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Abstract

Video summarization is a challenging problem with great application potential.
Whereas prior approaches, largely unsupervised in nature, focus on sampling use-
ful frames and assembling them as summaries, we consider video summarization
as a supervised subset selection problem. Our idea is to teach the system to learn
from human-created summaries how to select informative and diverse subsets, so
as to best meet evaluation metrics derived from human-perceived quality. To this
end, we propose the sequential determinantal point process (seqDPP), a proba-
bilistic model for diverse sequential subset selection. Our novel seqDPP heeds the
inherent sequential structures in video data, thus overcoming the deficiency of the
standard DPP, which treats video frames as randomly permutable items. Mean-
while, seqDPP retains the power of modeling diverse subsets, essential for summa-
rization. Our extensive results of summarizing videos from 3 datasets demonstrate
the superior performance of our method, compared to not only existing unsuper-
vised methods but also naive applications of the standard DPP model.

1 Introduction

It is an impressive yet alarming fact that there is far more video being captured—by consumers, sci-
entists, defense analysts, and others—than can ever be watched or browsed efficiently. For example,
144,000 hours of video are uploaded to YouTube daily; lifeloggers with wearable cameras amass
Gigabytes of video daily; 422,000 CCTV cameras perched around London survey happenings in
the city 24/7. With this explosion of video data comes an ever-pressing need to develop automatic
video summarization algorithms. By taking a long video as input and producing a short video (or
keyframe sequence) as output, video summarization has great potential to reign in raw video and
make it substantially more browseable and searchable.

Video summarization methods often pose the problem in terms of subset selection: among all the
frames (subshots) in the video, which key frames (subshots) should be kept in the output summary?
There is a rich literature in computer vision and multimedia developing a variety of ways to answer
this question [[1} 2} 3,14} 15 16} 7, 8, 9, [10]]. Existing techniques explore a plethora of properties that a
good summary should capture, designing criteria that the algorithm should prioritize when deciding
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which subset of frames (or subshots) to select. These include representativeness (the frames should
depict the main contents of the videos) [1} 2, [10], diversity (they should not be redundant) [4} [11],
interestingness (they should have salient motion/appearance [2} 3, 16] or trackable objects [S} 12, [7]),
or importance (they should contain important objects that drive the visual narrative) [} 9.

Despite valuable progress in developing the desirable properties of a summary, prior approaches are
impeded by their unsupervised nature. Typically the selection algorithm favors extracting content
that satisfies criteria like the above (diversity, importance, etc.), and performs some sort of frame
clustering to discover events. Unfortunately, this often requires some hand-crafting to combine the
criteria effectively. After all, the success of a summary ultimately depends on human perception.
Furthermore, due to the large number of possible subsets that could be selected, it is difficult to
directly optimize the criteria jointly on the selected frames as a subset; instead, sampling methods
that identify independently useful frames (or subshots) are common.

To address these limitations, we propose to consider video summarization as a supervised subset
selection problem. The main idea is to use examples of human-created summaries—together with
their original source videos—to teach the system how to select informative subsets. In doing so,
we can escape the hand-crafting often necessary for summarization, and instead directly optimize
the (learned) factors that best meet evaluation metrics derived from human-perceived quality. Fur-
thermore, rather than independently select “high scoring” frames, we aim to capture the interlocked
dependencies between a given frame and all others that could be chosen.

To this end, we propose the sequential determinantal point process (seqDPP), a new probabilistic
model for sequential and diverse subset selection. The determinantal point process (DPP) has re-
cently emerged as a powerful method for selecting a diverse subset from a “ground set” of items [13]],
with applications including document summarization [14] and information retrieval [[15]. However,
existing DPP techniques have a fatal modeling flaw if applied to video (or documents) for sum-
marization: they fail to capture their inherent sequential nature. That is, a standard DPP treats the
inputs as bags of randomly permutable items agnostic to any temporal structure. Our novel seqDPP
overcomes this deficiency, making it possible to faithfully represent the temporal dependencies in
video data. At the same time, it lets us pose summarization as a supervised learning problem.

