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Abstract

When learning features for complex visual recognition problems, labeled image
exemplars alone can be insufficient. While an object taxonomy specifying the cat-
egories’ semantic relationships could bolster the learning process, not all relation-
ships are relevant to a given visual classification task, nor does a single taxonomy
capture all ties that are relevant. In light of these issues, we propose a discrim-
inative feature learning approach that leverages multiple hierarchical taxonomies
representing different semantic views of the object categories (e.g., for animal
classes, one taxonomy could reflect their phylogenic ties, while another could re-
flect their habitats). For each taxonomy, we first learn a tree of semantic kernels,
where each node has a Mahalanobis kernel optimized to distinguish between the
classes in its children nodes. Then, using the resulting semantic kernel forest, we
learn class-specific kernel combinations to select only those relationships relevant
to recognize each object class. To learn the weights, we introduce a novel hier-
archical regularization term that further exploits the taxonomies’ structure. We
demonstrate our method on challenging object recognition datasets, and show that
interleaving multiple taxonomic views yields significant accuracy improvements.

1 Introduction

Object recognition research has made impressive gains in recent years, with particular success
in using discriminative learning algorithms to train classifiers tuned to each category of interest
(e.g., [1, 2]). As the basic “image features + labels + classifier” paradigm has reached a level of
maturity, we believe it is time to reach beyond it towards models that incorporate richer semantic
knowledge about the object categories themselves.

One appealing source of such external knowledge is a taxonomy. A hierarchical semantic taxonomy
is a tree that groups classes together in its nodes according to some human-designed merging or
splitting criterion. For example, well-known taxonomies include WordNet, which groups words
into sets of cognitive synonyms and their super-subordinate relations [3], and the phylogenetic tree
of life, which groups biological species based on their physical or genetic properties. Critically,
such trees implicitly embed cues about human perception of categories, how they relate to one
another, and how those relationships vary at different granularities. Thus, in the context of visual
object recognition, such a structure has the potential to guide the selection of meaningful low-level
features, essentially augmenting the standard supervision provided by image labels. Some initial
steps have been made based on this intuition, typically by leveraging the WordNet hierarchy as a
prior on inter-class visual similarity [4, 5, 6, 7, 8, 9, 10, 11].

Two fundamental issues, however, complicate the use of a semantic taxonomy for learning visual
objects. First, a given taxonomy may offer hints about visual relatedness, but its structure need not
entirely align with useful splits for recognition. (For example, monkey and dog are fairly distant
semantically according to WordNet, yet they share a number of visual features. An apple and apple-
sauce are semantically close, yet are easily separable with basic visual features.) Second, given the
complexity of visual objects, it is highly unlikely that some single optimal semantic taxonomy exists
to lend insight for recognition. While previous work relies on a single taxonomy out of convenience,
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Figure 1: Main idea: For a given set of classes, we assume multiple semantic taxonomies exist, each
one representing a different “view” of the inter-class semantic relationships. Rather than commit to
a single taxonomy—whichmay or may not align well with discriminative visual features—we learn
a tree of kernels for each taxonomy that captures the granularity-specific similarity at each node.
Then we show how to exploit the inter-taxonomic structure when learning a combination of these
kernels from multiple taxonomies (i.e., a “kernel forest”) to best serve the object recognition tasks.

in reality objects can be organized along many semantic dimensions or “views”. (For example, a
Dalmatian belongs to the same group as the wolf according to a biological taxonomy, as both are ca-
nines. However, in terms of visual attributes, it can be grouped with the leopard, as both are spotted;
in terms of habitat, it can be grouped with the Siamese cat, as both are domestic. See Figure 1.)

Motivated by these issues, we present a discriminative feature learning approach that leveragesmul-
tiple taxonomies capturing different semantic views of the object categories. Our key insight is
that some combination of the semantic views will be most informative to distinguish a given visual
category. Continuing with the sketch in Figure 1, that might mean that the first taxonomy helps
learn dog- and cat-like features, while the second taxonomy helps elucidate spots and pointy corner
features, while the last reveals context cues such as proximity to humans or indoor scene features.
While each view differs in its implicit human-designed splitting criterion, all separate some classes
from others, thereby lending (often complementary) discriminative cues. Thus, rather than commit
to a single representation, we aim to inject pieces of the various taxonomies as needed.

