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Abstract

Attributes are visual concepts that can be detected by
machines, understood by humans, and shared across cat-
egories. They are particularly useful for fine-grained do-
mains where categories are closely related to one other (e.g.
bird species recognition). In such scenarios, relevant at-
tributes are often local (e.g. “white belly”), but the ques-
tion of how to choose these local attributes remains largely
unexplored. In this paper, we propose an interactive ap-
proach that discovers local attributes that are both discrim-
inative and semantically meaningful from image datasets
annotated only with fine-grained category labels and object
bounding boxes. Our approach uses a latent conditional
random field model to discover candidate attributes that are
detectable and discriminative, and then employs a recom-
mender system that selects attributes likely to be seman-
tically meaningful. Human interaction is used to provide
semantic names for the discovered attributes. We demon-
strate our method on two challenging datasets, Caltech-
UCSD Birds-200-2011 and Leeds Butterflies, and find that
our discovered attributes outperform those generated by
traditional approaches.

1. Introduction
Most image classification and object recognition ap-

proaches learn statistical models of low-level visual fea-
tures like SIFT and HOG. While these approaches give
state-of-the-art results in many settings, such low-level fea-
tures and statistical classification models are meaningless
to humans, thus limiting the ability of humans to under-
stand object models or to easily contribute domain knowl-
edge to recognition systems. Recent work has introduced
visual attributes as intermediate-level features that are both
machine-detectable and semantically meaningful (e.g. [2, 3,
6, 9, 11, 14, 27]). Attributes help to expose the details of an
object model in a way that is accessible to humans: in bird
species recognition, for example, they can explicitly model
that a cardinal has a “red-orange beak,” “red body,” “sharp

red stripes on wings orange stripes on wings
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Figure 1. Sample local and semantically meaningful attributes au-
tomatically discovered by our approach. The names of the at-
tributes are provided by the user-in-the-loop.

crown,” “black face,” etc. Attributes are particularly attrac-
tive for fine-grained domains like animal species where the
categories are closely related, so that a common attribute
vocabulary exists across categories. Attributes also enable
innovative applications like zero-shot learning [15, 18] and
image-to-text generation [6, 18].

So where do these attributes come from? Most existing
work uses hand-generated sets of attributes (e.g. [3, 14]), but
creating these vocabularies is time-consuming and often re-
quires a domain expert (e.g. an ornithologist familiar with
the salient parts of a bird). Moreover, while these attributes
are guaranteed to be human-understandable (which suffices
for human-in-the-loop classification applications [3]), they
may not be machine-detectable and hence may not work
well in automatic systems. Some recent work has discov-
ered image-level attributes (e.g. “outdoors” or “urban”) au-
tomatically [17], but such global attributes are of limited use
for fine-grained object classification in which subtle differ-
ences between object appearances are important.

Discovering local attributes (like those illustrated in Fig-
ure 1) is significantly harder because a local attribute might
correspond to features at different unknown positions and
scales across images. Automatic techniques to do this have
generally either found attributes that are discriminative or
that are meaningful to humans, but not both. Finding dis-
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criminative local regions (e.g. [27]) works well for attaining
good image classification performance, but the regions may
not be semantically meaningful and thus not useful for ap-
plications like zero-shot learning and automatic image de-
scription. On the other hand, mining text can produce at-
tribute vocabularies that are meaningful (e.g. [2]) but not
necessarily complete, discriminative, or detectable.

In this paper, we propose an interactive system that
discovers discriminative local attributes that are both
machine-detectable and human-understandable from an im-
age dataset annotated with fine-grained category labels and
object bounding boxes. At each iteration in the discovery
process, we identify two categories that are most confusable
given the attributes that have been discovered so far; we call
these two categories an active split. We use a latent con-
ditional random field model to automatically discover can-
didate local attributes that separate these two classes. For
these candidates, we use a recommender system to iden-
tify those that are likely to be semantically meaningful to
a human, and then present them to a human user to collect
attribute names. Candidates for which the user can give a
name are added to the pool of attributes, while unnamed
ones are ignored. In either case, the recommender sys-
tem’s model of semantic meaningfulness is updated using
the user’s response. Once the discovery process has built a
vocabulary of local attributes, these attributes are detected
in new images and used for classification.