While learning how to summarize from examples sounds appealing, why should it be possible—
particularly if the input videos are expected to vary substantially in their subject matter‘.ﬂ Unlike
more familiar supervised visual recognition tasks, where test data can be reasonably expected to
look like the training instances, a supervised approach to video summarization must be able to learn
generic properties that transcend the specific content of the training set. For example, the learner
can recover a “meta-cue” for representativeness, if the input features record profiles of the similar-
ity between a frame and its increasingly distant neighbor frames. Similarly, category-independent
cues about an object’s placement in the frame, the camera person’s active manipulation of view-
point/zoom, etc., could play a role. In any such case, we can expect the learning algorithm to focus
on those meta-cues that are shared by the human-selected frames in the training set, even though the
subject matter of the videos may differ.

In short, our main contributions are: a novel learning model (seqDPP) for selecting diverse subsets
from a sequence, its application to video summarization (the model is applicable to other sequential
data as well), an extensive empirical study with three benchmark datasets, and a successful first-
step/proof-of-concept towards using human-created video summaries for learning to select subsets.

The rest of the paper is organized as follows. In section [2] we review DPP and its application to
document summarization. In section (3] we describe our seqDPP method, followed by a discussion
of related work in section d] We report results in section[5] then conclude in section [6]

2 Determinantal point process (DPP)

The DPP was first used to characterize the Pauli exclusion principle, which states that two identi-
cal particles cannot occupy the same quantum state simultaneously [[16]. The notion of exclusion
has made DPP an appealing tool for modeling diversity in application such as document summariza-
tion [14}13]], or image search and ranking [[17]. In what follows, we give a brief account on DPP and
how to apply it to document summarization where the goal is to generate a summary by selecting
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several sentences from a long document [18},[19]. The selected sentences should be not only diverse
(i.e., different) to reduce the redundancy in the summary, but also representative of the document.

Background Let) = {1,2,--- N} be a ground set of N items (eg., sentences). In its simplest
form, a DPP defines a discrete probability distribution over all the 2N subsets of ). Let Y denote
the random variable of selecting a subset. Y is then distributed according to

det(L,)

PY=y)=——Y_ 1
Y=y =Gz +D b
fory C ). The kernel L € SﬁXN is the DPP’s parameter and is constrained to be positive semidefi-
nite. I is the identity matrix. L, is the principal minor (sub-matrix) with rows and columns selected
according to the indices in y. The determinant function det(-) gives rise to the interesting property
of pairwise repulsion. To see that, consider selecting a subset of two items ¢ and j. We have

P(Y = {i,j}) < Ly L;; — L;. 2)
If the items ¢ and j are the same, then P(Y = {4,j}) = 0 (because L;; = L;; = L;;). Namely,
identical items should not appear together in the same set. A more general case also holds: if ¢ and

7 are similar to each other, then the probability of observing ¢ and j in a subset together is going to
be less than that of observing either one of them alone (see the excellent tutorial [[13] for details).

The most diverse subset of ) is thus the one that attains the highest probability

y" = argmax, P(Y = y) = argmax,, det(Ly), 3)
where y* results from MAP inference. This is a NP-hard combinatorial optimization problem.
However, there are several approaches to obtaining approximate solutions [13} 20].

Learning DPPs for document summarization Suppose we model selecting a subset of sentences
as a DPP over all sentences in a document. We are given a set of training samples in the form of
documents (i.e., ground sets) and the ground-truth summaries. How can we discover the underlying
parameter L so as to use it for generating summaries for new documents?

Note that the new documents will likely have sentences that have not been seen before in the training
samples. Thus, the kernel matrix L needs to be reparameterized in order to generalize to unseen
documents. [14] proposed a special reparameterization called quality/diversity decomposition:

1
Lij = qi¢,0jq;, ¢ = exp (29TCI¢¢) , 4)

where ¢; is the normalized TF-IDF vector of the sentence ¢ so that ¢1T¢j computes the cosine angle
between two sentences. The “quality” feature vector x; encodes the contextual information about ¢
and its representativeness of other items. In document summarization, x; are the sentence lengths,
positions of the sentences in the texts, and other meta cues. The parameter @ is then optimized with
maximum likelihood estimation (MLE) such that the target subsets have the highest probabilities

0" = arg max, Z log P(Y =y;; L,(0)), %)
where L, is the L matrix formulated using sentences in the n-th ground set, and y; is the corre-
sponding ground-truth summary.