To this end, we propose semantic kernel forests. Our method takes as input training images labeled
according to their object category, as well as a series of taxonomies, each of which hierarchically
partitions those same labels (object classes) by a different semantic view. For each taxonomy, we
first learn a tree of semantic kernels: each node in a tree has aMahalanobis-based kernel optimized to
distinguish between the classes in its children nodes. The kernels in one tree isolate image features
useful at a range of category granularities. Then, using the resulting semantic kernel forest from
all taxonomies, we apply a form of multiple kernel learning (MKL) to obtain class-specific kernel
combinations, in order to select only those relationships relevant to recognize each object class. We
introduce a novel hierarchical regularization term into the MKL objective that further exploits the
taxonomies’ structure. The output of the method is one learned kernel per object class, which we
can then deploy for one-versus-all multi-class classification on novel images.

Our main contribution is to simultaneously exploit multiple semantic taxonomies for visual fea-
ture learning. Whereas past work focuses on building object hierarchies for scalable classifica-
tion [12, 13] or using WordNet to gauge semantic distance [5, 6, 8, 9], we learn discriminative ker-
nels that capitalize on the cues in diverse taxonomy views, leading to better recognition accuracy.
The primary technical contributions are i) an approach to generate semantic base kernels across tax-
onomies, ii) a method to integrate the complementary cues from multiple suboptimal taxonomies,
and iii) a novel regularizer for multiple kernel learning that exploits hierarchical structure from the
taxonomy, allowing kernel selection to benefit from semantic knowledge of the problem domain.

We demonstrate our approach with challenging images from the Animals with Attributes and Im-
ageNet datasets [14, 7] together with taxonomies spanning cognitive synsets, visual attributes, be-
havior, and habitats. Our results show that the taxonomies can indeed boost feature learning, letting
us benefit from humans’ perceived distinctions as implicitly embedded in the trees. Furthermore,
we show that interleaving the forest of multiple taxonomic views leads to the best performance,
particularly when coupled with the proposed novel regularization.
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2 Related Work

Leveraging hierarchies for object recognition Most work in object recognition that leverages
category hierarchy does so for the sake of efficient classification [15, 16, 12, 13, 17]. Making coarse
to fine predictions along a tree of classifiers efficiently rules out unlikely classes at an early stage.
Since taxonomies need not be ideal structures for this goal, recent work focuses on novel ways to
optimize the tree structure itself [12, 13, 17], while others consider splits based on initial inter-class
confusions [16]. A parallel line of work explores unsupervised discovery of hierarchies for image
organization and browsing, from images alone [18, 19] or from images and tags [20]. Whereas all
such work exploits tree structures to improve efficiency (whether in classification or browsing), our
goal is for externally defined semantic hierarchies to enhance recognition accuracy.

More related to our problem setting are techniques that exploit the inter-class relationships in a
taxonomy [5, 6, 8, 9, 10, 11]. One idea is to combine the decisions of classifiers along the semantic
hierarchy [5, 4]. Alternatively, the semantic “distance” between nodes can be used to penalize
misclassifications more meaningfully [9], or to share labeled exemplars between similar classes [8].
Metric learning and feature selection can also benefit from an object hierarchy, either by preferring
to use disjoint feature sets to discriminate super- and sub-classes [10], by using a taxonomy-induced
loss for structured sparsity [21], or by sharing parameters between metrics along the same path [11].
All prior work commits to a single taxonomy, however, which as discussed above may restrict the
semantics’ impact and will not always align well with the visual data.