To the best of our knowledge, ours is the first sys-
tem to discover vocabularies of local attributes that are
both machine-detectable and human-understandable, and
that yield good discriminative power on fine-grained recog-
nition tasks. We demonstrate our approach through sys-
tematic experiments on two challenging datasets: Caltech-
UCSD Birds-200-2011 [22] and Leeds Butterflies [24]. We
find on these datasets that our discovered local attributes
outperform those generated by human experts and by other
strong baselines, on fine-grained image classification tasks.

2. Related work
Visual attributes for classification and recognition have

received significant attention over the last few years. Much
of this work assumes that the attribute vocabulary is defined
ahead of time by a human expert [3, 14, 15, 25]. An ex-
ception is the work of Parikh and Grauman [17] which pro-
poses a system that discovers the vocabulary of attributes.
Their system iteratively selects discriminative hyperplanes
between two sets of images (corresponding to two different
subsets of image classes) using global image features (e.g.
color, GIST); it would be difficult to apply this approach to
find local attributes because of the exponential number of
possible local regions in each image.

A few papers have studied how to discover local at-
tributes. Berg et al. [2] identify attributes by mining text

and images from the web. Their approach is able to lo-
calize attributes and rank them based on visual character-
istics, but these attributes are not necessarily discrimina-
tive and thus may not perform well for image classifica-
tion; they also require a corpus of text and images, while
we just need images. Wang and Forsyth [23] present a mul-
tiple instance learning framework for both local attributes
and object classes, but they assume attribute labels for each
image are given. In contrast, our approach does not require
attribute labels; we discover these attributes automatically.

Related to our work on local attribute selection is the ex-
tensive literature on learning part-based object models for
recognition (e.g. [7, 8, 26]). These learning techniques
usually look for highly distinctive parts – regions that are
common within an object category but rare outside of it –
and they make no attempt to ensure that the parts of the
model actually correspond to meaningful semantic parts of
an object. Local attribute discovery is similar in that we too
seek distinctive image regions, but we would like these re-
gions to be shared across categories and to have semantic
meaning. Note that while most semantically meaningful lo-
cal attributes are likely to correspond to semantic parts of
objects, we view attributes as more general: an attribute is
potentially any visual property that humans can precisely
communicate or understand, even if it does not correspond
to a traditionally-defined object part. For example “red-dot
in center of wings” is a valid local attribute, even though
there is not a single butterfly part that corresponds to it.

Finally, our work is also related to the literature on au-
tomatic object discovery and unsupervised learning of ob-
ject models [4, 12, 16]. However, these methods aim to
find objects that are common across images, while we are
interested in finding discriminative local regions that will
maximize classification performance.

3. Approach
We first consider the problem of finding discriminative

and machine-detectable visual attributes in a set of training
images. We then describe a recommender system that finds
candidates that are likely to be human-understandable and
presents them to users for human verification and naming.

3.1. Latent CRF model formulation

We assume that each image in the training set has been
annotated with a class label (e.g. species of bird) and ob-
ject bounding box similar to [24, 27],1 but that the set of
possible attributes and the attribute labels for each image
are unknown. We run a hierarchical segmentation algo-
rithm on the images to produce regions at different scales,
and assume that any attribute of interest corresponds to at
most one region in each image. This assumption reduces the

1[24] in fact requires the user to interactively segment the object out.



computational complexity and is reasonable because the hi-
erarchical segmentation gives regions at many scales.

