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In this document, we provide the following additional information:

1. Architectures and implementation details.
2. Additional policy learning details.
3. Validation plots.
4. ModelNet Hard dataset construction.
5. Additional policy visualization examples.
6. Additional training time for sidekicks.

1 Architectures and implementation details
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Fig. 1: Architecture for ltla baseline [1]. Note: G = M*N*C

Before we review the architecture, we list out some key notations:

– pt - proprioception input, consists of the relative change in elevation, azimuth
from t− 1 to t and the absolute elevation at t.

– p∗t - pt augmented with absolute azimuth
– xt - input view, dimensionality is C × H × W where C is the number of

channels, H is the image height and W is the image width. For SUN360,
C = 3, H = 32,W = 32 and for ModelNet Hard, C = 1, H = 32,W = 32.
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Fig. 2: Architecture for critics used in our Actor Critic training. The Partial Observability critic is
used for ours(rew)+ac, ours(demo)+ac and the Full Observability critic is used for asymm-ac [2]. Note:
K = N ∗M ∗ 128

– M - number of azimuths in X (8 for SUN360 and 9 for ModelNet Hard).

– N - number of elevations in X (4 for SUN360 and 5 for ModelNet Hard).

We follow the same architecture (see Fig. 1) for the modules described in [1].
Models are implemented in PyTorch and layer naming conventions are accord-
ingly followed 3. For all the Conv layers, filter size = 5, stride = 1 and zero
padding = 2; for all the Deconv (aka transposed convolution) layers, filter size
= 5, stride = 2, zero padding = 2 and output padding = 1.

We have two critic architectures for our experiments (see Fig. 2). The critic
with partial observability consists of a similar architecture as the Act module.
The critic with full observability takes in the absolute position on the view-
grid and the entire viewgrid as additional inputs. Each view of the viewgrid is
processed by the Sense module (to give V ∗X) and the encoded views are fused
together using two FC layers. This aggregated state, proprioception input, ab-
solute position, and fused viewgrid are concatenated and processed by the critic
to obtain the value of the current view.

We use the Adam optimizer with a learning rate of 0.0001 − 0.003, weight
decay of 1e-6, and other default settings from PyTorch 4. We also set λr = 1 and
λp = 1 based on grid search. In the case of the demonstration-based sidekick, we
decay Tsup from T −1 to 0 after every 50 epochs. For the reward-based sidekick,
we decay the rewards by a factor of 2−10 after every 100−500 epochs (selected
based on grid search). All the models are trained for 1000 epochs. For the reward-
based sidekick, we use a non-maximal suppression neighborhood of 1 and K = 4
views for SUN360, and neighborhood of 2 and K = 5 views for ModelNet Hard.
The neighborhood and number of views were selected manually upon brief visual
inspection to ensure sufficient spread of rewards on the viewgrid.

To solve for ∆a∗ from Eq. 10 in the main paper, we use stochastic gradient
descent with learning rate of 0.0001, weight decay of 0.1 and momentum of 0.9.
We run the optimization for a maximum of 200 iterations, and perform early

3 refer to http://pytorch.org/docs/master/nn.html
4 refer http://pytorch.org/docs/master/optim.html



Sidekick Policy Learning for Active Visual Exploration 3

stopping if |∆a| crosses 0.75|at|. The parameters were selected to increase the
chances of the probability change being maximised.

2 Additional policy learning details

Let the weights of the critic be denoted by Wc. Following standard actor-critic
training, a regression loss over the critic’s value prediction is additionally used
to update the agent’s parameters, specifically, Ws,Wf ,Wr,Wc:

∆W{s,f,r,c} = −∇{s,f,r,c}
1

n

n∑
i=1

T−1∑
t=1

(
vit −

T−1∑
t′=t

ri
t′

)2

, (1)

where n is the number of data samples and vit is the value estimated by the Value
network at time t for the ith data sample. We additionally include a standard
entropy term to promote diversity in action selection and avoid converging too
quickly to a suboptimal policy. The loss term and the corresponding weight
update (on Wa,Wr,Wf ,Ws) are as follows:

Lent =
1

n

n∑
i=1

T−1∑
t=1

(∑
δεA

π(ait, j)log π(ait, δ)

)
∆W{a,r,f,s} = −∇{a,r,f,s}Lent.

(2)

3 Validation plots

Fig. 4 in the main paper shows the validation error plots for both datasets
to compare the speed of learning for our method trained with REINFORCE
vs. ltla [1] trained with REINFORCE. Here, Fig. 3 shows the parallel validation
error plots comparing ours(rew), ours(demo) and asymm-ac [2] using Actor-
Critic. Note that separating by REINFORCE vs. Actor-Critic ensures both sets
of plots are apples-to-apples. The bump in the yellow curve on the SUN360 plot
reflects how the demonstration schedule changes over epochs.