Classification with multiple semantic views Combining information from multiple “views” of
data is a well-researched topic in the machine learning, multimedia, and computer vision commu-
nities. In multi-view learning, the training data typically consists of paired examples coming from
different modalities—e.g., text and images, or speech and video; basic approaches include recov-
ering the underlying shared latent space for both views [22, 20], bootstrapping classifiers formed
independently per feature space [23, 24], or accounting for the view dependencies during cluster-
ing [25, 26]. When the classification tasks themselves are grouped, multi-task learning methods
leverage the parallel tasks to regularize parameters learned for the individual classifiers or features
(e.g., [27, 28, 29]). Broadly speaking, our problem has a similar spirit to such settings, since we want
to leverage multiple parallel taxonomies over the data; however, our goal to aggregate portions of
the taxonomies during feature learning is quite distinct. More specifically, while previous methods
attempt to find a single structure to accommodate both views, we seek complementary information
from the semantic views and assemble task-specific discriminative features.

Learning kernel combinations Multiple kernel learning (MKL) algorithms [30] have shown
promise for image recognition (e.g., [31, 32]) and are frequently employed in practice as a prin-
cipled way to combine feature types. Our approach also employs a form of MKL, but rather than
pool kernels stemming from different low-level features or kernel hyperparameters, it pools kernels
stemming from different semantic sources. Furthermore, our addition of a novel regularizer exploits
the hierarchical structure from which the kernels originate.

3 Approach

We cast the problem of learning semantic features from multiple taxonomies as learning to combine
kernels. The base kernels capture features specific to individual taxonomies and granularities within
those taxonomies, and they are combined discriminatively to improve classification, weighing each
taxonomy and granularity only to the extent useful for the target classification task.

We describe the two main components of the approach in turn: learning the base kernels—which we
call a semantic kernel forest (Sec. 3.1), and learning their combination across taxonomies (Sec. 3.2),
where we devise a new hierarchical regularizer for MKL.

In what follows, we assume that we are given a labeled dataset D = {(xi, yi)}
N
n=1 where (xi, yi)

stands for the ith instance (feature vector) and its class label is yi, as well as a set of tree-structured
taxonomies {Tt}

T
t=1. Each taxonomy Tt is a collection of nodes. The leaf nodes correspond to class

labels, and the inner nodes correspond to superclasses—or, more generally, semantically meaningful
groupings of categories. We index those nodes with double subscripts tn, where t refers to the tth
taxonomy and n to the nth node in that taxonomy. Without loss of generality, we assign the leaf
nodes (i.e., the class nodes) a number between 1 and C, where C is the number of class labels.
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3.1 Learning a semantic kernel forest

Our first step is to learn a forest of base kernels. These kernels are granularity- and view-specific;
that is, they are tuned to similarities implied by the given taxonomies. While base kernels are learned
independently per taxonomy, they are learned jointly within each taxonomy, as we describe next.

Formally, for each taxonomy Tt, we learn a set of Gaussian kernels for the superclass at every
internal node tn for which n ≥ C + 1. The Gaussian kernels are parameterized as

Ktn(xi, xj) = exp{−γtnd2
Mtn

(xi, xj)} = exp{−γtn(xi − xj)
TMtn(xi − xj)}, (1)

where the Mahalanobis distance metric Mtn is used in lieu of the conventional Euclidean metric.
Note that for leaf nodes where n ≤ C, we do not learn base kernels.

We want the base kernels to encode similarity between examples using features that reflect their
respective granularity in the taxonomy. Certainly, the kernel Ktn should home in on features that
are helpful to distinguish the node tn’s subclasses. Beyond that, however, we specifically want it
to use features that are as different as possible from the features used by its ancestors. Doing so
ensures that the subsequent combination step can choose a sparse set of “disconnected” features.

To that end, we apply our Tree of Metrics (ToM) technique [10] to learn the Mahalanobis param-
eters Mtn. In ToM, metrics are learned by balancing two forces: i) discriminative power and ii) a
preference for different features to be chosen between parent and child nodes. The latter exploits the
taxonomy semantics, based on the intuition that features used to distinguish more abstract classes
(dog vs. cat) should differ from those used for finer-grained ones (Siamese vs. Persian cat).