Formally, we are given a set of annotated training images
I = (I1, . . . , IM ), with each exemplar Ii = (Ii, yi) con-
sisting of an image Ii and a corresponding class label yi.
For now we assume a binary class label, yi ∈ {+1,−1};
we will generalize this to multiple classes in Section 3.4.
Each image Ii consists of a set of overlapping multi-scale
regions produced by the hierarchical segmentation. To find
a discriminative local attribute for these images, we look for
regions in positive images, one per image, that are similar to
one another (in terms of appearance, scale and location) but
not similar to regions in negative images. We formulate this
task as an inference problem on a latent conditional random
field (L-CRF) [19], the parameters of which we learn via a
discriminative max-margin framework in the next section.

First consider finding a single attribute k for the training
set I. For each image we want to select a single region lki ∈
Ii such that the selected regions in the positive images have
similar appearances to one another, but are different from
those on the negative side. We denote the labeling for the
entire training set as Lk = (lk1 , . . . , l

k
M ), and then formulate

this task in terms of minimizing an energy function [5],

E(Lk|I) =

M∑
i=1

φk(lki |Ii) +

M∑
i=1

M∑
j=1

ψk(lki , l
k
j |Ii, Ij), (1)

where φk(lki |Ii) measures the preference of a discrimina-
tive classifier trained on the selected regions to predict the
category labels, while ψk(lki , l

k
j |Ii, Ij) measures pairwise

similarities and differences between the selected regions. In
particular, we define the unary term as,

φk(lki |Ii) = −yiwTk · f(lki ) (2)

where f(lki ) denotes a vector of visual features for region
lki and wk is a weight vector. We will use several different
types of visual features, as discussed in Section 4; for now
we just assume that there are d feature types that are con-
catenated together into a single n-dimensional vector. The
weights are learned as an SVM on the latent regions from
positive and negative images (discussed in Section 3.2).

The pairwise consistency term is given by,

ψk(lki , l
k
j |Ii, Ij) =


~α+
k ·D(f(lki ), f(lkj )) + β+

k if yi, yj = +1
β0
k if yi, yj = −1

~α−k ·D(f(lki ), f(lkj )) + β−k otherwise,
(3)

where D(·, ·) is a function Rn × Rn → Rd that given two
feature vectors computes a distance for each feature type,
~α−k and ~α+

k are weight vectors, and ~βk = (β−k , β+
k , β0

k)
are constant bias terms (all learned in Section 3.2). This
pairwise energy function encourages similarity among re-
gions in positive images and dissimilarity between positive

Latent RegionImageClass Label

y=−1y=+1

Figure 2. Our L-CRF model for one active split with K = 2 at-
tributes, where white circles represent latent region variables (lki ),
shaded circles represent observed image features (Ii), and squares
represent observed image class labels (yi).

and negative regions. We allow negative regions to be dif-
ferent from one another since they serve only as negative
exemplars; thus we use a constant β0

k as the edge potential
between negative images in lieu of a similarity constraint.

The energy function presented in equation (1) defines
a first-order Conditional Random Field (CRF) graphical
model. Each vertex of the model corresponds to an im-
age, and the inference problem involves choosing one of
the regions of each image to be part of the attribute. Edges
between nodes reflect pairwise constraints across images,
where here we use a fully-connected graphical model such
that there is a constraint between every image pair.

The single attribute candidate identified by the L-CRF
may not necessarily be semantically meaningful, but there
may be other candidates that can discriminate between the
two categories that are semantically meaningful. To in-
crease the chances of finding these, we wish to identify mul-
tiple candidate attributes. We generalize the above approach
to select K≥2 attributes for a given split by introducing an
energy function that sums equation (1) over allK attributes.
We encourage the CRF to find a set of diverse attributes by
adding an additional term that discourages spatial overlap
among selected regions,

E(L|I) =

K∑
k=1

E(Lk|I) +

M∑
i=1

∑
k,k′

δ(lki , l
k′

i |Ii), (4)

where L = (L1, . . . , LK) denotes the latent region vari-
ables, δ measures spatial overlap between two regions,