4 ModelNet Hard construction

As noted in the paper, we altered the sampling angles, lighting conditions, and
object materials to increase the reconstruction difficulty of the rendered images.
In Fig. 4, we render the same object using settings similar to [1] and our settings
from ModelNet Hard.

The rendering details are as follows. We sampled the angles at intervals of
40◦ (as opposed to 30◦ in [1]) to reduce the number of views which were similar
in appearance and geometry. We further altered the lighting positions to be non-
uniform across views and used higher specularity to generate complex renderings.
Specifically, we use two light sources, each placed below and above the object.
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Fig. 3: Validation errors (×1000) vs. epochs on SUN360 and ModelNet Hard (Actor Critic methods)

ModelNet Hard ModelNet

Fig. 4: An example to qualitatively compare the renderings of ModelNet Hard vs. ModelNet from [1]

The exact coordinates are selected relative to the size of the object. Each light
source is placed randomly at one out of two locations for a given object. Using
MATLAB’s rendering toolbox5, we render the objects with “interp” shading,
“dull” material, “gouraud” face lighting, ambient strength of 0.4, diffuse strength
of 0.9, specular strength of 0.7 and specular exponent of 15. The data is available
to ensure reproducibility 6.

5 Policy visualization examples

Fig. 5 visualizes the policy beliefs for ours(demo), ours(rew) and ltla on the
SUN360 examples from the main paper and an additional example. Fig. 7 shows
examples for ModelNet Hard.

5 refer to https://www.mathworks.com/help/matlab/visualize/lighting-overview.html
6 http://vision.cs.utexas.edu/projects/sidekicks/

http://vision.cs.utexas.edu/projects/sidekicks/
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Fig. 5 shows how all the models follow a similar behaviour of visiting re-
gions with low heatmap densities, as indicated by the red arrows. This shows
how the agents are often moving towards the views that are not yet contribut-
ing effectively to their action selection, to improve their understanding of the
scene. The heatmap “density” serves as a high-level visual for the spread of the
agent’s reasoning about its belief state as it influences its action selection: the
greater the spread, the more its belief about the full unobserved environment
is directing camera motion selections. The heatmap density of ours(demo) lies
between that of ours(rew) and ltla, which is consistent with the quantitative
performance observed (refer to the main paper). We also note the qualitative dif-
ference between the heatmaps of ours(demo) and ours(rew). While both have
dense heatmaps across the entire viewgrid, ours(demo) appears to rely signifi-
cantly more on its beliefs about the ground plane of the scene. However, there
are cases where the visualizations are not conclusive in differentiating between
the policies. As shown in Fig. 6, we can see that visualizations are dense across
all models, and therefore, less conclusive.

In Fig. 7, we see our visualization is less effective in differentiating the policies
on ModelNet Hard, possibly due to the narrower margins in the reconstruction
errors for this dataset. However, it is interesting to note that the heatmap den-
sities are better concentrated on the object for ours(rew) and ours(demo),
whereas it often unnecessarily leaks to the background pixels for ltla.

6 Additional training time for sidekicks

In order to account for additional training time required to train the sidekicks,
we analyze the time taken for training various models and sidekicks. Since all
models are pretrained with T = 1, including ltla — the training overhead
(∼ 64 min) is identical for the baseline. Both sidekicks use the T = 1 model to
compute scores (see Sec. 3.4 from main paper), a one-time cost of ∼ 10 min. To
train for 500 epochs, ours (rew) and ours (demo) require ∼ 450 and ∼ 485
min, resp, while ltla and asymm-ac take ∼ 465 and ∼ 529 min, resp (averaged
over 3 runs) 7. Therefore, the additional training time for sidekicks is nominal
in comparison to the overall training process. However, training the expert for
expert-clone takes as long as it takes to train a full model (∼ 1000 minutes
for 1000 epochs), which is ∼ 17× the time required to pre-train at T = 1 and
pre-compute the sidekick scores.
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Fig. 5: Policy visualizations of ltla, ours(rew) and ours(demo) on four examples from SUN360. The
policies tend to visit regions on the viewgrid with low heatmap densities in order to improve their
belief about the environment. Better policies tend to more rapidly improve their beliefs, as witnessed
by denser heatmaps. Best viewed on pdf with zoom.



Sidekick Policy Learning for Active Visual Exploration 7

t = 1 t = 2 t = 3 t = 4

o
u
r
s
(
r
e
w
)

l
t
l
a

o
u
r
s
(
d
e
m
o
)

g
t

t = 1 t = 2 t = 3 t = 4

o
u
r
s
(
r
e
w
)

l
t
l
a

o
u
r
s
(
d
e
m
o
)

g
t

Fig. 6: Examples of less conclusive visualizations on SUN360, where ltla, ours(rew) and ours(demo)
have similar heatmap densities. Best viewed on pdf with zoom.
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Fig. 7: Policy visualizations of ltla and ours(rew) on three examples from ModelNet Hard. Best
viewed on pdf with zoom.
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