisting of 7,436 video clips from 80 videos
with 4.2 hours total length.

For each clip, we sample the cubemap orientation

Ω = (ϕ, θ) ∈ Φ×Θ (1)

with different yaw (ϕ) and pitch (θ) in Θ =
Φ = {−45◦,−40◦, · · · , 45◦}, i.e., every 5◦ between
[−45◦, 45◦]. This yields |Φ × Θ| = 361 different orien-
tations. We restrict the orientation within 90◦ because of
the rotational symmetry along each axis.

For each orientation, we transform the video into cube-
map format using the transform360 filter [1] in FFMPEG
released by Facebook with 960 pixels resolution for each
face. Fig. 2 illustrates the transformation. The video is then
encoded using off-the-shelf encoders. We encode the video
into three popular formats—H264 using x264 [2], HEVC
using x265 [3], and VP9 using libvpx [4]. Among them,
H264 is currently the most common video format. HEVC,
also known as H265, is the successor of H264 and is the
latest video compression standard. VP9 is a competitor of
HEVC developed by Google and is most popular in web
applications. We use lossless compression for all three for-
mats to ensure rotational symmetry and extract the size of
the final encoded bit-stream. See supp. for the exact encod-
ing parameters. Note that we use popular open source tools
for both cubemap rendering and video compression to en-
sure that they are well optimized and tested. This way any
size changes we observe can be taken as common in 360◦

video production instead of an artifact of our implementa-
tion. The dataset is available on our project webpage3.

3http://vision.cs.utexas.edu/projects/360isomers

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

Figure 3: Relative clip size distribution w.r.t. Ω. We cluster
the distribution into 16 clusters and show 8 of them.

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

Max Min

Figure 4: Clip size distribution of a single clip. We also
show the cubemaps corresponding to Ωmax/Ωmin.

3.2. Data Analysis

Next we investigate how much and why the orientation
of an isomer matters for compressibility. If not mentioned
specifically, all the results are obtained from H264 fromat.

Achievable video size reduction We first examine the
size reduction we can achieve by changing the cubemap ori-
entation. In particular, we compute the reduction

r = 100× SΩmax − SΩmin

SΩmax

, (2)

where SΩ is the encoded bit-stream size with orientation Ω
and Ωmax/Ωmin corresponds to the orientation with maxi-
mum/minimum bit-stream size.

Table 1 shows the results. For example, the average
video size reduction r is 8.43% for H264, which means
that we can reduce the overall 360◦ video size by more than
8% through rotating the video axis. This corresponds to a
2GB reduction in our 80 video database and would scale
to 25.3TB for a million video database. The range of r for
each clip is [1.08, 76.93], which indicates that the compres-
sion rate is strongly content dependent, and the size reduc-
tion can be up to 77% for a single video if we allow the en-
coder to re-orient the 360◦ video. If we restrict the rotation
to ϕ and fix θ = 0◦, r will drop to 2.35%. This result sug-
gests that it is important to allow rotation along both axes.
Finally we see that the average and range of reductions is
quite similar across encoders, indicating that compressibil-
ity of isomers is not unique to a particular codec.

Video size distribution w.r.t. Ω We next show the video
size distribution with respect to Ω. We compute the normal-

http://vision.cs.utexas.edu/projects/360isomers

Ωmin Ωmax

(a) Content discontinuity.

Ωmin Ωmax

(b) Motion discontinuity.
Figure 5: Explanations for why different Ω have different compression rates, shown for good (Ωmin) and bad (Ωmax)
rotations. (a) From a static picture perspective, some Ω introduce content discontinuity and reduce spatial redundancy. (b)
From a dynamic picture perspective, some Ω make the motion more disordered and break the temporal redundancy.

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

MAX

MIN(B)

−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

MIN

MAX

(A)

Figure 6: Real examples for the explanations in Fig. 5. (A) shows content discontinuity introduced by rotation. (B) shows
motion discontinuity, where the encoder fails to find reference blocks and the number of intra-coded blocks increases.

ized clip size

S̃Ω = 100× SΩ − SΩmin

SΩmax − SΩmin

(3)

for every Ω and cluster the size distribution of each clip
using K-Means. Each cluster is represented by the nearest
neighbor to the center.