Despite its success in document summarization [[14], a direct application of DPP to video summa-
rization is problematic. The DPP model is agnostic about the order of the items. For video (and to a
large degree, text data), it does not respect the inherent sequential structures. The second limitation
is that the quality-diversity decomposition, while cleverly leading to a convex optimization, limits
the power of modeling complex dependencies among items. Specifically, only the quality factor g;
is optimized on the training data. We develop new approaches to overcoming those limitations.

3 Approach

In what follows, we describe our approach for video summarization. Our approach contains three
components: (1) a preparatory yet crucial step that generates ground-truth summaries from multiple
human-created ones (section; (2) a new probabilistic model—the sequential determinantal point
process (seqDPP)—that models the process of sequentially selecting diverse subsets (section [3.2));
(3) a novel way of re-parameterizing seqDPP that enables learning more flexible and powerful rep-
resentations for subset selection from standard visual and contextual features (section [3.3).
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Figure 1: The agreement among human-created summaries is high, as is the agreement between the oracle
summary generated by our algorithm (cf. section[3.I) and human annotations.

3.1 Generating ground-truth summaries

The first challenge we need to address is what to provide to our learning algorithm as ground-truth
summaries. In many video datasets, each video is annotated (manually summarized) by multiple
human users. While the users were often well instructed on the annotation task, discrepancies are
expected due to many uncontrollable individual factors such as whether the person was attentive,
idiosyncratic viewing preferences, etc. There are some studies on how to evaluate automatically
generated summaries in the presence of multiple human-created annotations [21, 22| 23]]. However,
for learning, our goal is to generate one single ground-truth or “oracle” summary per video.

Our main idea is to synthesize the oracle summary that maximally agrees with all annotators. Our
hypothesis is that despite the discrepancies, those summaries nonetheless share the common traits of
reflecting the subject matters in the video. These commonalities, to be discovered by our synthesis
algorithm, will provide strong enough signals for our learning algorithm to be successful.

To begin with, we first describe a few metrics in quantifying the agreement in the simplest setting
where there are only two summaries. These metrics will also be used later in our empirical studies
to evaluate various summarization methods. Using those metrics, we then analyze the consistency
of human-created summaries in two video datasets to validate our hypothesis. Finally, we present
our algorithm for synthesizing one single oracle summary per video.

Evaluation metrics Given two video summaries A and B, we measure how much they are in
agreement by first matching their frames, as they might be of different lengths. Following [24]], we
compute the pairwise distances between all frames across the two summaries. Two frames are then
“matched” if their visual difference is below some threshold; a frame is constrained to appear in
the matched pairs at most once. After the matching, we compute the following metrics (commonly
known as Precision, Recall and F-score):

p #matched frames #matched frames Psp-Rap
AB =~ AB = —J o AB = .
0.5(PAB + RAB)

F#frames in A ##frames in B
All of them lie between 0 and 1, and higher values indicate better agreement between A and B. Note
that these metrics are not symmetric — if we swap A and B, the results will be different.

Our idea of examining the consistency among all summaries is to treat each summary in turn as if it
were the gold-standard (and assign it as B) while treating the other summaries as A’s. We report our
analysis of existing video datasets next.

Consistency in existing video databases We analyze video summaries in two video datasets: 50
videos from the Open Video Project (OVP) [25] and another 50 videos from Youtube [24]]. Details
about these two video datasets are in section[5] We briefly point out that the two datasets have very
different subject matters and composition styles. Each of the 100 videos has 5 annotated summaries.
For each video, we compute the pairwise evaluation metrics in precision, recall, and F-score by
forming total 20 pairs of summaries from two different annotators. We then average them per video.
We plot how these averaged metrics distribute in Fig. [l The plots show the number of videos
(out of 100) whose averaged metrics exceed certain thresholds, marked on the horizontal axes. For
example, more than 80% videos have an averaged F-score greater than 0.6, and 60% more than 0.7.
Note that there are many videos (/220) with averaged F-scores greater than 0.8, indicating that on
average, human-created summaries have a high degree of agreement. Note that the mean values of
the averaged metrics per video are also high.