Briefly, for each node tn, the training data is reduced to Dn = {(xi, yin)}, where yin is the label
of n’s child on the path to the leaf node yi. If yi is not a descendant of the superclass at the node n,
then xi is excluded from Dn. The metrics are learned jointly, with each node mutually encouraging
the others to use non-overlapping features. ToM achieves this by augmenting a large margin nearest
neighbor [33] loss function

∑

n ℓ(Dn;Mtn) with the following disjoint sparsity regularizer:

Ωd(M) = λ
∑

n≥C+1

Trace[Mtn] + µ
∑

n≥C+1

∑

m∼n

‖diag(Mtn) + diag(Mtm)‖22, (2)

where m ∼ n denotes that node m is either an ancestor or descendant of n. The first part of
the regularizer encourages sparsity in the diagonal elements of Mtn, and the second part incurs a
penalty when two different metrics “compete” for the same diagonal element, i.e., to use the same
feature dimension. The resulting optimization problem is convex and can be solved efficiently [10].

After learning the metrics {Mtn} in each taxonomy, we construct base kernels as in eq. (1). The
bandwidths γtn are set as the average distances on training data. We call the collection F = {Ktn}
of all base kernels the semantic kernel forest. Figure 1 shows an illustrative example.

While ToM has shown promising results in learning metrics in a single taxonomy, its reliance on
linear Mahalanobis metrics is inherently limited. A straightforward convex combination of ToMs
would result in yet another linear mapping, incapable of capturing nonlinear inter-taxonomic inter-
actions. In contrast, our kernel approach retains ToM’s granularity-specific features but also enables
nontrivial (nonlinear) combinations, especially when coupled with a novel hierarchical regularizer,
which we will define next.

3.2 Learning class-specific kernels across taxonomies

Base kernels in the semantic kernel forest are learned jointly within each taxonomy but indepen-
dently across taxonomies. To leverage multiple taxonomies and to capture different semantic views
of the object categories, we next combine them discriminatively to improve classification.

Basic setting To learn class-specific features (or kernels), we compose a one-versus-rest supervised
learning problem. Additionally, instead of combining all the base kernels in the forest F , we pre-
select a subset of them based on the taxonomy structure. Specifically, from each taxonomy, we
select base kernels that correspond to the nodes on the path from the root to the leaf node class. For
example, in the Biological taxonomy of Figure 1, for the category Dalmatian, this path includes the
nodes (superclasses) canine and animal. Thus, for class c, the linearly combined kernel is given by

Fc(xi, xj) =
∑

t

∑

n∼c

βctnKtn(xi, xj), (3)
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where n ∼ c indexes the nodes that are ancestors of c, which is a leaf node (recall that the first C
nodes in every taxonomy are reserved for leaf class nodes). The combination coefficients βctn are
constrained to be nonnegative to ensure the positive semidefiniteness of the resulting kernel Fc(·, ·).

We apply the kernel Fc(·, ·) to construct the one-versus-rest binary classifier to distinguish instances
from class c from all other classes. We then optimize βc = {βctn} such that the classifier attains
the lowest empirical misclassification risk. The resulting optimization (in its dual formulation) is
analogous to standard multiple kernel learning [30]:

min
βc

max
αc

∑

i

αci −
1

2

∑

i

∑

j

αciαcjqciqcjFc(xi, xj)

s.t.
∑

i

αciqci = 0, 0 ≤ αci ≤ C, ∀ i,
(4)

where αc is the Lagrange multipliers for the binary SVM classifier, C is the regularizer for the
SVM’s hinge loss function, and qci = ±1 is the indicator variable of whether or not xi’s label is c.

Hierarchical regularization Next, we extend the basic setting to incorporate richer modeling
assumptions. We hypothesize that kernels at higher-level nodes should be preferred to lower-level
nodes. Intuitively, higher-level kernels relate to more classes, thus are likely essential to reduce loss.

We leverage this intuition and knowledge about the relative priority of the kernels from each taxon-
omy’s hierarchical structure. We design a novel structural regularization that prefers larger weights
for a parent node compared to its children. Formally, the proposed MKL-H regularizer is given by:

Ω(βc) = λ
∑

t,n∼c

βctn + µ
∑

t,n∼c

max(0, βctn − βctpn
+ 1). (5)

The first part prefers a sparse set of kernels. The second part (in the form of hinge loss) encodes our
desire to have the weight assigned to a node n be less than the weight assigned to the node’s parent
pn. We also introduce a margin of 1 to further increase the difference between the two weights.

