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In this document we provide the following:

1. Justification for predicting snap angle azimuths (Sec. 3.1 in main paper)
2. Details on network architecture (Sec. 3.2 in main paper)
3. Training details for the baseline Pano2Vid(P2V) [7]-adapted (Sec. 4.1 in

main paper)
4. Interface for Amazon Mechanical Turk when collecting important objects

and persons (Sec. 4.2 in main paper)
5. More results when ground-truth objectness maps are used as input (Sec. 4.2

in main paper)
6. Interface for user study on perceived quality (Sec. 4.3 in main paper)
7. The objectness map input for failure cases (Sec. 4.3 in main paper)
8. Additional cubemap examples (Sec. 4.3 in main paper)
9. Setup details for recognition experiment (Sec. 4.4 in main paper)

1 Justification for predicting snap angle in azimuth only

This section accompanies Sec. 3.1 in the main paper.
As discussed in the paper, views from a horizontal camera position (elevation

0◦) are typically more plausible than other elevations due to the human recording
bias. The human photographer typically holds the camera with the “top” to the
sky/ceiling.

Figure 1 shows examples of rotations in elevation for several panoramas. We
see that the recording bias makes the 0 (canonical) elevation fairly good as it is.
In contrast, rotation in elevation often makes the cubemaps appear tilted (e.g.,
the building in the second row). Without loss of generality, we focus on snap
angles in azimuth only, and jointly optimize the front/left/right/back faces of
the cube.
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Fig. 1. Example of cubemaps when rotating in elevation. Views from a horizontal
camera position (elevation 0◦) are more informative than others due to the natural
human recording bias. In addition, rotation in elevation often makes cubemap faces
appear tilted (e.g., building in the second row). Therefore, we optimize for the azimuth
snap angle only.
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Fig. 2. A detailed diagram showing our network architecture. In the top, the small
schematic shows the connection between each network module. Then we present the
details of each module in the bottom. Our network proceeds from left to right. The
feature extractor consists of a sequence of convolutions (with kernel size and convolution
stride written under the diagram) followed by a fully connected layer. In the bottom,
“FC” denotes a fully connected layer and “ReLU” denotes a rectified linear unit. The
aggregator is a recurrent neural network. The “Delay” layer stores its current internal
hidden state and outputs them at the next time step. In the end, the predictor samples
an action stochastically based on the multinomial pdf from the Softmax layer.

2 Details on network architecture

This section accompanies Sec. 3.2 in the main paper.
Recall that our framework consists of four modules: a rotator, a feature ex-

tractor, an aggregator, and a snap angle predictor. At each time step, it processes
the data and produces a cubemap (rotator), extracts learned features (feature
extractor), integrates information over time (aggregator), and predicts the next
snap angle (snap angle predictor). We show the details of each module in Fig-
ure 2.

3 Training details for Pano2Vid(P2V) [7]-adapted

This section accompanies Sec 4.1 in the main paper.
For each of the activity categories in our 360◦ dataset (Disney, Parade, etc.),

we query Google Image Search engine and then manually filter out irrelevant
images. We obtain about 300 images for each category. We use the Web images as
positive training samples and randomly sampled panorama subviews as negative
training sampling.
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Fig. 3. Interface for Amazon Mechanical Turk when collecting important ob-
jects/persons. We present crowdworkers the panorama and instruct them to label any
important objects with a bounding box—as many as they wish.

4 Interface for collecting important objects/persons

This section accompanies Sec. 4.2 in the main paper.

We present the interface for Amazon Mechanical Turk that is used to col-
lect important objects and persons. The interface is developed based on [1]. We
present crowdworkers the panorama and instruct them to label any important
objects with a bounding box—as many as they wish. A total of 368 impor-
tant objects/persons are labeled. The maximum number of labeled important
objects/persons for a single image is 7.

5 More results when ground-truth objectness maps are
used as input

This section accompanies Sec. 4.2 in the main paper.