Fig. 3 shows the results. We can see Ωmin lies on or near
θ=0◦ in half the clusters. In general, this corresponds to ori-
enting the cubemap perpendicular to the ground such that
the top face captures the sky and the bottom face captures
the camera and ground. See Fig. 2 for example. The top and
bottom faces tend to have smaller motion within the faces
in these orientations, and the compression rate is higher be-
cause the problem reduces from compressing six dynamic
pictures to four dynamic pictures plus two near static pic-
tures. However, θ=0◦ is not best for every clip, and there
are multiple modes visible in Fig. 3. For example, the min-
imum size occurs at θ=ϕ=45◦ in Fig. 4. Therefore, again
we see it is important to allow two-dimensional rotations.

Reasons for the compression rate difference Why does
the video size depend on Ω? The fundamental reason is that
all the video compression formats are designed for perspec-
tive images and heavily exploit the image properties. The
unwrapped cubemap format is a perspective image only lo-
cally within each of the six faces. The cubemap projection
introduces perspective distortion near the face boundaries
and artificial discontinuities across face boundaries, both of
which make the cubemap significantly different from per-

spective images and can degrade the compression rate. Be-
cause the degradation is content dependent, different orien-
tations result in different compression rates.

More specifically, the reasons for the compression rate
difference can be divided into two parts. From the static
image perspective, artificial edges may be introduced if con-
tinuous patterns fall on the face boundary. See Fig. 5 (a)
and Fig. 6 for examples. The edges introduce additional
high frequency signals and reduce the efficiency of trans-
form coding. Furthermore, the single continuous patch is
divided into multiple patches that are dispersed to multiple
locations in the image. This reduces the spatial redundancy
and breaks the intra-prediction.

From the dynamic video perspective, the face bound-
aries can introduce abrupt jumps in the motion. If an ob-
ject moves across the boundary, it may be teleported to a
distant location on the image. See Fig. 5 (b) and Fig. 6
for examples. The abrupt motion makes it difficult to find
the reference block during encoding, and the encoder may
fall back to intra-coding mode which is much less efficient.
Even if the encoder successfully finds the reference block,
the motion vectors would have very different magnitude and
direction compared to those within the faces, which breaks
intra-prediction. Finally, because the perspective distortion
is location dependent, the same pattern will be distorted dif-
ferently when it falls on different faces, and the residual of
inter-frame prediction may increase. The analysis applies
similarly across the three formats, which makes sense, since
their compression strategies are broadly similar.

Encoders H264 / H265 H264 / VP9 H265 / VP9

Avg. ρ 0.8757 0.9533 0.8423

Table 2: The correlation of relative video sizes across video
formats. The high correlation indicates that the dependency
between video size and Ω is common across formats.

Video size correlation across formats Next we verify the
correlation between video size and orientation is not an ar-
tifact of the specific video codec. We compare the size re-
duction that can be achieved through rotation using different
encoders (Table 1). The result clearly shows that the depen-
dency between the compression rate and Ω is a common
property across current video compression formats. This is
further verified by the high correlation between the relative
video size, i.e.

S′
Ω = SΩ − S0,0, (4)

of different encoders in Table 2.

4. Approach
In this section, we introduce our approach for improving

360◦ video compression rates by predicting the most com-
pressible isomer. Given a 360◦ video clip, our goal is to
identify Ωmin to minimize the video size. A naive solution
is to render and compress the video for all possible Ω and
compare their sizes. While this guarantees the optimal so-
lution, it introduces a significant computational overhead,
i.e., 360 times more computation than encoding the video
with a fixed Ω. For example, it takes more than 15 seconds
to encode one single clip using the default x264 encoder
on a 48 core machine with Intel Xeon E5-2697 processor,
which corresponds to 15s × 360 ≈ 1.5 hours for one clip
if we try to enumerate Ω. Moreover, the computational cost
will grow quadratically if we allow more fine-grained con-
trol. Therefore, enumerating Ω is not practical.