Hierarchical regularization was previously explored in [34], where a mixed (1, 2)-norm is used to
regularize the relative sizes between the parent and the children. The main idea there is to discard
children nodes if the parent is not selected. Our regularizer is similar, but is simpler and more com-
putationally efficient. (Additionally, our preliminary studies show [34] has no empirical advantage
over our approach in improving recognition accuracy.)

3.3 Numerical optimization

Our learning problem is cast as a convex optimization that balances the discriminative loss in eq. (4)
and the regularizer in eq. (5):

min
βc

f(βc) = g(βc) + Ω(βc), s.t. βc ≥ 0, (6)

where we use the function g(β) to encapsulate the inner maximization problem over αc in eq. (4).

We use the projected subgradientmethod to solve eq. (6), for its ease of implementation and practical
effectiveness [35]. Specifically, at iteration t, let βt

c be the current value of βc. We compute f(βc)’s
subgradient st, then perform the following update,

βt+1
c ← max

(

0, βt
c − αtst

)

, (7)

where the max( ) function implements the projection operation such that the update does not fall
outside of the feasible region βc ≥ 0. For step size αt, we use the modified Polyak’s step size [36].

4 Experiments

We validate our approach on multiple image datasets, and compare to several informative baselines.

4.1 Image datasets and taxonomies

We consider two publicly available image collections: Animals with Attributes (AWA) [14] and
ImageNet [7]1. We form two datasets from AWA. The first consists of the four classes shown in

1
attributes.kyb.tuebingen.mpg.de/and image-net.org/challenges/LSVRC/2011/
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Figure 2: Taxonomies for the AWA-10 (a-d) and ImageNet-20 (e-g) datasets.

Fig. 1, and totals 2, 228 images; the second contains the ten classes in [14], and totals 6, 180 images.
We refer to them as AWA-4 and AWA-10, respectively. The third dataset, ImageNet-20, consists of
28, 957 total images spanning 20 classes from ILSVRC2010. We chose classes that are non-animals
(to avoid overlap with AWA) and that have attribute labels [37].

To obtain multiple taxonomies per dataset, we use attribute labels and WordNet. Attributes are hu-
man understandable properties shared among object classes, e.g., “furry”, “flat”, “carnivorous” [14].
AWA and ImageNet have 85 and 25 attribute labels, respectively. To form semantic taxonomies
based on attributes, we first manually divide the attribute labels into subsets according to their mutual
semantic relevance (e.g., “furry” and “shiny” are attributes relevant for an Appearance taxonomy,
while “land-dwelling” and “aquatic” are relevant for a Habitat taxonomy). Then, for each subset of
attributes, we perform agglomerative clustering using Euclidean distance on vectors of the training
images’ real-valued attributes. We restrict the tree height (6 for ImageNet and 3 for AWA) to ensure
that the branching factor at the root is not too high. To extract a WordNet taxonomy, we find all
nodes in WordNet that contain the object class names on their word lists, and then build a hierarchy
by pruning nodes with only one child and resolving multiple parentship.

For AWA-10, we use 4 taxonomies: one from WordNet, and three based on attribute subsets re-
flecting Appearance, Behavior, and Habitat ties. For ImageNet-20, we use 3 taxonomies: one from
WordNet, one reflecting Appearance as found by hierarchical clustering on the visual features, and
one reflecting Attributes using annotations from [37]. For the AWA-4 taxonomies, we simply gen-
erate all 3 possible 2-level binary trees, which, based on manual observation, yield taxonomies
reflecting Biological, Appearance, and Habitat ties between the animals. See Figures 1 and 2.

We stress that these taxonomies are created externally with human knowledge, and thus they inject
perceived object relationships into the feature learning problem. This is in stark contrast to prior
work that focuses on optimizing hierarchies for efficiency, without requiring interpretability of the
trees themselves [16, 12, 13, 17].