Greedy algorithm for synthesizing an oracle summary Encouraged by our findings, we develop
a greedy algorithm for synthesizing one oracle summary per video, from multiple human-created
ones. This algorithm is adapted from a similar one for document summarization [14]. Specifically,
for each video, we initialize the oracle summary with the empty set y* = (). Iteratively, we then add
to y* one frame 7 at a time from the video sequence

y* + y" U argmax; Z Fy«Uiy, - (6)
u
In words, the frame i is selected to maximally increase the F-score between the new oracle summary
and the human-created summaries y,,. To avoid adding all frames in the video sequence, we stop
the greedy process as soon as there is no frame that can increase the F-score.

We measure the quality of the synthesized oracle summaries by computing their mean agreement
with the human annotations. The results are shown in Fig. [1|too. The quality is high: more than
90% of the oracle summaries agree well with other summaries, with an F-score greater than 0.6. In
what follows, we will treat the oracle summaries as ground-truth to inform our learning algorithms.

3.2 Sequential determinantal point processes (seqDPP)

The determinantal point process, as described in section 2] is a powerful tool for modeling diverse
subset selection. However, video frames are more than items in a set. In particular, in DPP, the
ground set is a bag — items are randomly permutable such that the most diverse subset remains
unchanged. Translating this into video summarization, this modeling property essentially suggests
that we could randomly shuffle video frames and expect to get the same summary!

To address this serious deficiency, we propose sequential DPP, a new probabilistic model to in-
troduce strong dependency structures between items. As a motivating example, consider a video
portraying the sequence of someone leaving home for school, coming back to home for lunch, leav-
ing for market and coming back for dinner. If only visual appearance cues are available, a vanilla
DPP model will likely select only one frame from the home scene and repel other frames occurring
at the home. Our model, on the other hand, will recognize that the temporal span implies those
frames are still diverse despite their visual similarity. Thus, our modeling intuition is that diversity
should be a weaker prior for temporally distant frames but ought to act more strongly for closely
neighboring frames. We now explain how our seqDPP method implements this intuition.

Model definition Given a ground set (a long video sequence) ), we partition it into 7" disjoint yet
consecutive short segments Uz;l YV, = Y. At time ¢, we introduce a subset selection variable Y;.
We impose a DPP over two neighboring segments where the ground set is Uy = V; U y:_1, ie., the
union between the video segments and the selected subset in the immediate past. Let £2; denote the
L-matrix defined over the ground set U;. The conditional distribution of Y; is thus given by,
det Qyt—luyt

P(Kﬁ = yt|Y;571 = ?thl) = det(ﬂt T It). (N
As before, the subscript y;—1 U vy, selects the corresponding rows and columns from €2;. I; is a
diagonal matrix, the same size as U;. However, the elements corresponding to y;_ are zeros and
the elements corresponding to ), are 1 (see [13] for details). Readers who are familiar with DPP
might identify the conditional distribution is also a DPP, restricted to the ground set ;.

The conditional probability is defined in such a way that at time ¢, the subset selected should be
diverse among ); as well as be diverse from previously selected y;—1. However, beyond those two
priors, the subset is not constrained by subsets selected in the distant past. Fig. [2]illustrates the idea
in graphical model notation. In particular, the joint distribution of all subsets is factorized

PMVi=y,YVa =y, Yr=yr)=PMi=w) [[PVi=wlVii =wi1).  ®)
t=2

Inference and learning The MAP inference for the seqDPP model eq. (8) is as hard as the stan-
dard DPP model. Thus, we propose to use the following online inference, analogous to Bayesian
belief updates (for Kalman filtering):

y; = arg maX, ey, PY1 =y) ys = arg max,cy, P(Y, =y|Y1 = y7)
y; = argmax,cy, PV =ylYi1 =y, ;) -



) ) A
Figure 2: Our sequential DPP for modeling sequential video data, drawn as a Bayesian network

Note that, at each step, the ground set could be quite small; thus an exhaustive search for the most
diverse subset is plausible. The parameter learning is similar to the standard DPP model. We
describe the details in the supplementary material.

3.3 Learning representations for diverse subset selection

As described previously, the kernel L of DPP hinges on the reparameterization with features of
the items that can generalize across different ground sets. The quality-diversity decomposition in
eq. (@), while elegantly leading to convex optimization, is severely limited in its power in modeling
complex items and dependencies among them. In particular, learning the subset selection rests solely
on learning the quality factor, as the diversity component remains handcrafted and fixed.