δ(lki , l
k′

i |Ii) = σ · area(lki ∩ lk
′

i )

area(lki ∪ lk
′
i )
, (5)

and σ ≥ 0 is a scalar which is also learned in the next sec-
tion. This term is needed because we want a diverse set
of candidates; without this constraint, the CRF may find a



Figure 3. Sample latent region evolution on an active split, across
three iterations (top to bottom). The latent region selected by the
CRF on each positive image in each iteration is shown. These
variables converged after three iterations to roughly correspond to
the bird’s red head. Best viewed on-screen and in color.

set of very similar candidates because those are most dis-
criminative. Intuitively, δ(·) penalizes the total amount of
overlap between regions selected as attributes. Minimiz-
ing the energy in equation (4) also corresponds to an infer-
ence problem on a CRF; one can visualize the CRF as a
three-dimensional graph withK layers, each corresponding
to a single attribute, with the edges in each layer enforc-
ing the pairwise consistency constraints ψ among training
images and the edges between layers enforcing the anti-
overlap constraints δ. The vertices within each layer form
a fully-connected subgraph, as do the vertices across layers
corresponding to the same image. Figure 2 illustrates the
CRF for the case of two attributes.

3.2. Training

There are two sets of model parameters that must be
learned: the weight vectors wk in the unary potential of the
CRF, and the parameters of the pairwise potentials ψ and δ
which we can concatenate into a single vector ~α,

~α = (~α−1 , . . . , ~α
−
K , ~α

+
1 , . . . , ~α

+
K ,
~β1, . . . , ~βK , σ).

We could easily learn these parameters if we knew the
correct values for the latent variables L, and we could per-
form CRF inference to estimate the values of the latent
variables if we knew the parameters. To solve for both,
we take an iterative approach in the style of Expectation-
Maximization. We initialize the latent variables L to ran-
dom values. We then estimate wk in equation (2) for each
k by learning a linear SVM on the regions in Lk, using
regions in positive images as positive exemplars and re-
gions in negative images as negative exemplars. Holding
wk fixed, we then estimate the pairwise parameters ~α via a
standard latent structural SVM (LSSVM) framework,

min
~α
λ‖~α‖2 + ξ, such that ∀l̃i ∈ Ii, ∀ỹi ∈ {+1,−1}, (6)

E({l̃i}|{(Ii, ỹi)})−min
L∗

E(L∗|I) ≥ ∆({ỹi}, {yi})− ξ

where ξ ≥ 0 is a slack variable and the loss function is

defined as the number of mislabeled images,

∆({ỹi}, {yi}) =
∑
i

1ỹi 6=yi .

We solve this quadratic programming problem using
CVX [10]. Since there are an exponential number of
constraints in equation (6), we follow existing work on
structured SVMs [21] and find the most violated con-
straints, in this case using tree-reweighted message passing
(TRW) [13] on the CRF. Once the CRF parameters have
been learned, we hold them fixed and estimate new val-
ues for the latent variables L by performing inference using
TRW. This process of alternating between estimating CRF
parameters and latent variable values usually takes 3 to 5 it-
erations to converge (Figure 3). In our experiments we use
K = 5. This takes about 3-5 minutes on a 3.0GHz server.

The above formulation was inspired by Multiple Instance
CRFs [4, 5], but with some important differences (besides
application domain). Our formulation is a standard latent
structural SVM in which we minimize classification error,
whereas the loss function in [5] is based on incorrect in-
stance selections. Their unary potential is pre-trained in-
stead of being updated iteratively. Finally, our model si-
multaneously discovers multiple discriminative candidate
attributes (instances).

3.3. Attribute detection

To detect attributes in a new image It, we simply add It
to the L-CRF as an additional node, fixing the values of the
latent variables for the training image nodes. We perform
CRF inference on this new graph to estimate both the class
label ŷt and its corresponding region label l̂t ∈ It. If ŷt =
1, then we report a successful detection and return l̂t, and
otherwise report that It does not have this attribute. Note
that this inference is exact and can be done in linear time.

