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Abstract  

Human-object interaction recognition is important for detection of particular actions, small or 

partially occluded objects and video analysis. Our approach analyzes body poses and determines 

which ones are indicative of human-object interaction. We tested the method using videos 

containing different household actions. On average we obtained between 70 and 90 percent 

precision for the videos we tested on. 
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1. Introduction 

Often, a human observer can deduce that a person is interacting with an object, even if 

the object cannot be seen well. The way a human deduces that an interaction is occurring is by 

observing the body pose of the subject who is performing the interaction. This observation led us 

to believe that there is a correlation between body poses which indicate human-object 

interaction, and those that indicate the absence of such an interaction.  

The goal of this project is to develop an approach capable of recognizing human poses 

which are indicative of interaction with objects. This is achieved by developing a descriptor of 

the pose of a human body by first detecting a bounding box for the upper body, then detecting 

the face using a face detector, and finally using an upper-body pose estimator to determine the 

relative positions of the limbs. We then use the pose descriptor to train a learning algorithm so 

that it recognizes body poses that indicate the presence or absence of human-object interaction. 

For this study the specific instance of the object is not significant, and the algorithm does not 

learn how to distinguish it. Essentially, the sole important components are the body poses which 

indicate interaction with some object. 

Whereas early work in human activity understanding focused on gesture-like actions 

driven entirely by the "actor" in the scene (e.g., doing jumping jacks), more recently researchers 

have begun to tackle the more challenging problem of understanding activities defined by how 

the actors interact with objects in the scene (e.g., answering a phone). To that end, several recent 

methods have used human pose, in combination with other features, in order to detect objects in 

images or video [1, 5, 6, 12, 15]. In all of these works the only interactions considered are those 

between humans and objects. The reason for this simplification is that human-human interaction 

employs a much greater variety of motions; one actor can occlude the other; and ambiguous 

gestures are generally involved. 

In the previous works which we listed above, the object in the interaction has always 

been of significance. This creates the additional restriction of working with objects and poses 

which have been seen before.  

The novelty of this thesis is that the object is irrelevant and the goal is to learn which 

human poses indicate interaction with an object from an arbitrary – and potentially unfamiliar – 

category. Some advantages of this approach are that there is no limit to the variety of the body 

poses; and since the algorithm does not require specific knowledge about the class of objects 

with which people are interacting, our approach does not suffer any setbacks if the object with 

which the person is interacting is partially or fully occluded, or has low resolution. 

For example, in Figure 1a) and Figure 1b) the silverware and card, respectively, are small 

and blend in with the background. This makes them difficult to detect. In Figure 1c) the object – 

the blueberry in front of the boy’s eye – is too small and lacks discriminative features to be 

detected.  In Figure 1d) the peanuts the man is sitting in form a cluttered background and blend 

in with the peanuts he is throwing. Thus, the peanuts he is throwing cannot be detected. In Figure 

1e) and Figure 1f) the object of interaction – the toothbrush and phone – are fully or partially 

occluded, and therefore will be difficult to detect with an object detector. In each one of the 
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images, it is difficult to impossible to detect the nature of the object with which the person 

interacts, however, the body pose of the actor is indicative of his/her action and the object he/she 

uses. Thus, if we can predict whether or not an interaction is likely, our system will know where 

and when to focus its search for an object of interest, as well as have a prior on what type of 

objects are most likely. 

 

Figure 1a) Woman with fork and 

spoon; 

 
Figure 1b) Man opening door with a 

card; 

 
Figure 1c) Boy picking berries; 

 
Figure 1d) Man sitting in peanuts 

and throwing peanuts; 

 
Figure 1e) Woman brushing her 

teeth; 

         
Figure 1f) Man talking on phone; 

Figure 1a) b) c) d) e) f) Predicting whether a human-object interaction is occurring would be particularly valuable 

in cases where the object detection problem in isolation is too difficult, as illustrated in these images.  

 

More generally, the ability to detect poses indicative of human-object interaction is 

important for activity analysis, extraction of movie frames containing action and object 

recognition (see Figure 1).  

First, the project can be used as a stepping stone for research that aims to identify the 

activities which humans perform with a specific object. If given only a series of videos 

containing interaction with the same object, our tool will extract the frames where the human is 

interacting with the object. Then, different methods can be performed for action analysis, in 

order to learn the movements which the human performs with the object. In addition, since we 

maintain the relative positions of the body parts of the person in each frame, the method is able 

to analyze the relationship between the subject’s limbs in different frames during the interaction 

with the object. 

Second, the results of human-object interaction recognition can be used to detect where 

action occurs in a video. This information can be applied to compress long videos into only the 

parts containing action. 
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Finally, human-object interaction can be used to recognize objects through the body pose 

of a human. Often, it is the case that an object is small, partially occluded or has a small number 

of discriminative features. In such cases, the body pose of the human who operates the object is 

often indicative of the nature of the object. Such methods require a representation of the human 

body pose while the actor is interacting with the object. In such methods it is also necessary to be 

able to automatically detect frames in which interaction is likely to occur. Our method provides 

both a descriptor of the body pose and frames containing human-object interaction. 

Therefore, there are several salient applications of the method we present in this thesis. 