Instead, we propose to predict Ωmin from the raw in-
put without rerendering the video. Given the input video
in cubemap format, we extract both motion and appearance
features (details below) and feed them into a CNN that pre-
dicts the video size SΩ for each Ω. The final prediction of
the model is

Ωmin = argmin
Ω

SΩ. (5)

See Fig. 7. The computational cost remains roughly the
same as transcoding the video because the prediction takes
less than a second, which is orders of magnitude shorter
than encoding the video and thus negligible. Since no pre-
dictor will generalize perfectly, there is a chance of decreas-
ing the compression rate in some cases. However, exper-
imental results show that it yields very good results and
strikes a balance between computation time and video size.

Because our goal is to find Ωmin for a given video clip,
exact prediction of SΩ is not necessary. Instead, the model
predicts the relative video size S′

Ω from Eq. 4. The value S′
Ω

is scaled to [0, 100] over the entire dataset to facilitate train-
ing. We treat it as a regression problem and learn a model
that predicts 361 real values using L2 loss as the objective
function. Note that we do not predict SΩ in Eq. 3 because
it would amplify the loss for clips with smaller size, which
may be harmful for the absolute size reduction.

We first divide the input video into 4 equal length seg-
ments. For each segment, we extract the appearance and
motion features for each frame and average them over the
segment. For appearance features, we segment the frame
into regions using SLIC [5] and take the segmentation con-
tour map as feature. The segmentation contour represents
edges in the frame, which imply object boundaries and high
frequency signals that take more bits in video compression.

For motion features, we take the motion vectors directly
from the input video stream encoding, as opposed to com-
puting optical flow. The motion vectors are readily available
in the input and thus this saves computation. Furthermore,
motion vectors provide more direct information about the
encoder. Specifically, we sample one motion vector every 8
pixels and take both the forward and backward motion vec-
tors as the feature. Because each motion vector consists of
both spatial and temporal displacement, this results in a 6-
dimensional feature. For regions without a motion vector,
we simply pad 0 for the input regardless of the encoding
mode. We concatenate the appearance and motion feature
to construct a feature map with depth 7. Because the mo-
tion feature map has lower resolution than the video frame,
we downscale the appearance feature map by 8 to match the
spatial resolution. The input resolution of each face of the
cube map is therefore 960/8 = 160 pixels.

The feature maps for each segment are then fed into a
CNN and concatenated together as the video feature. We
use the VGG architecture [36] except that we increase the
number of input channels in the first convolution layer. Be-
cause fine details are important in video compression, we
use skip connections to combine low level information with
high level features, following models for image segmen-
tation [31]. In particular, we combine the input feature
map and final convolution output as the segment feature af-
ter performing 1x1 convolution to reduce the dimension to
4 and 64 respectively. The video feature is then fed into
a fully-connected layer with 361 outputs as the regression
model. Note that we remove the fully-connected layers in
the VGG architecture to keep the spatial resolution for the
regression model and reduce model size.

Aside from predicting SΩ, in preliminary research we
tried other objective functions such as regression for Ωmin

directly or predicting Ωmin from the 361 possible Ω with
361-way classification, but none of them perform as well as
the proposed approach. Regressing Ωmin often falls back to
predicting (θ, ϕ) = (0, 0) because the distribution is sym-
metric. Treating the problem as 361-way classification has
very poor accuracy, i.e., slightly better than random (≈5%),

T

(A) Divide input

Avg. Motion

Appearance

(B) Extract seg-
ment features

(C) Convolutions
(VGG architecture)

(D) Temporal
Concatenation

Skip connection
−45−30−15 0 15 30 45

φ

−45

−30

−15

0

15

30

45

θ

0
2
4
6
8
10
12
14
16

(E) 1x1 Conv.
+Join Feature

(F) Predict
relative size

arg min

Ω

Figure 7: Our model takes a video clip as input and predicts Ωmin as output. (A) It first divides the video into 4 segments
temporally and (B) extracts appearance and motion features from each segment. (C) It then concatenates the appearance and
motion feature maps and feeds them into a CNN. (D) The model concatenates the outputs of each segment together and joins
the output with the input feature map using skip connections to form the video feature. (F) It then learns a regression model
that predicts the relative video size S′

Ω for all Ω and takes the minimum one as the predicted optimally compressible isomer.

because the number of training data is small and imbal-
anced. We also examined different input features. For mo-
tion features, we tried 3D convolution instead of explicitly
feeding the motion information as input, but 3D convolution
performs 4−30% worse than 2D convolution despite hav-
ing a higher computational cost. For appearance features,
we tried raw pixels with various network architectures but
find that segmentation contours consistently perform better.

