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Abstract

Solving the classification task can allow us to make meaningful pre-

dictions about what properties, or attributes, an image exhibits. It

can allow us to determine whether a shoe is fancy or not, or if a face is

smiling. With advances in machine learning, our ability to make such

predictions has seen significant improvement over the years. How-

ever, most successful methods in solving this problem are supervised,

meaning that they require labeled data. Depending on the domain,

acquiring such data can be difficult. Thus, it is worthwhile to be able

to construct more training samples from existing data. Prior work

has been done to this effect, often in the form of low-level “jitter,”

which employs spatial and photometric changes to add variety to the

original dataset.

In this work, we train classifiers to learn to predict binary attribute

labels by augmenting our training data with new, “semantically” jit-

tered images. To do so, we use an attribute-conditioned generative

model to create label-preserving changes to existing data. We show

that, in some cases, our proposed techniques result in higher classifi-

cation accuracy than the baselines on the challenging UT-Zap50k and

CelebA datasets. Furthermore, preliminary experiments show that in

the case where the original dataset contains a class imbalance, our

technique provides more substantial improvements.
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Chapter 1

Introduction

Visual attributes are useful for a variety of applications. For faces, work has

been done to use them for identification [40, 41] and face verification [20], and

for shoes, they could be used for online shopping and auto-tagging purposes. For

instance, imagine we have a large selection of shoes we sell, and we want to allow

a user to shop based on various factors, say whether they want something formal,

or casual, or sleek. For large datasets, it would be either incredibly expensive to

have humans exhaustively label all shoes with the all attributes they exhibit, or

the labeling would be incomplete, resulting in sub-optimal user experience and

profitability. In an analogous example for faces, consider the scenario that an

anti-crime organization needs to narrow their suspect pool based on descriptions

from witnesses. To be able to do so efficiently, they would likely want to search

their faces database based on those descriptions such as male or pointy nose. This

has similar trade-offs to our shoe shopping example - increased cost to label or the

risk of missing potential suspects. However, we can avoid these trade offs in both

cases if we instead train classifiers to perform this binary attribute prediction

needed to tag the shoes or the faces.

This is easier said than done. Imagine that you are shown a shoe and asked if it

is formal or not. As a human being, you have learned over time what this means.

Maybe a parent said to “Put on your formal shoes” for a special event while point-

ing to some. This requirement for labeled examples extends to a machine learning

classifier as well, be it an SVM or a neural network. They generally require many
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Figure 1.1: An example of a possible binary attribute classifier we may want to
train. For training, the classifier sees images along with labels and during test
time, simply an image with the goal of outputting the correct label.

more labeled training data because of the large number of parameters that need

tuning in these models. Obtaining such amounts of data can be prohibitive, as it

usually requires some human intervention to obtain the labels. Generally, current

methods to deal with this need for data either construct massive datasets [39],

explore a variety of network architectures and pre-training/fine-tuning strategies

[21,22,39], or perform some basic data augmentation [24, 27, 42-45].

The main goal of this work is to generate more training images from existing

ones, in order to augment the number of labeled images in the training dataset.

At their core, images are simply a collection of pixels. However, images can also

be described by the presence and strength of their attributes. The key insight

here is that we can “semantically jitter” [18] these attributes to produce new,

labeled images, after having learned an attribute-conditioned generative model.

For instance, say we are training a classifier to determine if a shoe is casual, as

in Figure 1.1. To generate more examples of comfortable shoes to feed to our

classifier, we can attempt to perform some label-preserving changes to this seed

image’s attributes, say by making it more colorful or bold, and then using our

generative model to produce an image such as in Figure 1.2b.

This proposed approach differs from traditional jittering methods that work

at a lower level, performing spatial and photometric changes like rotations, trans-

lations, lighting, etc., such as those employed in [24, 27, 42-45] (see Figure 1.2a).

2



(a) (b)

Figure 1.2: Here we see the general idea behind data augmentation, in the context
of “low-level jitter” (a) and “semantic jitter” (b).

These methods directly make pixel level changes to the base image, and have no

higher-level knowledge in the form of attributes. Some prior work does utilize

attribute-driven data augmentation for classification purposes, such as [32]. How-

ever, they use attributes to expand feature descriptors as opposed to generating

more labeled images. In this work, we explore different techniques for jittering

the attributes in an image, and augmenting the original training data with the

newly generated images to train our binary attribute classifiers.

To measure our results, we compare the performance of this classifier against

baseline classifiers trained on 1) all real images, and 2) real images augmented

with low-level jitter images. We evaluate our methodology on two relevant

datasets, the UTZap-50k shoes [7,18], and the CelebA faces [39]. These datasets

contain images along with their attribute data. We discuss the details of these

datasets in the Results section. As a whole, we see that our method on these

datasets adds value in some cases for UT-Zap50k, although the results for CelebA

are inconclusive. We do reasonably well on the UT-Zap50k dataset in the case of

a class imbalance in the original training data.
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Chapter 2

Related Works

In this chapter we discuss related works as they pertain to attributes, the rela-

tionship between attributes and image generation, attributes and classification,

and data augmentation in general.

2.1 Attributes

Higher level properties of images, known as attributes, have shown promise in

computer vision across a multitude of applications [3, 4, 13, 8, 14, 15, 9, 10].

They are particularly useful because they describe images in ways that are un-

derstandable by humans (e.g., a face ”frowning,” or a shoe being ”sleek”) but

also by machines. Over the years, they have been used to guide image search [3],

discern image “interestingness” [14], create more accurate description of images

[4], and to perform transfer learning in the form of zero-shot learning [28]. These

attributes come in multiple flavors. For example, binary attributes are semantic

properties of an image which a human can decide the presence or absence of.