 

2. Related Work 
The space of research in activity recognition and pose estimation is quite broad.  We 

focus this review particularly on those methods that jointly estimate poses and objects for 

activity understanding. Approaches such as Bangpeng et al. [1] show an exception to this rule, 

since in this approach, the goal is to only use patches of the image, which are indicative of the 

action being performed. However, most approaches for action categorization consider the human 

pose with or without the context of the surroundings and the object the actor is interacting with. 

Body pose has been used in several different scenarios, usually as a tool to obtain 

information for human-object interaction.  For example, in [12] Prest et al. create a human 

centric algorithm in which they create weakly supervised leaning approach for recognizing pre 

learned human-object interactions. They do this by introducing a human body detector which can 

recognize different body parts. The algorithm then runs on a set of images of a person 

performing the same action and determines the special relationships between the human and the 

object involved with the action. 

In addition, in [8] Maji et al. focus on reconstructing the unseen parts of a body in an 

image, and using the reconstruction, along with the visible body parts, to categorize the action a 

human is performing. To train their algorithm they use images where the actor’s limbs, the 

action, and the object of interaction are all labeled. Maji et al. use those images to train their 

algorithm to recognize a variety of human poses. They then, introduce an unknown image, in 

which a part of the human limbs are cut off the edge of the image. Subsequently, Maji et al.’s 

trained algorithm matches the visible body parts to the most closely fitting training sample. 

Finally, the reconstructed body pose gets categorized as a particular action. 

Thus, in both Maji and Prest’s algorithms, the body pose is detected, the object of 

interaction is known and the goal is to characterize the action which the human is performing on 

the object. 

Kjellstrom et al.’s approach in [6] is another work where, the body pose is considered in 

deciding the location of an object. In their approach Kjellstrom et al.’s extract descriptive 

features of the human hand and the object of interactions. The object-action correlation is 

modeled by using conditional random fields [6]. During classification, the change in the shape of 

the hands, as well as the relative movement of the hands in relation to the head are used to create 

a descriptor which is applied to locate the object of interaction. Next, the correlation between the 
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descriptor and the object’s shape and location are used to find an action, among the training 

cases, which most closely fits the data we have for the present classification example. Finally a 

label for the type of interaction is assigned to the novel video. 

On the other hand, Peursum et al. use vivid human poses in order to classify regions of an 

image as specific objects [10]. This approach uses only human poses to detect objects, but the 

said human pose must be descriptive and unambiguous. The authors base their study on labeling 

patches of the image based on the objects they contain. Then they detect a rough body pose for 

the actor, and throughout a given video, classify the objects with which the person is interacting, 

based on his relationship to the patches labeled with the objects they contain. 

To this end, most of the other work which aims to recognize human object interaction 

considers the object at hand and its relationship to the actor. 

Our approach brings novelty to this field, because it is object category-independent, and 

only considers the human body poses which indicate object interaction in a video. Thus, unlike 

the case in [10] we must deal not only with very descriptive poses, but also with ambiguous 

ones.  

3. Human-Object Interaction Detection Approach 
In order to detect when human-object interaction is taking place, the main idea of our 

approach is to create a descriptor which works based on the location of body parts, relative to 

one another. We then aim to classify the descriptors into two sets – one set will indicate human-

object interaction and the other will indicate the absence of such interaction. Intuitively, the set 

of body positions which indicate human-object interaction tend to display displacement of limbs 

when compared to body positions which indicate no human-object interactions. Therefore, the 

two sets of body poses should be able to be grouped in two clusters, sharing common 

characteristics. Thus, given two sets of data, where each one has its own unifying characteristics, 

it should be possible to teach them to a learning algorithm, so it can classify novel body poses as 

belonging to one of the two sets, based on common characteristics.  

Briefly, our pipeline starts out by taking a video as its input and cutting it into frames. 

Then for each frame we find the location of the person’s upper body, and use that to find the 

exact locations of his body parts. The body part locations are then used to form a descriptor, 

which is fed into the training stage of a Support Vector Machine (SVM). Once the SVM is 

trained, we process the video to be classified the same way we processed the videos used for 

training. Subsequently, we get a descriptor vector for the person in each frame of the novel 

video. Finally, we classify this vector using the SVM and thus, we determine if the frame 

contains human-object interaction.  

A diagram of our pipeline’s main components is shown in Figure 2. 
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b) Classification Stage 

Figure 2. Overview of pipeline. 

 

Below, we describe the test data, the input and the output of our method. We then follow 

with an overview of the pipeline, and finally we give a detailed description of the 

implementation of each step of the pipeline. 

 

3.1 Test Data: 

For training and classification data we used the University of Rochester’s “Activities of 

Daily Living” dataset [13] which is a database of daily activity videos performed by different 

people and in different ways. Each video is shot through a stationary camera, and contains one 

person performing an assigned activity.  

We used four activities – answer phone, chop banana, drink water and eat banana - each 

performed by five different people. In Figure 3) we show a sample of each activity. A variation 

of each activity was performed by each individual three times. Each video is between three and 

thirty seconds long. When turned into frames, each video amounts to between two hundred and 

six hundred frames.  

 

 

 

 

  



11 
 

 
Answer Phone Chop Banana 

 
Drink Water 

 
Eat Banana 

 
Answer Phone 

 
Chop Banana 

 
Drink Water 

 
Eat Banana 

Figure 3. The four actions we used, demonstrated by different actors. 

  

3.2 Input and Output:  

Once we have obtained a trained SVM from earlier stages of the pipeline, the input to our 

approach is a video shot through a stationary camera. This video is then processed as described 

in section 3.4, in order to produce a final result consisting of a labeled version of each frame of 

the video. A labeled frame is one which indicates for each human in the frame a prediction as to 

whether that human is interacting with an object or not. 

