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In this Supplementary Material, we provide extra details on
the following:

• Sec. A: deriving the softmax, eq. (13) in the main text.
We also show how to efficiently compute the marginal
probability P{i} in eq. (13).

• Sec. B: subgradients of the objective function of our
large-margin DPP (cf. eq. (14) in the main text).

• Sec. C: extra details on generating oracle video sum-
maries and evaluating summarization results against
user summaries.

A CALCULATING THE SOFTMAX

In the main text, we use softmax to deal with the expo-
nential number of large-margin constraints and arrive at
eq. (13) in the main text. Here we show how to calculate
the right-hand side of eq. (13).

We first compute
∑

y⊆Yn
`ω(yn,y)P (y;Ln) as follows∑

y⊆Yn

`ω(yn,y)P (y;Ln)

=
∑

y⊆Yn

[ ∑
i:i∈y

I(i /∈ yn) + ω
∑
i:i/∈y

I(i ∈ yn)

]
P (y;Ln)

(17)

=

M∑
i=1

[ ∑
y:i∈y

I(i /∈ yn)P (y;Ln)

+ ω
∑
y:i/∈y

I(i ∈ yn)P (y;Ln)

]
(18)

=

M∑
i=1

[
I(i /∈ yn)Pn{i} + ωI(i ∈ yn)

(
1− Pn{i}

)]
(19)

=
∑

i:i/∈yn

Pn{i} + ω
∑

i:i∈yn

(1− Pn{i}) (20)

∗Equal contribution

=
∑

i:i/∈yn

Knii + ω
∑

i:i∈yn

(1−Knii), (21)

where Pn{i} = Knii
is the marginal probability of select-

ing item i. Now we are ready to see

softmaxy⊆Yn log `ω(yn,y) + logP (y;Ln)

= log
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Moreover, recall that K = L(L + I)−1. Eigen-
decomposing L =

∑
m λmvmv

T
m, we have

K = L(L+ I)−1 =
∑
m

λm
λm + 1

vmv
T
m,

and thus, Kii =
∑
m

λm
λm + 1

v2
mi. (24)

B SUBGRADIENTS OF THE OBJECTIVE
FUNCTION

Recall that our objective function in eq. (14) of the main
text actually consists of a likelihood termL(·) and the other
term of undesirable subsets. Denote them respectively by

L(θ,α;Yn,yn) , logP (yn;Ln)

= log det(Lnyn
)− log det(Ln + I),

(25)
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 .

(26)

For brevity, we drop the subscript n of Ln and Knii
and

change yn to y? in what follows.



To compute the overall subgradients, it is sufficient to com-
pute the gradients of the above two terms, L andA. Denot-
ing by Θ = {θ,α, β}, we have
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)
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where ◦ stands for the element-wise product between two
matrices of the same size. We use the chain rule to decom-
pose ∂L

∂Θk
from the overall gradients on purpose. Therefore,

if we change the way of parameterizing the DPP kernel L,
we only need care about ∂L

∂Θk
when we compute the gradi-

ents for the new parameterization.

B.1 GRADIENTS OF THE QUALITY-DIVERSITY
DECOMPOSITION

In terms of the quality-diversity decomposition (c.f. eq. (7)
and (8) in the main text), we have

∂L

∂αk
= (qqT ) ◦ Sk,

∂Lij

∂θk
= Lij(xik + xjk),

or
∂L

∂θk
= L ◦ (Xek1T + 1eTkX

T ) (28)

where q is the vector concatenating the quality terms qi,X
is the design matrix concatenating xT

i row by row, and ek
stands for the standard unit vector with 1 at the k-th entry
and 0 elsewhere.

B.2 GRADIENTS WITH RESPECT TO THE DPP
KERNEL

In what follows we calculate ∂L
∂L and ∂A

∂L in eq. (27). Not-
ing that eq. (27) sums over all the (i, j) pairs, we therefore
do not need bother taking special care of the symmetric
structure in L.

We will need map Ly? “back” to a matrix M which is the
same size as the original matrix L, such that My? = Ly?

and all the other entries of M are zeros. We denote by
〈Ly?