5. Experiments
To evaluate our method, we compute the size reduction

it achieves on the 360◦ video dataset introduced in Sec. 3.

Baselines Because we are the first to study how to predict
the cubemap orientation for better compression, we com-
pare our method with the following two heuristics:
• RANDOM — Randomly rotate the cubemap to one of the

361 orientations. This represents the compression rate
when we have no knowledge about the video orientation.

• CENTER — Use the orientation provided by the videog-
rapher. This is a strong prior, usually corresponding to
the direction of the videographer’s gaze or movement and
lying on the horizon of the world coordinate.

Evaluation metrics We compare each method using the
normalized size reduction r̃ = 1−S̃ for each video. Specif-
ically, we compute the largest full-video size by choosing
Ωmax for every clip and sum the clip sizes. Similarly, we
compute the minimum video size. Given the predicted ori-
entation for each clip, we compute the video size by rotating
the cubemap by the predicted orientation. The result indi-
cates the fraction of reduction the method achieves com-
pared to the optimal result. We report results with 4-fold
validation, where each fold contains 20 videos.

Implementation details We initialize the weights using
an ImageNet pre-trained VGG model [36]. For the first
layer, we replicate the weights of the original network to
increase the number of input channels. Weights that are not
in the original model are randomly initialized using Xavier
initialization [16]. We train the model using ADAM [25] for
4,000 iterations with batch size 64 parallelized to 16 GPUs.

H264 HEVC VP9

RANDOM 50.75 51.62 51.20
CENTER 74.35 63.34 72.92

OURS 82.10 79.10 81.55

Table 3: Size reduction of each method. The range is
[0, 100], the higher the better.

0 500 1000 1500
0

10

20

30

40

50

R
ed

uc
tio

n
(M

B
)

H264

0 500 1000 1500 2000

Original size (MB)

0

10

20

30

40

50

60

70
HEVC

0 1000 2000
0

10

20

30

40

50

60

70
VP9

Figure 8: Absolute size reduction (MB) of each video. Each
point represents the input video size vs. size reduction rela-
tive to CENTER achieved by our model.

The base learning rate is initialized to 1.0 × 10−3 and is
decreased by a factor of 10 after 2,000 iterations. We also
apply L2 regularization with the weight set to 5.0 × 10−4

and use dropout for the fully-connected layers with ratio
0.5. For SLIC, we segment each face of the cubemap in-
dependently into 256 superpixels with compactness m=1.
The low compactness value leads to more emphasis on the
color proximity in the superpixels.

5.1. Results

We first examine the size reduction our method achieves.
Table 3 shows the results. Our method performs better than
the baselines in all video compression formats by 7%−16%.
The improvement over the baseline is largest in HEVC,
which indicates that the advantage of our approach will be-
come more significant as HEVC gradually replaces H264.
Interestingly, the CENTER baseline performs particularly
worse in HEVC. The reason is that HEVC allows the en-
coder to achieve good compression rates in more diverse
situations, so the distribution of Ωmin becomes more dis-
persed. The result further shows the value in considering

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

0

20

40

60

80

100

Figure 9: Qualitative examples. The heatmap shows the
normalized reduction, and the overlaid circle shows our pre-
dicted result. The two images are the first and last frame
of the clip rendered in the predicted orientation. Last row
shows a failure example. Best viewed in color.

cubemap orientation during compression as more advanced
video codecs are used. While there remains a 20% room for
improvement compared to the optimal result (as ascertained
by enumerating Ω), our approach is significantly faster and
takes less than 0.3% the computation. We also show the ab-
solute file size reduction for each video in Fig. 8. Because
the video size depends very much on the video content and
length and is hard to compare across examples, we show
the reduction versus the original video size. The size reduc-
tion by our method, though depending on the video content,
is roughly linear to the original video size. Note that the
original videos are encoded with orientation Ω0,0.