 

3.3 Main Components of the Pipeline:  

The algorithm can most generally be divided into a preparatory stage, an SVM training stage and 

an SVM classification stage. Hereafter, we describe the workings of each stage. 

3.4  Preparatory Stage 

 

3.4.1 Cut the video into individual frames by using ready library functions. 

3.4.2 Detect faces  

The first part of our feature descriptor relies on the position of the face in the video 

frame. To perform face detection in each frame we used the Viola Jones face detector [14], 

which briefly works as follows. Their algorithm uses a set of rectangular features which run 

across a potential face region of an image [14]. In the training step, the features are run on 

images with a known ground truth. Then a learning algorithm, similar to ADA Boost [4] is used 

in order to select a small set of visual features and form classifiers from those features.  

Finally, a cascade is made, whose levels are classifiers. The simpler strong classifiers are 

towards the top of the cascade, and the more complex ones follow after them. Each level of the 

cascade considers only sub-windows containing features which pass through the classifiers 

which came higher on the cascade. The potential face regions are the ones which pass through all 

strong classifiers and the output we get at the end consists of the coordinates of the detected face 

regions. This method provides between 90% and 95% correct detection rate [14].  

Thus, we chose to use this method in detecting faces because it is fast, reliable (when 

detecting frontal faces) and is invariant to skin color. 

  

3.4.3 Detect the upper bodies  
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The next step of the pipeline is to extract the position and scale of the upper body of the 

actor in each video. The approach which we used to detect an upper body bounding box for a 

human is presented in [2]. The detector is meant for frontal view and detects human bodies based 

on histograms of oriented gradients. The authors detect the location of a body by detecting the 

face first and then narrowing down the search space for the body. In order to narrow down the 

search space, they separate the foreground from the background, and then search for the body, 

using a sliding window through the foreground of the image. In the perfect case the bounding 

box of the detector captures the location between the subject’s head and upper arms. Because of 

this method’s high detection rate, we used the approach provided by [3] to detect the upper body 

bounding boxes on our data. Some results from our experiments with the upper body detector 

can be seen in Figure 3. We show both a perfect detection in Figure 3a) and one with false 

positives in Figure 3b). Thus, as seen in Figure 3b), in a video we get many false positives and 

among them we have to determine the correct upper body bounding box detection.  

 

 
Figure 3. a) Correctly detected upper body. The 

bounding box for the upper body is outlined in orange. 

Figure 3. b) An example of false positives. There is 

one correct upper body bounding box and multiple 

false positives. 

 

This method is helpful for finding the upper body of a human. It works well in a cluttered 

scene and with changing backgrounds. In addition, it provides reliable information about the 

scale of the person being detected. However, as mentioned above, this algorithm ends up  with a 

high percentage of false positives. This creates a difficulty because the false positives must be 

eliminated in order for the results of this method to be useful. 
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Figure 4. a) The yellow squares are the possible 

face detections given by the face detector. The red boxes are 

the possible upper body detections given by the upper body 

detector. 

 x     y     w      h      box_scale    score 

561  359 127  114  1.2763          3.74077372e-02    

494  64   356  320   3.56239       5.15766740e-02    

 
Figure 4. b) The output of the detected upper 

body bounding boxes. For each box, we have the 

following output:  

x – upper x coordinate of the box. 

y - upper y coordinate of the box  

w - width of the box 

h – height of the box,  

box_scale -  scale of the box 

score - the probability of the box being an upper 

body bounding box.  

 

Due to the high false positive rate, we must remove the false positives. The intuition is to 

rely more heavily on detected faces in order to prune the body detections, since face detection is 

a more constrained task with typically more reliable results.  

Assume we are currently analyzing a given frame, and that we have found the true upper 

body and face bounding boxes in the previous frame. In order to find the true face bounding box 

and upper body bounding box in the current frame we need to go through all detections and pick 

the correct one. 

In order to narrow down our choice of face bounding boxes in the current frame, we 

consider only bounding boxes which are close in location to the face bounding box we found in 

the previous frame. Then, for each detected upper body bounding box in the current frame we 

compute the area of overlap between the bounding box and the face detections which we are still 

considering. We, then, throw away all face bounding boxes detections which do not overlap with 

any upper body bounding box detections.  

For the remaining set of detections, we score three features in order to determine the true 

upper body bounding box. The first feature we score is the percentage overlap of upper body 

bounding boxes with face bounding boxes.  The upper body bounding box which gives the 

largest percent of face bounding box area inside the upper body bounding box gets scored the 

highest; and the upper body bounding box which contains no part of a face detection bounding 

box gets the lowest possible score. 

The second component we score is the scale of the upper body bounding box. The closer 

the scale of the current upper body bounding box is to the scale of the previous frame’s upper 

body bounding box – the higher score it gets. The way we compute score is 1/|scale of previous 

frame’s bounding box – scale of current bounding box|. 

The third factor we consider the distance of the current bounding box from the previous 

frame’s upper body bounding box. Again, the smaller the distance between the two, the larger 

the score we assign for this component.  
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Finally, we add the three components in order to get a single numerical score for this 

particular upper body bounding box. Using this method, we compute the score of each upper 

body bounding box in the current frame. Then we pick the upper body bounding box with the 

highest score, to be the correct upper body bounding box for this particular frame. 