4.2 Baseline methods for comparison

We compare our method to three key baselines: 1) Raw feature kernel: an RBF kernel computed on
the original image features, with the γ parameter set to the inverse of the mean Euclidean distance d
among training instances. 2) Raw feature kernel + MKL:MKL combination of multiple such RBF
kernels constructed by varying γ, which is a traditional approach to generate base kernels (e.g., [30]).
For this baseline, we generate the same number N of base kernels as in the semantic kernel forest,
with γ = σ

d
, for σ = {21−m, . . . , 2N−m}, where m = N

2
. 3) Perturbed semantic kernel tree

+ MKL-H: a semantic kernel tree trained with taxonomies that have randomly swapped leaves,
adding our hierarchical regularizer. 4) Perturbed semantic kernel forest + MKL-H: semantic
kernel forest from multiple taxonomies with the same perturbation as previous.
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AWA-4 AWA-10 ImageNet-20

Raw feature kernel 47.67 ± 2.22 30.80 ± 1.36 28.20 ± 1.45
Raw feature kernel + MKL 48.50 ± 1.89 31.13 ± 2.81 27.67 ± 1.50

Perturbed semantic kernel tree + MKL-H N/A 31.53 ± 2.07 28.20 ± 2.02
Perturbed semantic kernel forest + MKL-H N/A 33.20 ± 2.96 30.77 ± 1.53

Semantic kernel tree + Avg 47.17 ± 2.40 31.92 ± 1.21 28.97 ± 1.61
Semantic kernel tree + MKL 48.89 ± 1.06 32.43 ± 1.93 29.74 ± 1.26

Semantic kernel tree + MKL-H 50.06 ± 1.12 32.68 ± 1.79 29.90 ± 0.70

Semantic kernel forest + MKL 49.67 ± 1.11 34.60 ± 1.78 30.97 ± 1.14
Semantic kernel forest + MKL-H 52.83 ± 1.68 35.87 ± 1.22 32.30 ± 1.00

Table 1: Multi-class classification accuracy on all datasets, across 5 train/test splits. (The perturbed semantic
kernel tree baseline is not applicable for AWA-4, since all possible groupings are present in the taxonomies.)
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Figure 3: Per-class accuracy improvements of each individual taxonomy and the semantic kernel forest (“All”)
over the raw feature kernel baseline. Numbers in legends denote mean improvement. Best viewed in color.

The first two baselines will show the accuracy attainable using the same image features and basic
classification tools (SVM, MKL) as our approach, but lacking the taxonomy insights. The last two
baselines will test if weakening the semantics in the taxonomy has a negative impact on accuracy.

We evaluate several variants of our approach, in order to analyze the impact of each component: 1)
Semantic kernel tree + Avg: an equal-weight average of the semantic kernels from one taxonomy.
2) Semantic kernel tree + MKL: the same kernels, but combined with MKL using sparsity regu-
larization only (i.e., µ = 0 in eq. 5). 3) Semantic kernel tree + MKL-H: the same as previous,
but adding the proposed hierarchical regularization (eq. 5). 4) Semantic kernel forest + MKL:
semantic forest kernels from multiple taxonomies combined with MKL. 5) Semantic kernel forest
+ MKL-H: the same as previous, but adding our hierarchical regularizer.

4.3 Implementation details

For all results, we use 30/30/30 images per class for training/validation/testing, and generate 5
such random splits. We report average multi-class recognition accuracy and standard errors for
95% confidence interval. For single taxonomy results, we report the average over all individual
taxonomies. For all methods, the raw image features are bag-of-words histograms obtained on SIFT,
provided with the datasets. We reduce their dimensionality to 100 with PCA to speed up the ToM
training, following [10]. To train ToM, we sample 400 random constraints and cross-validate the
regularization parameters λ, γ ∈ {0.1, 1, 10}. For MKL/MKL-H, we use C = 1000 for the C-SVM
parameter, and cross-validate the sparsity and hierarchical parameters λ, µ ∈ {0, 0.1, 1, 10}.