3.4. Active attribute discovery

Having shown how to automatically discover attributes
for images labeled with one of two classes (positive or nega-
tive), we now describe how to discover attributes in a dataset
with multiple category labels, yi ∈ {1, . . . , N}. We would
like to discover an attribute vocabulary that collectively dis-
criminates well among all categories. It is intractable to
consider all O(N2) possible binary splits of the labels, so
we use an iterative approach with a greedy heuristic to try
to actively prioritize the order in which splits are consid-
ered. At each iteration, we identify the two categories that
are most similar in terms of the presence and absence of
attributes discovered so far. We use these two categories
to define an active split, and find a set of discriminative at-
tributes for this split using the procedure above. We then
add these to our attribute set, and repeat the process.



3.5. Identifying semantic attributes

The approach we described in previous sections is able
to discover K candidate discriminative local attributes for
each active split, but not all of these will be meaningful at a
semantic level. We now describe how to introduce a mini-
mal amount of human feedback at each iteration of the dis-
covery process in order to identify candidates that are dis-
criminative and meaningful. Of the K candidates, we first
identify the candidate that is most discriminative – i.e. that
increases the performance of a nearest neighbor classifier
the most on held out validation data. We present this candi-
date to a human user by displaying a subset of the positive
training images from the corresponding active split marked
with the hypothesized attribute regions determined by the L-
CRF (see Figure 8). If the user finds the candidate meaning-
ful (and thus provides it with a name), it is added to our vo-
cabulary of attributes. If not, that candidate is rejected, and
we select the second most discriminative candidate in our
pool of K candidates. If none of the candidates is judged
to be meaningful, no attribute is added to our pool, and we
identify the second most confusing pair of categories as our
next active split.

In order to reduce user response time we propose an at-
tribute recommender system that automatically prioritizes
candidates before presenting them to a user. It uses past user
feedback to predict whether the user is likely to find a new
candidate attribute meaningful. Our recommender system
is based on the hypothesis that users judge the meaningful-
ness of an attribute by whether it is located on consistent
parts of the object across the positive instances (e.g. if the
regions in the images correspond to the same nameable part
of a bird).

We use a simple approach to measure the spatial consis-
tency of an attribute with respect to the object (illustrated
in Figure 4). At each active split, we train our attribute
recommendation system using all attribute candidates that
have been presented to human users so far, with accepted
ones as positive exemplars and rejected ones as negative
exemplars. Note that the L-CRF model (Section 3.1) can
also encourage spatial consistency among training images
(as we will see in Section 4); however those constraints
are only pairwise, whereas the features here are higher-
order statistics capturing the set of regions as a whole. Our
recommender system is related to the nameability model
of [17], but that model was restricted to global image-level
attributes, whereas we model whether a group of local re-
gions are likely to be deemed consistent and hence mean-
ingful by a human.

4. Experiments

We now test our proposed approach to local attribute dis-
covery. We use data from two recent datasets with fine-

Attribute 
Recommender

Figure 4. Illustration of the recommender system. A background
mask is estimated for each image (top row, blue) using Grab-
Cut [20]. The foreground mask is divided into a 2 × 2 grid. For
each attribute region in the positive images (top row, dark red), we
measure its spatial overlap with each grid cell shown in the sec-
ond row, where degree of overlap is represented by colors ranging
from dark blue (no overlap) to dark red (high overlap). Averag-
ing these features across all positive images in the split (third row)
gives a representation for the candidate attribute. We add two ex-
tra dimensions containing the mean and standard deviation of the
areas of the selected regions, creating a 6-D feature vector to train
a classifier. This is a positive exemplar if the candidate is deemed
meaningful by the user, and negative otherwise.

grained category labels: a subset of the Caltech-UCSD
Birds-200-2011 (CUB) [22] dataset containing about 1,500
images of 25 categories of birds, and the Leeds Butterfly
(LB) [24] dataset, which contains 832 images from 10 cat-
egories of butterflies. We apply a hierarchical segmentation
algorithm [1] on each image to generate regions, and fil-
ter out background regions by applying GrabCut [20] using
the ground truth bounding boxes provided by the datasets
(for LB, using a bounding box around the GT segmenta-
tion mask in order to be consistent with CUB). Most images
contain about 100− 150 such regions.