  The result obtained by applying this scoring method on the image shown in Figure 4 is 

given below, in Figure 5. 

 

Figure 5. Shown in blue is the upper body bounding box determined by the algorithm. The box which 

is not selected as an upper body bounding box still appears outlined in red. 

 

For most frames, this approach obtains the correct result as seen on Figure 5. However, in 

case there is a frame where none of the detected upper body bounding boxes are correct, we 

inevitably get the wrong result as can be seen on Figure 6. Notice, the problem arises when we 

do not get a good match for the upper body scale and for the distance between the upper body 

detection in two consecutive frames. In such cases we can resolve the issue by considering the 

upper body bounding box for the current frame to be the same as that of the previous frame. 

However, this approach fails when we have several frames in which we do not have a good 

upper body bounding box detection. In those cases, at the end of the K-frame long sequence of 

bad detections, the subject has moved far from the location where we predict to find the upper 

body bounding box, so even if one of the detections in the current frame is the correct bounding 

box for frame N+K, since our detection in frame N+K-1 was far away from the current detection, 

the correct current detection seems to be invalid and the method keeps not capturing the person’s 

upper body.  

As a final product of the upper body detector, for each frame it is run on, the tool returns 

the absolute image coordinates of all upper body bounding boxes found. In addition it outputs the 
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probability that each detected bounding box is truly an upper body bounding box, along with the 

scale of each detected upper body bounding box.  
 

 
Figure 6. a) Upper body bounding boxes detected. Detected bounding boxes shown in red. 

 
Figure 6. b) Detected upper body bounding box shown in blue. 

 

 

3.4.4 Body Parts Detector  

Having extracted the face and upper body, we next want to obtain an estimate of the 2D 

poses of all the body's limbs. In [3] Ferarri et al. develop a method which takes as an input an 

upper body bounding box, and returns the body parts of the upper body of the human in the 

bounding box as shown in Figure 7.  
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Figure 7. We use as input the upper body bounding box of the person. Then, the body parts are detected 

using the algorithm proposed in [3], and each limb is outlined in different color. 

 

The method works as follows: First, the authors narrow down the search for the body 

parts by considering only the foreground as a possible location for the body parts. Then, given 

the upper body bounding box – the method reduces the search space further by using grabcut on 

regions detected in the upper body bounding box as weak indicators of human presence. This 

way, the method determines the rough locations of the head and torso. From the upper body 

bounding box, the authors also determine the scale of the subject. Next, Ferrari et al. limit the 

search space for the locations of the upper arms by considering only the parts of the foreground 

which are reachable by a human of the calculated scale. Finally, they detect the specific body 

parts by using detectors trained on those body parts. 

The final output of the method are the start and end coordinates of the detected head, 

torso, upper left arm, upper right arm, lower left arm and lower right arm. The coordinates of the 

body parts are output in absolute image. In addition, to help visualize the detections, for each 

original frame one runs the method on, an additional frame gets created, so that that frame 

contains the drawn-in body parts in the locations where the method has detected them. 

This approach is useful in scenes where clutter is present, there is no prior knowledge of 

the position of the subject to be detected, and a wide variety of poses is possible. In addition, the 

orientation of the subject does not have to be frontal. The authors claim that the subject can turn 

up to 30 degrees out of plane rotation [3]. In addition since the method does not rely on prior 

knowledge of skin color, the user does not have to retrain the method to tailor it to his own use. 

 Originally, in the body parts detector method, each detected limb is described by its 

starting and ending points in image coordinates. In our method, however, the actual location of 

the body is insignificant. We aim to be able to determine the body poses which indicate 
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interaction no matter where the subject is in the image. Therefore we need to be able to get the 

limbs’ location independent of their location within the frame. To solve this problem, we use as 

an origin the lowest point of the detected head and thus make the body parts coordinates 

translation invariant. 

 The head’s coordinates are a good choice because every time we find a correct upper 

body bounding box, the body parts detector detects the head correctly. Thus, unlike the upper 

and lower arms, which do not always get detected well, the head detection gives us a reliable 

origin and we can form relative coordinates for each body part.   

 By contrast, we do not normalize the scale of the body. We do this because in the videos 

used for testing the relative scale of the people is about the same throughout the video. In 

addition, we monitor the scale of detected bodies. If we see a large change in the scale of a body 

from one frame to the next we take this to indicate a wrong body detection, and we do not 

consider this detection when training or testing the SVM. 

Now, with the extraction of the relative coordinates of the body parts, we conclude the 

pre-processing of the videos and we are now ready to use the gathered data to train the SVM. 

Next, we describe the training stage of the SVM. 

 

3.4.5 Body Pose Description Vector   

We currently have a matrix containing two points (equivalent to 4 coordinates total) for each 

limb. In order to use the limb coordinates as vectors in an SVM, we must create a vector out of 

each body pose we have detected. To do so, we flatten out the array containing the relative 

coordinates of the body parts. Thus we get a vector, containing 24 entries (since we have 6 limbs 

and each limb is described by two points). The description vector will later be plugged into the 

SVM in our approach and algorithm. 

3.5 Support Vector Machine  

 

A Support Vector Machine (SVM) is used to assign each member of a set to one of two 

labels, as described in [11].  There are two stages in which the SVM achieves this goal – a 

training stage and a classification stage.  

During the training stage, we feed into the SVM each point along with the ground truth. 