Fig. 9 shows example prediction results. Our approach
performs well despite the diversity in the video content and
recording situation. The complexity in the content would
make it hard to design a simple rule-based method to predict
Ωmin (such as analyzing the continuity in Fig. 6); a learning
based method is necessary. The last row shows a failure
case of our method, where the distribution of video size is
multimodal, and the model selects the suboptimal mode.

We next examine whether the model can be transferred
across video formats, e.g. can the model trained on H264
videos improve the compression rate of HEVC videos? Ta-
ble 4 shows the results. Overall, the results show our ap-
proach is capable of generalizing across video formats given
common features. We find that the model trained on H264
is less transferable, while the models trained on HEVC and
VP9 perform fairly well on H264. In particular, the model
trained on HEVC performs the best across all formats. The

H264 HEVC VP9

HEVC VP9 H264 VP9 H264 HEVC

70.82 78.17 85.79 84.61 83.19 75.16

Table 4: Size reduction of our approach. Top row indicates
training source, second row is test sources.

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

10−2

10−1

100

101

(a) Predicted Ωmin (H264).

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

10−2

10−1

100

101

(b) Real Ωmin of H264.

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ
10−2

10−1

100

101

(c) Predicted Ωmin (HEVC).

−45−30−15 0 15 30 45
φ

−45

−30

−15

0

15

30

45

θ

10−2

10−1

100

101

(d) Real Ωmin of HEVC.

Figure 10: Distribution of Ωmin (%). Predictions are on
H264 videos with different training data.

reasons are twofold. First, the models trained on HEVC
and VP9 focus on the appearance feature which is common
across all formats. Second, the models trained on H264 suf-
fer more from overfitting because the distribution of Ωmin

is more concentrated.
The distribution of Ωmin provides further insight into the

advantage of the model trained on HEVC. See Fig. 10. The
predicted Ωmin tend to be more concentrated around θ=0
than the real Ωmin. Because the distribution of Ωmin is
more dispersed in HEVC, so is the prediction of Ωmin by
the model trained on HEVC.

6. Conclusion
This work studies how to improve 360◦ video compres-

sion by selecting a proper orientation for cubemap projec-
tion. Our analysis across 3 popular codecs shows scope for
reducing video sizes by up to 77% through rotation, with
an average of more than 8% over all videos. We propose
an approach that predicts the optimal orientation given the
video in a single orientation. It achieves 82% the compres-
sion rate of the optimal orientation while requiring less than
0.3% of the computation of a non-learned solution (fraction
of a second vs. 1.5 hours per GOP).

Acknowledgement. This research is supported in part by
NSF IIS-1514118, an AWS gift, a Google PhD Fellowship,
and a Google Faculty Research Award. Thanks to Intel for
access to their vLab Machine Learning clusters.

References
[1] https://github.com/facebook/transform360. 4
[2] https://www.videolan.org/developers/x264.html. 4
[3] http://x265.org. 4
[4] https://chromium.googlesource.com/webm/libvpx. 4
[5] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. IEEE transactions on pattern analysis
and machine intelligence, 34(11):2274–2282, 2012. 6

[6] D. N. Adeel Abbas. A novel projection for omni-directional
video. In Proc.SPIE 10396, 2017. 3

[7] E. Alshina, K. Choi, V. Zakharchenko, S. N. Akula,
A. Dsouza, C. Pujara, K. K. Ramkumaar, and A. Singh. Sam-
sung’s response to joint cfe on video compression with capa-
bility beyond hevc (360 category). JVET-G0025, 2017. 2

[8] B. Ayrey and C. Wong. Introducing facebook 360
for gear vr. https://newsroom.fb.com/news/2017/03/
introducing-facebook-360-for-gear-vr/, March 2017. 1

[9] Blu-ray Disc Association. White paper blu-ray disc read-
only format coding constraints on hevc video streams for bd-
rom version 3.0, June 2015. 4