4.4 Results

Quantitative results Table 1 shows the multi-class classification accuracy on all three datasets.
Our semantic kernel forests approach significantly outperforms all three baselines. It improves ac-
curacy for 9 of the 10 AWA-10 classes, and 16 of the 20 classes in ImageNet-20 (see Figure 3).
These gains clearly show the impact of injecting semantics into discriminative feature learning. The
forests’ advantage over the individual trees supports our core claim regarding the value of inter-
leaving semantic cues from multiple taxonomies. Further, the proposed hierarchical regularization
(MKL-H) outperforms the generic MKL, particularly for the multiple taxonomy forests.

We stress that semantic kernel forests’ success is not simply due to having access to a variety of
kernels, as we can see by comparing our method to both the raw feature MKL and perturbed tree
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Figure 4: (a-d): AWA-4 confusion matrices for individual taxonomies (a-c) and the combined tax-
onomies (d). Y-axis shows true classes; x-axis shows predicted classes. (e-f): Example βc’s to show
the characteristics of the two regularizers. Each entry is a learned kernel weight (brighter=higher
weight). Y-axis shows object classes; x-axis shows kernel node names.

results—all of which use the same number of kernels. Instead, the advantage is leveraging the
implicit discriminative criteria embedded in the external semantic groupings. In addition, we note
that even perturbed taxonomies can be semantic; some of their groupings of classes may happen
to be meaningful, especially when there are fewer categories. Hence, their advantage over the raw
feature kernels is understandable. Nonetheless, perturbed taxonomies are semantically weaker than
the originals, and our kernel trees with the true single or multiple taxonomies perform better.

MKL-H has the most impact for the multiple taxonomy forests, and relatively little on the single
kernel tree. This makes sense. For a single taxonomy, a single kernel is solely responsible for
discriminating a class from the others, making all kernels similarly useful. In contrast, in the forest,
two classes are related at multiple different nodes, making it necessary to select out useful views;
here, the hierarchical regularizer plays the role of favoring kernels at higher levels, which might
have more generalization power due to the training set size and number of classes involved.

The per-class and per-taxonomy comparisons in Figure 3 further elucidate the advantage of using
multiple complementary taxonomies. A single semantic kernel tree often improves accuracy on
some classes, but at the expense of reduced accuracy on others. This illustrates that the structure of
an individual taxonomy is often suboptimal. For example, the Habitat taxonomy on AWA-10 helps
distinguish humpback whale well from the others—it branches early from the other animals due to
its distinctive “oceanic” background—but it hurts accuracy for giant panda. TheWordNet taxonomy
does exactly the opposite, improving giant panda via the Biological taxonomy, but hurting hump-
back whale. The semantic kernel forest takes the best of both through its learned combination. The
only cases in which it fails are when the majority of the taxonomies strongly degrade performance,
as to be expected given the linear MKL combination (e.g., see the classes marimba and rule).

Further qualitative analysis Figure 4 (a-d) shows the confusion matrices for AWA-4 using only
the root level kernels. We see how each taxonomy specializes the features, exactly in the manner
sketched in Sec. 1. The combination of all taxonomies achieves the highest accuracy (55.00), better
than the maximally performing individual taxonomy (Appearance, 50.83). Figure 4 (e-f) shows
the learned kernel combination weights βc for each class c in AWA-10, using the two different
regularizers. In (e), the L1 regularizer selects a sparse set of useful kernels. For example, the
humpback whale drops the kernels belonging to the whole Behavior taxonomy block, and gives the
strongest weight to “hairless”, and “habitat”. However, by failing to select some of the upper-level
nodes, it focuses only on the most confusing fine-grained problems. In contrast, with the proposed
regularization (f), we see more emphasis on the upper nodes (e.g., the “behavior” and “placental”
kernels), which helps accuracy.

5 Conclusion

We proposed a semantic kernel forest approach to learn discriminative visual features that leverage
information from multiple semantic taxonomies. The results show that it improves object recog-
nition accuracy, and give good evidence that committing to a single external knowledge source is
insufficient. In future work, we plan to explore non-additive and/or local per-instance kernel combi-
nation techniques for integrating the semantic views.
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