For the region appearance features f(·) in equations (2)
and (3), we combine a color feature (color histogram with
8 bins per RGB channel), a contour feature (gPb [1]), a size
feature (region area and boundary length), a shape feature
(an 8×8 subsampled binary mask), and spatial location (ab-
solute pixel location of the centroid). For the distance func-
tion D(·, ·) in equation (3), we compute χ2 distances for
the color, contour, size, and shape features, and Euclidean
distance for the spatial location feature. During learning,
we constrain the weights of ~α+

k and ~α−k corresponding to
the spatial location feature to be positive to encourage can-
didates to appear at consistent locations. The weights in
~α+
k and ~α−k corresponding to other feature types are con-

strained to be nonnegative and nonpositive, respectively, to
encourage visual similarity among regions on the positive
side of an active split and dissimilarity for regions on oppo-
site sides. The bias terms ~βk are not constrained.

Exhaustive data collection for all 200 categories in the



CUB birds dataset is not feasible because it would require
about a million user responses. So we conduct system-
atic experiments on three subsets of CUB: ten randomly-
selected categories, the ten hardest categories (defined as
the 10 categories for which a linear SVM classifier using
global color and gist features exhibits the worst classifica-
tion performance), and five categories consisting of differ-
ent species of warblers (to test performance on very fine-
grained category differences). Each dataset is split into
training, validation, and testing subsets. For CUB these
subsets are one-half, one-quarter, and one-quarter of the im-
ages, respectively, while for LB each subset is one-third.

We use Amazon’s Mechanical Turk to run our human in-
teraction experiments. For each dataset, we generate an ex-
haustive list of all possible active splits, and use an “offline”
collection approach [17] to conduct systematic experiments
using data from real users without needing a live user-in-
the-loop. We present attribute visualizations by superim-
posing on each latent region a “spotlight” consisting of a
2-D Gaussian whose mean is the region centroid and whose
standard deviation is proportional to its size (and including
a red outline for the butterfly images to enhance contrast).
We do this to “blur” the precise boundaries of the selected
regions, since they are an artifact of the choice of segmen-
tation algorithm and are not important. We present each
candidate attribute to 10 subjects, each of whom is asked to
name the highlighted region (e.g. belly) and give a descrip-
tive word (e.g. white). See Figure 8. We also ask the sub-
jects to rate their confidence on a scale from 1 (“no idea”)
to 4 (“very confident”); candidates with mean score above
3 across users are declared to be semantically meaningful.

4.1. Attribute-based image classification

We now use our discovered attributes for image classifi-
cation. We detect attributes in validation images and learn
linear SVM and nearest-neighbor classifiers, and then de-
tect attributes and measure performance on the test subset.
We represent each image as a binary feature vector indicat-
ing which attributes were detected. Each category is repre-
sented as the average feature vector of its training images.
The nearest-neighbor classifier works by assigning the test
image to the category with the closest feature vector (similar
to [15]). The SVM classifier is trained directly on the above
binary features using cross-validation to choose parameters.

Figure 5 presents classification results on CUB birds
and LB butterflies, comparing the attribute vocabularies
produced by our Proposed technique with two baselines
that are representative of existing approaches in the litera-
ture. These results do not include the recommender system;
we evaluate that separately. Hand-listed uses the expert-
generated attributes provided with the datasets. These are
guaranteed to be semantically meaningful but may not be
discriminative. Discriminative only, at the other extreme,

Figure 7. Examples of automatic text generation.

greedily finds the most discriminative candidates and hopes
for them to be semantic. At each iteration (i.e. active
split) among K candidates, it picks the one that provides
the biggest boost in classification performance on a held-out
validation set. Candidates that are not semantic (and hence
not attributes) are dropped in a post-process. As reference,
we also show performance if all discriminative candidates
are used (semantic or not). This Upper bound performance
depicts the sacrifice in performance one makes in return for
semantically meaningful attributes.