[10] C. Brown. Bringing pixels front and center in
VR video. https://www.blog.google/products/google-vr/
bringing-pixels-front-and-center-vr-video/, March 2017. 1, 3

[11] C.-H. Chang, M.-C. Hu, W.-H. Cheng, and Y.-Y. Chuang.
Rectangling stereographic projection for wide-angle image
visualization. In ICCV, 2013. 2

[12] B. Choi, Y.-K. Wang, and M. M. Hannuksela. Wd on
iso/iec 23000-20 omnidirectional media application format.
ISO/IEC JTC1/SC29/WG11, 2017. 2

[13] M. Coban, G. V. der Auwera, and M. Karczewicz. Qual-
comms response to joint cfe in 360-degree video category.
JVET-G0023, 2017. 2

[14] T. Cohen, M. Geiger, and M. Welling. Convolu-
tional networks for spherical signals. arXiv preprint
arXiv:1709.04893, 2017. 1, 2

[15] A. Gabriel and E. Thomas. Polyphase subsampling applied
to 360-degree video sequences in the context of the joint call
for evidence on video compression. JVET-G0026, 2017. 2

[16] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In AISTATS,
2010. 7

[17] P. Hanhart, X. Xiu, F. Duanmu, Y. He, and Y. Ye. Inter-
digitals response to the 360 video category in joint call for
evidence on video compression with capability beyond hevc.
JVET-G0024, 2017. 2

[18] P. Hansen, P. Corke, W. Boles, and K. Daniilidis. Scale-
invariant features on the sphere. In ICCV, 2007. 2

[19] H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang,
and M. Sun. Deep 360 pilot: Learning a deep agent for pi-
loting through 360◦ sports video. In CVPR, 2017. 1, 2, 3

[20] N. Johnston, D. Vincent, D. Minnen, M. Covell, S. Singh,
T. Chinen, S. J. Hwang, J. Shor, and G. Toderici. Im-
proved lossy image compression with priming and spatially
adaptive bit rates for recurrent networks. arXiv preprint
arXiv:1703.10114, 2017. 3

[21] M. Kamali, A. Banno, J.-C. Bazin, I. S. Kweon, and
K. Ikeuchi. Stabilizing omnidirectional videos using 3d
structure and spherical image warping. In IAPR MVA, 2011.
1, 2

[22] S. Kasahara, S. Nagai, and J. Rekimoto. First person om-
nidirectional video: System design and implications for im-
mersive experience. In ACM TVX, 2015. 1, 2

[23] R. Khasanova and P. Frossard. Graph-based classification of
omnidirectional images. arXiv preprint arXiv:1707.08301,
2017. 1, 2

[24] Y. Kim, C.-R. Lee, D.-Y. Cho, Y. Kwon, H.-J. Choi, and K.-J.
Yoon. Automatic content-aware projection for 360◦ videos.
In ICCV, 2017. 2

[25] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. In ICLR, 2015. 7

[26] J. Kopf. 360◦ video stabilization. ACM Transactions on
Graphics (TOG), 35(6):195, 2016. 1, 2

[27] E. Kuzyakov and D. Pio. Under the hood: Building
360 video. https://code.facebook.com/posts/1638767863078802/
under-the-hood-building-360-video/, October 2015. 1, 3

[28] E. Kuzyakov and D. Pio. Next-generation
video encoding techniques for 360 video and
VR. https://code.facebook.com/posts/1126354007399553/
next-generation-video-encoding-techniques-for-360-video-and-vr/,
January 2016. 1, 3

[29] W.-S. Lai, Y. Huang, N. Joshi, C. Buehler, M.-H. Yang, and
S. B. Kang. Semantic-driven generation of hyperlapse from
360◦ video. IEEE Transactions on Visualization and Com-
puter Graphics, PP(99):1–1, 2017. 1, 2

[30] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning con-
volutional networks for content-weighted image compres-
sion. arXiv preprint arXiv:1703.10553, 2017. 3