We overcome this deficiency with more flexible and powerful representations. Concretely, let f;
stand for the feature representation for item (frame) 4, including both low-level visual cues and
meta-cues such as contextual information. We reparameterize the L matrix with f; in two ways.

Linear embeddings The simplest way is to linearly transform the original features
Lij = fiW'W f;, ©)
where W is the transformation matrix.

Nonlinear hidden representation We use a one-hidden-layer neural network to infer a hidden
representation for f;

Lij =2 W'"Wz; where z;=tanh(Uf;), (10)
where tanh(-) stands for the hyperbolic transfer function.

To learn the parameters W or U and W, we use maximum likelihood estimation (cf. eq. ), with
gradient-descent to optimize. Details are given in the supplementary material.

4 Related work

Space does not permit a thorough survey of video summarization methods. Broadly speaking, ex-
isting approaches develop a variety of selection criteria to prioritize frames for the output summary,
often combined with temporal segmentation. Prior work often aims to retain diverse and represen-
tative frames [2 1,10, 4}, [11]], and/or defines novel metrics for object and event saliency [3} 2} |6} [8]].
When the camera is known to be stationary, background subtraction and object tracking are valuable
cues (e.g., [5]). Recent developments tackle summarization for dynamic cameras that are worn or
handheld [[10, 8, 9] or design online algorithms to process streaming data [7]].

Whereas existing methods are largely unsupervised, our idea to explicitly learn subset selection
from human-given summaries is novel. Some prior work includes supervised learning components
that are applied during selection (e.g., to generate learned region saliency metrics [§] or train classi-
fiers for canonical viewpoints [[10]), but they do not train/learn the subset selection procedure itself.
Our idea is also distinct from “interactive” methods, which assume a human is in the loop to give
supervision/feedback on each individual fest video [26} 27, [12]].

Our focus on the determinantal point process as the building block is largely inspired by its appealing
property in modeling diversity in subset selection, as well as its success in search and ranking [17],
document summarization [[14], news headline displaying [28]], and pose estimation [29]. Applying
DPP to video summarization, however, is novel to the best of our knowledge.

Our seqDPP is closest in spirit to the recently proposed Markov DPP [28]. While both models enjoy
the Markov property by defining conditional probabilities depending only on the immediate past,



Table 1: Performance of various video summarization methods on OVP. Ours and its variants perform the best.

Unsupervised methods Supervised subset selection
DT STIMO | VSUMM; | VSUMM2 | DPP + Q/D Ours (seqDPP+)
[30] [31] [24] [24] [14] Q/D LINEAR N.NETS
F | 576 | 634 70.3 68.2 70.8+£0.3 | 68.5£0.3 | 75.5+0.4 | 77.7£0.4
P | 67.7 60.3 70.6 73.1 71.5+£04 | 66.9+£0.4 | 77.5+0.5 | 75.0£0.5
R |532 | 722 75.8 69.1 74.5+£0.3 | 75.84£0.5 | 78.44+0.5 | 87.2+0.3

Table 2: Performance of our method with different representation learning
VSUMMS;, [24] seqDPP+LINEAR seqDPP+N. NETS
F 3 R F P R F P R
Youtube 55.7 59.7 58.7 57.8+05 542+07 69.8405 60.3+t05 59.4+06 64.9+05
Kodak 689 757 80.6 753+07 77.8+1.0 80.4+09 78.9+05 81.9+08 81.1+09

Markov DPP’s ground set is still the whole video sequence, whereas seqDPP can select diverse sets
from the present time. Thus, one potential drawback of applying Markov DPP is to select video
frames out of temporal order, thus failing to model the sequential nature of the data faithfully.

S Experiments

We validate our approach of sequential determinantal point processes (seqDPP) for video summa-
rization on several datasets, and obtain superior performance to competing methods.

5.1 Setup

Data We benchmark various methods on 3 video datasets: the Open Video Project (OVP), the
Youtube dataset [24]], and the Kodak consumer video dataset [32]. They have 50, 397} and 18 videos,
respectively. The first two have 5 human-created summaries per video and the last has one human-
created summary per video. Thus, for the first two datasets, we follow the algorithm described in
section [3.1] to create an oracle summary per video. We follow the same procedure as in [24] to
preprocess the video frames. We uniformly sample one frame per second and then apply two stages
of pruning to remove uninformative frames. Details are in the supplementary material.