The ground truth indicates which set a point belongs to. Then we create a function to partition 

the two sets. During the classification stage, we use unknown data points, plug them into the 

SVM, and we observe to which set the points were assigned.  

 The two stages are described in more detail below. 

  

3.5.1    Defining Ground Truth Frame Labels  

As described in section 3.6.1, when training an SVM, we must plug in a set of vectors. 

Each vector must be labeled as belonging to one of two groups. Therefore, each frame of the 

videos which we will use to train our SVM must be labeled as either containing human-object 
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interaction, or not containing human-object interaction. This information will be held in the 

ground truth vector which we will create as follows.  

 The training videos are such that each video contains a single subject who is present in 

the video throughout the duration of the video. Therefore, we can assume that it is enough to 

label each frame as one with human-object interaction, or one without human-object interaction 

based on the current state of the single subject in the video. Thus, if our sliced video contains N 

frames, the ground truth label vector contains N entries. In entry k we put a 1 if frame k of the 

sliced video contains human-object interaction and we put -1 otherwise.  

Whether frame k contains human-object interaction is determined by a human and is 

therefore somewhat fuzzy. For example as a person reaches for an object, we label him as not 

interacting with the object until it is clear which object the person is reaching for. However, 

“clear” is somewhat open for interpretation. In addition, in some videos, the person is holding a 

knife throughout the entire video. In other words, he never reaches for the knife nor puts it down. 

Since we are not tracking the person’s hands and their shape, in such videos, we have no way of 

knowing that the person is holding the knife until he starts using it.  Thus, in these videos we are 

aware that we cannot detect the human-object interaction until the actor aims at cutting 

something with the knife.  

An overall disadvantage of our data can be seen when constructing the ground truth 

vector. The disadvantage is that the videos contain a very small number of frames where the 

subject does not interact with any object, and a much larger set of frames where the subject does 

interact with an object. This trend ends up creating uneven sets of human-object interaction and 

non-human-object interaction and will later cause us to have to adjust our SVM.     

 

3.5.2 Training  

If the problem at hand contains n-dimensional vectors which must be classified, then a set 

of training points must be made first. The set of training points must possess the feature which 

the user wants to classify the unknown points according to. Each training point is N-dimensional 

and is labeled as belonging to group 1 or to group 2. The training points then get plotted into the 

n-dimensional SVM and a dividing hyperplane is determined between the points in group 1 and 

those in group 2. The SVM is now created and will be kept throughout the classification stage. 

While plugging the training points it is possible to create a penalty for the hyperplane’s 

location. In a good set of data, the hyperplane would divide the two groups in a way that all 

vectors of group 1 are on one side of the plane, and all vectors of group 2 are on the other. 

However, in some cases the data are not linearly separable and thus, there must be a compromise 

on the division. In this case, one can penalize the number of points which end up on the wrong 

side of the dividing line. This penalty approach has the effect of finding the best dividing 

hyperplane for a set of data which cannot be divided perfectly. 

We then use the body pose descriptor vectors defined earlier, and map them in a 24 

dimensional SVM. In each frame j, have one descriptor vector j. When we plot j in the SVM we 

label j as one indicating or not indicating an interaction with an object. The label we assign to j 
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corresponds to the value of the j-th coordinate of the ground truth vector. Once we map the body 

pose descriptor vectors from all frames, the SVM space contains two sets of points. One is the 

set of the points which marks an interaction between the human and the object, and the other 

marks that there is no interaction between the human and an object. 

Once the descriptors are mapped and labeled as interaction and non-interaction, we train 

the SVM in order to determine a separating hyper plane which best divides the two sets of points.  

To deal with the imbalance in the training set, we use the standard approach of weighting 

label constraints for the class with fewer examples more heavily in the SVM objective. The 

penalty function can also depend on the amount of noise which gets introduced by frames with 

bad body parts detection; however we will discuss those parameter adjustments in the section 4. 

In addition, since in many of the videos the subject spends a considerable amount of time 

facing away from the camera, in those videos much of the body parts detections are useless for 

training. If we keep those in the training set, often the SVM is unable to converge into two 

separate sets. Therefore, for the training set, we get rid of very bad detections such as the one 

shown in Figure 8. 

Finally, we save the trained model and keep it for use when classifying a new image.  

 

  

 

3.5.3 Classifying a Novel Video Frame 

The input to the classification stage is the SVM obtained from the training stage along 

with the set of n-dimensional vectors to be classified. The SVM contains group 1 and group 2, 

separated by a hyperplane. For each of the n-dimensional vectors to classify, in the novel test 

video the vector gets plugged into the SVM. Due to the vector’s coordinates and the penalty 

function we set during the training stage, the vector falls on one side of the hyperplane. The side 

it falls on determines whether the vector will be labeled as belonging to group 1 or group 2.   

In our case, for the classification stage we start out by pre-processing the video in the 

same way we pre-processed the frames for the training stage of the training stage. First, on each 

frame we run the upper body detector and the face detector as we did for the preparatory stage 

listed above. Then, we extract the location of the upper body bounding box, and we use it to find 

the relative locations of the limbs and form a descriptor for the body pose, as we did in the 

Figure 8. Outlined in red is the single upper 

body bounding box in the frame. Since it is the 

only upper body bounding box detected, it is 

chosen as the correct upper body bounding box. 