We first got manual labels for the pixel-wise foreground for 50 randomly
selected panoramas (200 faces). The IoU score between the pixel objectness
prediction and ground truth is 0.66 with a recall of 0.82, whereas alternate
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Budget (T) 2 4 6 8 10 Best Possible Canonical

Ground truth input 0.274 0.259 0.248 0.235 0.234 0.231 0.352

Pixel objectness input 0.305 0.283 0.281 0.280 0.277 0.231 0.352

Table 1. Decoupling pixel objectness and snap angle performance: error (lower is
better) when ground truth or pixel objectness is used as input.

foreground methods we tried [5, 4] obtain only 0.35-0.40 IoU and 0.67-0.74 recall
on the same data.

We then compare results when either ground-truth foreground or pixel ob-
jectness is used as input (without re-training our model) and report the fore-
ground disruption with respect to the ground-truth. “Best possible” is the oracle
result. Pixel objectness serves as a good proxy for ground-truth foreground maps.
Error decreases with each rotation. Table 1 pinpoints to what extent having even
better foreground inputs would also improve snap angles.

6 Interface for user study on perceived quality

This section accompanies Sec. 4.3 in the main paper.
We present the interface for the user study on perceived quality in Figure 4.

Workers were required to rate each image into one of five categories: (a) The
first set is significantly better, (b) The first set is somewhat better, (c) Both sets
look similar, (d) The second set is somewhat better and (e) The second set is
significantly better. We also instruct them to avoid to choose option (c) unless
it is really necessary. Since the task can be ambiguous and subjective, we issued
each task to 5 distinct workers. Every time a comparison between the two sets
receives a rating of category (a), (b), (c), (d) or (e) from any of the 5 workers, it
receives 2, 1, 0, -1, -2 points, respectively. We add up scores from all five workers
to collectively decide which set is better.

7 The objectness map input for failure cases

This section accompanies Sec. 4.3 in the main paper.
Our method fails to preserve object integrity if pixel objectness fails to rec-

ognize foreground objects. Please see Fig. 5 for examples. The round stage is
not found in the foreground, and so ends up distorted by our snap angle predic-
tion method. In addition, the current solution cannot effectively handle the case
when a foreground object is too large to fit in a single cube face.
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Fig. 4. Interface for user study on perceived quality. Workers were required to rate
each image into one of five categories. We issue each sample to 5 distinct workers.

Fig. 5. Pixel objectness map (right) for failure cases of snap angle prediction. In the
top row, the round stage is not found in the foreground, and so ends up distorted by
our snap angle.
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8 Additional cubemap output examples

This section accompanies Sec. 4.3 in the main paper.
Figure 6 presents additional cubemap examples. Our method produces cube-

maps that place important objects/persons in the same cube face to preserve
the foreground integrity. For example, in the top right of Figure 6, our method
places the person in a single cube face whereas the default cubemap splits the
person onto two different cube faces.

Figure 7 shows failure cases. A common reason for failure is that pixel object-
ness [3] does not recognize some important objects as foreground. For example,
in the top right of Figure 7, our method creates a distorted train by splitting the
train onto three different cube faces because pixel objectness does not recognize
the train as foreground.

9 Setup details for recognition experiment

This section accompanies Sec. 4.4 in the main paper.
Recall our goal for the recognition experiment is to distinguish the four ac-

tivity categories in our 360 dataset (Disney, Parade, etc.). We build a training
dataset by querying Google Image Search engine for each activity category and
then manually filtering out irrelevant images. These are the same as the positive
images in Sec. 3 above.

We use Resnet-101 architecture [2] as our classifier. The network is first pre-
trained on Imagenet [6] and then we finetune it on our dataset with SGD and
a mini-batch size of 32. The learning rate starts from 0.01 with a weight decay
of 0.0001 and a momentum of 0.9. We train the network until convergence and
select the best model based on a validation set.
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Fig. 6. Qualitative examples of default Canonical cubemaps and our snap angle cube-
maps. Our method produces cubemaps that place important objects/persons in the
same cube face to preserve the foreground integrity.
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Fig. 7. Qualitative examples of default Canonical cubemaps and our snap angle cube-
maps. We show failure cases here. In the top left, pixel objectness [3] does not recognize
the stage as foreground, and therefore our method splits the stage onto two different
cube faces, creating a distorted stage. In the top right, our method creates a distorted
train by splitting the train onto three different cube faces because pixel objectness does
not recognize the train as foreground.