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In CVPR, 2015. 6

[32] Moving Picture Experts Group. Point cloud compression
mpeg evaluates responses to call for proposal and kicks off
its technical work [press release]. https://mpeg.chiariglione.org/
meetings/120, October 2017. 1, 3

[33] K. R. Rao, D. N. Kim, and J. J. Hwang. Video Coding Stan-
dards: AVS China, H.264/MPEG-4 PART 10, HEVC, VP6,
DIRAC and VC-1. Springer Netherlands, 2014. 3

[34] O. Rippel and L. Bourdev. Real-time adaptive image com-
pression. In ICML, 2017. 3

[35] S. Santurkar, D. Budden, and N. Shavit. Generative com-
pression. arXiv preprint arXiv:1703.01467, 2017. 3

[36] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.
6, 7

[37] J. P. Snyder. Map projections–A working manual, volume
1395. US Government Printing Office, 1987. 2

[38] K. K. Sreedhar, A. Aminlou, M. M. Hannuksela, and
M. Gabbouj. Viewport-adaptive encoding and streaming of
360-degree video for virtual reality applications. In IEEE
ISM, 2016. 2

[39] Y.-C. Su and K. Grauman. Learning spherical convolution
for fast features from 360◦ imagery. In NIPS, 2017. 1, 2

[40] Y.-C. Su and K. Grauman. Making 360◦ video watchable in
2d: Learning videography for click free viewing. In CVPR,
2017. 1, 2

https://github.com/facebook/transform360
https://www.videolan.org/developers/x264.html
http://x265.org
https://chromium.googlesource.com/webm/libvpx
https://newsroom.fb.com/news/2017/03/introducing-facebook-360-for-gear-vr/
https://newsroom.fb.com/news/2017/03/introducing-facebook-360-for-gear-vr/
https://www.blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://www.blog.google/products/google-vr/bringing-pixels-front-and-center-vr-video/
https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video/
https://code.facebook.com/posts/1638767863078802/under-the-hood-building-360-video/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://mpeg.chiariglione.org/meetings/120
https://mpeg.chiariglione.org/meetings/120

[41] Y.-C. Su, D. Jayaraman, and K. Grauman. Pano2vid: Auto-
matic cinematography for watching 360◦ videos. In ACCV,
2016. 1, 2, 3

[42] Y. Snchez, R. Skupin, and T. Schierl. Compressed domain
video processing for tile based panoramic streaming using
hevc. In ICIP, 2015. 2

[43] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent,
D. Minnen, S. Baluja, M. Covell, and R. Sukthankar. Vari-
able rate image compression with recurrent neural networks.
In ICLR, 2016. 3

[44] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Min-
nen, J. Shor, and M. Covell. Full resolution image compres-
sion with recurrent neural networks. In CVPR, 2017. 3

[45] V. Ukonaho. Global 360 camera sales fore-
cast by segment: 2016 to 2022. https:
//www.strategyanalytics.com/access-services/devices/
mobile-phones/emerging-devices/market-data/report-detail/
global-360-camera-sales-forecast-by-segment-2016-to-2022,
March 2017. 1

[46] M. Wien, V. Baroncini, J. Boyce, A. Segall, and T. Suzuki.
Joint call for evidence on video compression with capability
beyond hevc. JVET-F1002, 2017. 2

[47] L. Zelnik-Manor, G. Peters, and P. Perona. Squaring the cir-
cle in panoramas. In ICCV, 2005. 2

https://www.strategyanalytics.com/access-services/devices/mobile-phones/emerging-devices/market-data/report-detail/global-360-camera-sales-forecast-by-segment-2016-to-2022
https://www.strategyanalytics.com/access-services/devices/mobile-phones/emerging-devices/market-data/report-detail/global-360-camera-sales-forecast-by-segment-2016-to-2022
https://www.strategyanalytics.com/access-services/devices/mobile-phones/emerging-devices/market-data/report-detail/global-360-camera-sales-forecast-by-segment-2016-to-2022
https://www.strategyanalytics.com/access-services/devices/mobile-phones/emerging-devices/market-data/report-detail/global-360-camera-sales-forecast-by-segment-2016-to-2022