The wrong upper body bounding box gives us a 

detection of the body parts which is completely 

wrong. Such a detection would only hurt the 

SVM during training, therefore we exclude it 

from the training set. 
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training stage. Our next task is to predict a label according to the decision value given by the 

SVM classifier. Based on the set in which the new vector fell, we label it as interaction or non-

interaction. Thus, in a given frame, we label people as interacting or not interacting with objects 

based on the way we labeled the descriptor of every person.   

 

4. Results 
We have performed 3 types of experiments which aim to demonstrate the applications of 

our approach in three different settings. In the first type of experiments, we train and test on 

videos containing the same action, performed by different people. In the second type of 

experiments, we train on a number of different actions, and we test on an action which was 

present in the training set. Finally, in the third type of experiments, we test on a set of actions, 

and we test on a unseen action. Note that we can expect these tests to be of increasing difficulty, 

because in each set we increase the variety of the training and testing data. Furthermore, the third 

case specifically allows us to test the category-independence of our approach, since the train and 

test videos will involve disjoint sets of objects. 

For the experiments, we map the SVM outputs to probabilities. This allowed us to run a 

threshold constraint on the probability that a point belongs to a particular set. Then, for each 

value of the threshold we measured the precision and recall. Therefore each line on the graphs 

represents the results of precision versus recall for one video with varying thresholds. We will 

show the results of each of the three types of testing, then we will follow with a discussion on the 

application each type of testing is useful for and a discussion on the results. 

For each experiment type, we compare our method’s results for the classification of each 

video, to a classification performed by using a more intuitive baseline test. The workings of the 

baseline test are explained in section 4.1. 

 

4.1 Baseline Test: 

 The baseline test consists of classifying a person as interacting or not interacting with an 

object based on the angle formed at the elbow by the person’s forearm forms with his lower arm. 

We use a threshold to determine which angles indicate interaction and which ones do not. The 

threshold sweeps through all angles between 0 and 180 and we use the result for each value of 

the threshold to calculate the precision and the recall for that particular threshold. We then 

compare the precision/recall rates we got for this baseline test to the results we obtained from our 

method. 

 An example of the way we measure the angles is shown in Figure 9. This simple 

approach is a reasonable heuristic to attempt to guess whether interaction is occurring.  It is 

important to test to verify if a more naive non-learned model is insufficient.  However, we expect 

it to be weaker than the proposed approach, which learns from data the full space of pose 

descriptors that are indicative of interactions. 
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Figure 9. a) 180 degree angle between arm 

forearm and lower arm. 

 
 

Figure 9. b) 90 degree angle between 

arm forearm and lower arm. 

 

4.2 Experiments Type 1 – Train and test on same action. 

 

4.2.1 Experiment Description  

We used several videos of one activity to train the SVM. In each video, the activity is 

performed by a different person. This is important because each person performs the activity 

using different motions. For example in the activity “Answer Phone” the phone is placed at 

different locations and the subjects have to reach for it. In addition some people pick up the 

phone and put it to their left ear, whereas others put it to their right ear. Finally, some subjects 

put their hands on the table as they pick up the phone, while others put their free hand in their 

pocket.  

For the classification stage of the SVM, we used a video of the same activity performed 

by a subject not seen in the training session. For the SVM training stage we removed frames 

which contain unusable detections, like the one shown in Figure 8. For the classification stage, 

each time we ran an experiment in which we removed unusable detections and we ran an 

experiment where all detections were used, regardless of the accuracy of the upper body 

detections , with the goal of understanding how much results are influenced by the errors of the 

component body detections. 

 

 

 

 

 
Figure 10. In red are the results of the experiments we 

conducted on test set 1. In blue are the results of the 

baseline test on the videos classified in test set 1. As 

evidenced by the graph our method achieves a very high 

precision rate, but only our method achieves a high recall 

rate as well.  

 

 

 

4.2.2 Significance 

In this experiment set we get high rates for both precision and recall. By comparison, the 

baseline test gets an almost perfect precision, but is never able to get a recall higher then 50%. 

This is a relatively easy scenario since we train and test on variations of the same action. Also, 

                 Results from our method. 

    ..--.--.   Results from baseline test. 

      

___ 
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for the most part, the false positives and false negatives are balanced, which indicates that it is 

not the case that most of the points get put in the same set. 

This scenario shows how the method performs in a simple setting. Yet its results could be 

applied to action analysis and recognition since the results indicate that when training on a 

particular action, the recognition of variations of that action becomes very good. 

 

4.3 Experiments Type 2 – Train on several actions and classify a variation of the action 

 

4.3.1 Experiment Description  

To train the SVM we used several videos of different activities performed by different 

people. This is important because we get a greater variety of body poses which comes with the 

greater number of performed activities. In addition, since each activity is performed by a 

different subject, we eliminate the possibility that the SVM learns to distinguish one specific 

motion that a specific subject is making all the time. This prevents us from making an SVM 

which learns subject-specific information regarding the detection of human-object interaction. 

For the classification stage of the SVM, we used a video of one of the training activities 

performed by a subject not used in the training session. As above, for the SVM training stage we 

removed frames which contain unusable detections, like the one shown in Figure 8. For the 

classification stage, each time we ran an experiment in which we removed unusable detections 

and we ran an experiment where all detections were used, regardless of the accuracy of the upper 

body detections.  