We see in Figure 5 that our proposed method performs
significantly better than either the hand-listed attributes or
discriminative only baselines. These conclusions are stable
across all of the datasets and across both SVM and near-
est neighbor classifiers. Hand-listed can be viewed as a
semantic-only baseline (since the human experts likely ig-
nored machine-detectability while selecting the attributes)
and discriminative only can be thought of as focusing only
on discriminative power and then addressing semantics
after-the-fact. Our proposed approach that balances both
these aspects performs better than either one.

We also evaluate our recommender system as shown in
Figure 6. We see that using the recommender allows us
to gather more attributes and achieve higher accuracy for
a fixed number of user iterations. The recommender thus
allows our system to reduce the human effort involved in
the discovery process, without sacrificing discriminability.

4.2. Image-to-text Generation

Through the interaction with users, our process gener-
ates names for each of our discovered attributes; Figure 8
shows some examples. We can use these names to produce
textual annotations for unseen images. We list the name of
the attribute with maximum detection score among all can-
didates detected on the detected region. Sample annotation
results are shown in Figure 7 using the system trained on
the 10 random categories subset of the CUB birds dataset.
Note that some of these images belong to categories that
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Figure 5. Image classification performance on four datasets with SVM and nearest neighbor (nn) classifiers, and using four different
attribute discovery strategies: attributes selected by a purely discriminative criterion (Upper bound), a purely discriminative criterion from
which non-meaningful candidates are removed by post-processing (Discriminative only), attributes produced by a human expert (Hand-
listed), and our proposed approach which includes human interaction (Proposed). Classification statistics are averaged over 10 trials. The
LB dataset does not include ground truth attributes so we do not evaluate hand-listed attributes on this dataset.
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Figure 6. Classification performance of the Proposed system with and without using the recommender.

our system has never seen before and were not part of the
discovery process at all. Being able to meaningfully anno-
tate unseen images demonstrates the ability of our system
to find human-understandable and machine-detectable at-
tributes that can be shared across categories.

We can use the fact that several of the attribute names
provided by our users match the hand-selected attribute
names given in the CUB dataset to evaluate the detection
accuracy of our attributes.2 Some attributes that have high
accuracy include blue wing (71.2%), red eye (83.3%), yel-
low belly (72.5%), red forehead (75.7%), and white nape
(71.7%). Others are less accurate: spotted wing (67.2%),
orange leg (60.3%), white crown (61.7%). In computing
these accuracies, we use all positive examples that have the
attribute, and randomly sample the same number of nega-
tive examples. We also observe that our approach is able to

2The hand-selected annotations are not used in our discovery process;
we use them only as ground-truth for measuring detection accuracy.

discover some interesting attributes that were not provided
in the hand-selected annotations, including “sharp bill”, and
“long/thin leg.”

5. Conclusion

We have presented a novel approach for discovering lo-
calized attributes for fine-grained recognition tasks. Our
system generates local attributes that are both discrimina-
tive and human understandable, while keeping human ef-
fort to a minimum. Our approach intelligently selects active
splits among training images, looking for the most discrim-
inative local information. Involving a human in the loop, it
identifies semantically meaningful attributes. We propose a
recommender system that prioritizes likely to be meaning-
ful candidate attributes, thus saving user time. Results on
different datasets show the advantages of our novel local at-
tribute discovery model as compared to existing approaches
to determining an attribute vocabulary. In future work, we
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Figure 8. Some local attributes discovered by our approach, along with the semantic attribute names provided by users (where font size is
proportional to number of users reporting that name), for (a) CUB birds, and (b) LB butterflies. Best viewed on-screen and in color.

would like to find links between local attributes and object
models, in order to bring object detection into the loop of
discovering localized attributes, such that both tasks benefit
from each other. We would also like to study how to better
incorporate human interactions into recognition techniques.
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