Features FEach frame is encoded with an £2-normalized 8192-dimensional Fisher vector ¢; [33]],
computed from SIFT features [34]. The Fisher vector represents well the visual appearance of the
video frame, and is hence used to compute the pairwise correlations of the frames in the quality-
diversity decomposition (cf. eq. (@)). We derive the quality features x; by measuring the represen-
tativeness of the frame. Specifically, we place a contextual window centered around the frame of
interest, and then compute its mean correlation (using the SIFT Fisher vector) to the other frames in
the window. By varying the size of the windows from 5 to 15, we obtain 12-dimensional contextual
features. We also add features computed from the frame saliency map [35]. To apply our method
for learning representations (cf. section@]), however, we do not make a distinction between the two
types, and instead compose a feature vector f; by concatenating x; and ¢;. The dimension of our
linear transformed features W f; is 10, 40 and 100 for OVP, Youtube, and Kodak, respectively. For
the neural network, we use 50 hidden units and 50 output units.

Other details For each dataset, we randomly choose 80% of the videos for training and use the
remaining 20% for testing. We run 100 rounds of experiments and report the average performance,
which is evaluated by the aforementioned F-score, Precision, and Recall (cf. section @) For
evaluation, we follow the standard procedure: for each video, we treat each human-created summary
as golden-standard and assess the quality of the summary output by our algorithm. We then average
over all human annotators to obtain the evaluation metrics for that video.

5.2 Results

We contrast our approach to several state-of-the-art methods for video summarization—which in-
clude several leading unsupervised methods—as well as the vanilla DPP model that has been suc-
cessfully used for document summarization but does not model sequential structures. We compare
the methods in greater detail on the OVP dataset. Table[I|shows the results.

’In total there are 50 Youtube videos. We keep 39 of them after excluding the cartoon videos.
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Figure 3: Exemplar video summaries by our seqDPP LINEAR vs. VSUMM summary [24].

Unsupervised or supervised? The four unsupervised methods are DT [30], sTiMO [31],
VSUMM; [24], and VSUMM; with a postprocessing step to VSUMM; to improve the precision of
the results. We implement VSUMM ourselves using features described in the orignal paper and tune
its parameters to have the best test performance. All 4 methods use clustering-like procedures to
identify key frames as video summaries. Results of DT and STIMO are taken from their original
papers. They generally underperform VSUMM.

What is interesting is that the vanilla DPP does not outperform the unsupervised methods, despite
its success in other tasks. On the other end, our supervised method seqDPP, when coupled with the
linear or neural network representation learning, performs significantly better than all other methods.

We believe the improvement can be attributed to two factors working in concert: (1) modeling se-
quential structures of the video data, and (2) more flexible and powerful representation learning.
This is evidenced by the rather poor performance of seqDPP with the quality/diversity (Q/D) de-
composition, where the representation of the items is severely limited such that modeling temporal
structures alone is simply insufficient.

Linear or nonlinear? Table 2] concentrates on comparing the effectiveness of these two types of
representation learning. The performances of VSUMM are provided for reference only. We see that
learning representations with neural networks generally outperforms the linear representations.

Qualitative results We present exemplar video summaries by different methods in Fig. [3] The
challenging Youtube video illustrates the advantage of sequential diverse subset selection. The visual
variance in the beginning of the video is far greater (due to close-shots of people) than that at the end
(zooming out). Thus the clustering-based VSUMM method is prone to select key frames from the first
half of the video, collapsing the latter part. In contrast, our seqDPP copes with time-varying diversity
very well. The Kodak video demonstrates again our method’s ability in attaining high recall when
users only make diverse selections locally but not globally. vSUMM fails to acknowledge temporally
distant frames can be diverse despite their visual similarities.

6 Conclusion

Our novel learning model seqDPP is a successful first step towards using human-created summaries
for learning to select subsets for the challenging video summarization problem. We just scratched
the surface of this fruit-bearing direction. We plan to investigate how to learn more powerful repre-
sentations from low-level visual cues.
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