  
 

 

 

 

 

 

 4.3.2 Significance  

 This set of experiments has a fairly realistic setting since we train on a set of different 

activities and then classify a variation of one of the activities we trained on. The percent 

successful classification is on average 74.3% which is lower then the previous set’s average of 

                Results from our method. 

    ..--.--.  Results from baseline test. 

      

___   

Figure 11. In these graphs, we have shown the results of our experiments of type 2 and we have compared them 

to the results of the same experiments performed with the baseline test. One can observe that our method’s recall 

gets to be very high, but the precision is not as good as the one we obtain in experiment set 1 shown in Figure 10. 

By comparison, the baseline test gets high precision however, its recall is very unreliable. 
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85.4% success rate.  This makes sense, because we are considering a more realistic scenario in 

this experiment set. 

 In addition, in Figure 11 we observe that the precision rate for set 2 is between 70% and 

88% which is about 10% lower then the average precision obtained in experiments of type 1. 

However, our method still outperforms the baseline method by far. 

 

4.4 Experiments Type 3 – Train on several actions and classify a video with an unseen 

action 

 

4.4.1 Experiment Description 

For this setting, we train the SVM using several videos of different activities performed 

by different people. Unlike the above setting, here, for the classification stage of the SVM, we 

used a video of an activity which was not seen during the training session. Once again, for the 

SVM training stage we removed frames which contain unusable detections, like the one shown 

in Figure 8. For the classification stage, we used videos which contain all detections, even the 

unusable ones. 

 
 

 

 

 

Figure 12.  In these graphs, we have shown the results of our experiments of type 3 and we have compared them to 

the results of the same experiments performed with the baseline test. This is the most realistic and complex 

experiment set. This fact is mirrored in our results which show a great variation in the precision to recall ratio. 

However, we do get a high recall ratio and a relatively high precision ratio. By comparison, the baseline method 

doesn’t do very well for either precision nor recall. At some threshold values, it obtains a relatively high precision, 

but its recall is never better then 50%. 

 

 

4.4.2 Significance 

 This set of experiments represents the most realistic real world scenario because the 

training set does not contain the activity we classify. The percent successful classification has 

gone down to an average of 68.6%. Although we see a lower success rate, this experiment 

               Results from our method. 

    .--.--.  Results from baseline test. 

      

___ 



24 
 

scenario is the most difficult scenario since the motions in the action we classify are not too 

similar to those in the actions we train on.  

 In this experiment we observe a more varied result set for our method. Precision is 

generally quite high, but this may be due to the higher percentage of frames containing 

interaction as compared to those without interaction. However, it is reassuring to see that for a 

while, we were able to obtain a very high recall rate. By comparison, the baseline test is also able 

to obtain high precision, but its recall stays below 50%. 

 

5 Discussion of Results  
 Finally, we discuss the results and their meaning as a whole, focusing on the main 

drawbacks observed during the experiments. 

 For all experiments we ran, where the classification frames were filtered, the average 

recognition rate is 84.5%. The recognition rate of the unfiltered experiments is 55%. These 

results give us two types of information.  

 The results from the unfiltered examples show us the results one could get by running the 

video to be classified through our pipeline and trying to classify all frames including the ones 

with bad body parts detections. Since a bad body part detection can arise from wrong face 

detection, a bad upper body detection or a detection with a wrong location of a body part, there 

exist many opportunities for a wrong body part detection to arise. And because bad body parts 

detections are essentially noise in our data, the recognition rate of a video containing bad 

detections will be worse then that of the same video where the noise has been removed. Thus, the 

experiments with filtered classification frames show us the approximate results which we could 

get if we were to eliminate a large amount of the noise. 

 Below, we illustrate the components of the pipeline which can form noise, as well as the 

rationale behind the noise they form. 

During the upper body bounding box detection stage we get many false positives. The 

upper body capture rate is at best 97% but there is a 1 to 3 ratio of false positives to true positives 

[3]. In Figure 3b) and Figure 6a) we saw an example of the false positives which this method 

detects. In examples such as Figure 3b) where we have a correct positive among the false 

positives, we can determine the correct upper body bounding box detection. However, in cases 

like Figure 6a) there is no true positive detected and therefore when choosing the upper body 

bounding box we are bound to make a wrong choice. 

An additional component which creates faulty data for the SVM is the body parts 

detector. Though it is one of the best performing body parts detectors, it has some disadvantages 

which limit the accuracy of our results. The drawbacks of Ferrari et al.’s method for body pose 

detection [3] is that many of the detections it comes up with stray from the ground truth. To 

quantify the detection rate of the method, the authors claim that their method finds the correct 

estimation of the upper body of the subjects in 56% of the estimates. However they also state that 

they consider a “correct” detection of the body parts to be one which “lies within 50% of the 

length of the ground-truth segment” which allows for deviations in the detection. 
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To illustrate the effects of the detection inaccuracies one can observe the detection in 

Figure 8. where the detected body is completely different from the actual location of the person. 

A milder case of wrong detection can be seen in Figure 13b). In fact, throughout the experiments 

we noticed that often the lower arms of people get detected to be in completely different 

locations than they can be seen on an image. In addition, it often happens that a body part gets 

detected to be far shorter then it is in the real image. This usually occurs when people hold their 

arms in front of their torso. However, since many of the actions people perform in our videos are 

based on working with their hands, capturing the lower arms of the subjects is crucial.  

Another drawback of this method is that since the method employs temporal dependence, 

it is the case that when a body part gets detected in a wrong location in one frame, it keeps 

getting detected in the same wrong location for many frames to come.   