〉 such mapping, i.e., 〈Ly?
〉 = M . Now we are ready

to see,
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=
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)−1〉 − (L+ I)−1. (29)

It is a little more involved to compute
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i/∈y?
Kii + ω

∑
i∈y?

(1−Kii)

×

∑
i/∈y?

∂Kii

∂L
− ω

∑
i∈y?

∂Kii

∂L

 , (30)

which involves ∂Kii

∂L .

In order to calculate ∂Kii

∂L , we start from the basic iden-
tity [Beyer, 1991] of

∂A−1

∂t
= −A−1 ∂A

∂t
A−1, (31)

followed by ∂A−1

∂Amn
= −A−1JmnA−1, where Jmn is the

same size as A. The (m,n)-th entry of Jmn is 1 and all
else are zeros.

Let A = (L + I). Noting that K = L(L + I)−1 =
I − (L+ I)−1 = I −A−1 and thus Kii = 1−
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ii

,
we have,

∂Kii

∂Lmn
= −

∂
[
A−1

]
ii

∂Lmn
= −

∂
[
A−1

]
ii

∂Amn

=
[
A−1JmnA−1

]
ii

= [A−1]mi[A
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We can also write eq. (32) in the matrix form,

∂Kii

∂L
= [A−1]·i[A

−1]T·i

= A−1eie
T
i A
−1 = A−1J iiA−1, (33)

where [A−1]·i is the i-th column ofA−1.

Overall, we arrive at a concise form by writing out the
right-hand-side of eq. (30) and merging some terms,∑

i/∈y?

∂Kii

∂L
− ω

∑
i∈y?

∂Kii

∂L

= A−1Iω(y?)A−1 = (L+ I)−1Iω(y?)(L+ I)−1

(34)

where Iω(y?) looks like an identity matrix except that its
(i, i)-th entry is −ω for i ∈ y?.

C VIDEO SUMMARIZATION

We provide details on 1) how to generate oracle summaries
as the supervised information to learn DPPs and 2) how
to evaluate system-generated summaries against user sum-
maries. We also present more results on balancing the pre-
cision and recall through our large-margin DPP.

C.1 ORACLE SUMMARY

In the OVP dataset, each video comes along with five user
summaries y1,y2, · · · ,y5 [de Avila et al., 2011]. Similar
to document summarization [Kulesza and Taskar, 2011],
we extract an “oracle” summary y? from the five user sum-
maries using a greedy algorithm. Initialize y? = ∅. From
the frames not in y?, we pick out the one i which con-
tributes the most to the marginal gain,

VSUMM(y? ∪ {i}, {y1, · · · ,y5})
− VSUMM(y?, {y1, · · · ,y5}), (35)



where VSUMM is the package developed in [de Avila et al.,
2011] to evaluate video summarization results. We post-
pone to Section C.2 for describing the evaluation scheme of
VSUMM. Namely, we select the oracle frames greedily for
each video and stop until the marginal gain becomes nega-
tive. We evaluate the oracle summaries against users’ and
find that they achieve high precision and recalls, 84.1% and
87.7% respectively, validating that the oracle summaries
are able to serve as good supervised targets for training
DPP models.

The above procedure allows a “user-independent” defini-
tion of a good oracle summary for learning. Of course if the
application goal were to generate user-specific summaries
catering to a particular user’s taste, one would instead sim-
ply apply our framework with y? set to be that particular
user’s selection.

C.2 VSUMM: EVALUATING VIDEO
SUMMARIZATION RESULTS

We evaluate video summarization results using the VSUMM
package [de Avila et al., 2011]. Given two sets of sum-
maries/frames, it searches for the maximum number of
matched pairs of frames between them. Two images are
viewed as a matched pair if their visual difference is be-
low a certain threshold. VSUMM uses normalized color his-
tograms to compute such difference. Besides, each frame
of one set can be matched to at most one frame of the other
set, and vice versa. After the matching procedure, one can
hence develop different evaluation metrics based on the
number of matched pairs. In our experiments, we define
F-score, precision, and recall (cf. eq. (15) of the main text).
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