Another disadvantage is that as people turn more then 30 degrees, the body parts detections 

quickly degrade into unusable detections. Although, the researchers in [3] warn against this, in 

natural actions, people often end up turning from the camera.  

 Some examples of good and bad detections of the limbs can be seen in Figure 13. The 

detections were obtained by using the algorithm of [3]. 

  

 
Figure 13. a) A good capturing of the upper body of 

the person. Notice all limbs are approximately well 

detected. 

 
Figure 13. B) the lower right arm of the person is 

incorrectly detected. The detection for the lower left 

arm is the yellow line in front of the person’s face. 

Notice that the confusion in detection happens on a 

limb which is in front of the torso/head of the person, 

as we mentioned above. 

 

 

Figure 13. c) The person is turned 90 degrees away 

from the camera. In such cases we get a wrong 

detection of the upper body.  However in actions such 

as opening the fridge and writing on the white board, 

the person has to turn away from the camera.  
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 Finally, the SVM has several drawbacks: First, the results it yields are heavily dependent 

on the hyperparameter that penalizes the use of slack variables. Thus, in a set of truly unknown 

vectors which must be classified, one can obtain varying classifications. And second the SVM 

can only perform if in the training stage, there can be found a hyper plane which divides the 

vectors of group 1 and group 2. In large sets containing much noise, this is a difficult task and 

worsens the final results of the classification stage. To mitigate the chance of this happening, one 

could explore alternate feature spaces and/or kernel functions for the SVM. 

 Since we use only frames with good detections for the training stage of the SVM, most of 

the time we get good divisions between the set of training images containing object interaction 

and the ones not containing object interaction. Thus, when for the classification stage we pass in 

the frames to be classified, even in a video containing bad body parts detections, most of the 

good body parts detections get detected correctly. The low rate of recognition of human-object 

interaction in the non-filtered videos comes from the frames with bad body parts detections. 

 Therefore it is not surprising that the results from the videos with filtered frames, in other 

words – videos where the frames with bad body parts detections were discarded – gave a 

significantly better detection rate. These experiments were conducted in order to show the results 

which could be obtained if the body parts detections were less noisy then the ones we obtained.  

 There are two ways to increase the accuracy of the detections we obtained, and thus to 

get results from unfiltered videos, which are closer to those we now got from the filtered ones. 

We have to find a way to transform the frames which earlier we discarded as useless, into ones 

with good detections. For example, some of the frames we discarded in the experiments with 

filtered videos contained completely nonsensical body part detections (like the one shown on 

Figure 8 others contained most of the correct body part detections, but one or more limbs were 

far from their correct location.  

 In the case where we had completely nonsensical body part detection, we usually ended 

up with a wrong upper body bounding box detection. Most of these cases arose when for a given 

frame among the detected upper body bounding boxes provided by the upper body bounding box 

detector, there was no correct upper body bounding box detection. In such cases the upper body 

bounding box ranking algorithm, described in section 3.4.3, picked the best fitting upper body 

bounding box among the given upper body bounding boxes. However, since the detection did not 

come up with a correct upper body bounding box, no matter which box we end up using, we will 

get a bad body parts detection later on. Therefore, the way to fix the nonsensical detections like 

Figure 8 is to find a way to improve the recognition rate of the upper body bounding box 

algorithm.  This could be done by considering temporal constraints on the location and scale 

when using the detector in a video.  

 The second set of frames we removed in the filtered experiments was the set containing 

at least one body part detection which is far from the location it should be in. For example, 

Figure 14 shows a frame in which most of the body is well detected. However, because of the 

wrong detection of the lower left arm, we would throw away this frame.  

 



27 
 

 

Figure 14. The head, torso, right upper arm and right lower arm of the subject are relatively well detected. However 

the left lower arm is detected completely wrong (the yellow line on the side of the fridge). Due to this completely 

wrong detection, we would throw away this frame from a set which we describe as filtered 

 

In reality most of the frames in which partial miss-detections occur, such as the one in Figure 14, 

are ones in which  the lower arms are not detected well. The lower arm could be better detected 

by detecting the hands of the actor and using the hands as an ending point of the lower arm. 

Also, since the upper arm gets detected relatively accurately, we can use the ending point of the 

upper arm as a starting point of the lower arm. 

 

6 Future work 
  

 As mentioned in section 5, the two major problems with the data are the noise which 

arises from wrong upper body bounding box detections and the noise arising from wrong 

detection of parts of the upper body of the subject. 

 Thus, in order to decrease the noise, we have to rely on a better upper body bounding box 

detector and a better way to capture the lower arms of the subjects. While the upper body 

bounding box detector is a topic in its own, the lower arms detection can be improved by 

applying a method for detecting hands and using the location of the hands as an ending point of 

the lower arm.  

 Another area of future work for our method is to develop it in a way so it recognizes the 

occurrence of human-object interaction only in specified actions. This would be useful in 

extracting from a video the moments where a certain action is occurring. 

 An additional area to develop is to teach the algorithm to recognize not only direct 

interactions between humans and objects, but also indirect ones. An example of indirect 

interaction is a person pointing at an object, rather than touching it. 

 Finally, at the moment we treat the problem as a frame-by-frame classification task, 

ignoring the motion of the body over time. Therefore, an area of future improvement is to 

develop our approach in a way that we consider the motion associated with an action.  
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