Beyond that, the concept of relative attributes has also gained traction [5,6], with

uses in making fine-grained comparisons between images [7]. Since these relative

attributes add a comparative notion to otherwise binary information (e.g., this

shoe looks “more sleek” than that one), they allow for improvements in image

description [7] and image search [9,10], among other applications.

In addition to using attributes for the above tasks, work as also been done
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2.2 Attributes and image generation

in better learning the attributes themselves, starting with more traditional, non-

neural network methods [11] to more recent CNN driven approaches [12]. How-

ever, in this work we focus on improving the quality of the learned attributes

through our data augmentation, as opposed to specially crafted models. These

two means of better learning attributes are orthogonal, and could likely be com-

bined for better results.

2.2 Attributes and image generation

Prior work has been done on generating synthetic images, especially in recent

years with the advent of Generative Adversarial Networks (GANs) [1] and Varia-

tional Auto-Encoders (VAEs) [2]. Conditional Variational Auto-Encoders (CVAEs)

[16], which are conditioned on additional input data, further improve the gener-

ative capabilities of neural networks. Building on the CVAE work, Yan et al.

created an attribute-conditioned generative model that produces qualitatively

reasonable synthetic images [17]. This is the framework we employ in this work,

similar to its usage in [18], which generates synthetic image pairs to “densify”

supervision for learning to rank images by attribute strength.

Our work differs from [17] in that we use it to augment our dataset to im-

prove classification accuracy, whereas they focus on the image reconstruction and

completion tasks. They do not jitter the attributes, or generate new images, for

these tasks. They do show, however, show successful qualitative results in image

progression that motivates building on their work to perform dataset augmen-

tation for other tasks. Our work also differs from [18], in both the task we are

applying the jitter to, and the jitter technique. We are focused on classifying the

presence or absence of an attribute, whereas Yu et al. aim to improve perfor-

mance in ranking pair-wise attribute strength. For example, given two images of

faces, they want to discern which of them is more smiling. Their approach is to

generate more training data by taking an image from the original data set and

generating from it an example that is more smiling and one that is less smiling.

This way, they have another pair of images on which to train. On the other hand,

since we are training a binary classifier, we jitter attribute values other than the
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2.3 Attributes and classification

one we are classifying on, in order to make our changes label-preserving while

still adding variety to the training data.

2.3 Attributes and classification

Attributes play an important role in image classification. For example, in [19],

Escorcia et al. show that CNNs trained to do object recognition also implicitly

learn information pertinent to attributes. They also reach the conclusion that said

attributes play an important role in effectively recognizing objects. For example,

in an example of zero-shot learning, Lampert et al. use pre-learned attributes

to learn classifiers for previously unseen classes [29]. This differs from our work

in that what we are training classifiers to predict the attributes themselves. To

that end, there are works such as [21, 22, 39] which attempt classification directly

on the attributes contained in the LFW datasets [23], and on the significantly

larger CelebA dataset [39]. These works achieve good performance on this task

through clever construction of network architectures and by training on the entire

corpus these datasets provide (LFW contains ∼10k training data, and CelebA

contains ∼160k). In contrast, our proposed method aims to achieve performance

improvements by intelligently augmenting a significantly smaller dataset.

The motivation for generating synthetic images is as follows: classification in

vision today generally means deep networks. Very successful examples of this are

AlexNet [24], VGG [25] and ResNet [46]. However, all these networks require large

amounts of labeled data to train. Overcoming this problem has generally been

approached in two ways: 1) fine-tuning versions of these networks trained on other

datasets [26] and 2) dataset augmentation, often in the form of low-level jitter

[24, 27, 42-45] as defined in the introduction. We take advantage of fine-tuning

a pre-trained AlexNext, but attempt to improve accuracy by augmenting our

dataset with jitter that works at a higher level, namely at the level of attributes

instead of spatial transformations such as scaling, rotation and translations.

6



2.4 Learning with limited data: dataset augmentation

2.4 Learning with limited data: dataset aug-

mentation

Augmenting datasets, for classification or other tasks, is not a new idea. As

mentioned in the previous section, there are simple methods like as low-level jitter,

such as that employed by Dosovitisky and others [24, 27, 42-45], which change

images via “low-level” changes like scaling, translation, rotation, etc. The authors

of the original AlexNet paper [24] also performed dataset augmentation in order

to avoid overfitting. They employed PCA to perform intensity transformations,

along with image translations and reflections. Other works have applied more

complex spatial transformations for label-preserving changes, for example [34].

With the concept of meta-learning, Wang et. al [30] teach a “hallucinator” what

aspects of an image are important for a low-shot classification task, and use it to

generate images in new poses based on that information. However, these methods

do not take advantage of attributes.

Other dataset augmentation methods have been used for 3D pose and view-

point estimation [36, 37]. In [36], Rogez and Schmid synthetically generate re-

alistic images with 3D pose annotations using existing Motion Capture data. In

[37], Su et. al. synthesize millions of additional training images by taking an

online repository of 3D models and randomly sampling parameters to alter pat-

terns from the seed images. In both cases, these synthetic images are used to

train CNNs. Similarly, we create synthetic images from seed iamges to train our

classifier, but we do not require 3D models or a graphics engine, so our method

is applicable to a larger number of domains. In fact, it would be applicable to

any dataset in which we have images and attributes information.

There are some works that do use attributes for the purpose of dataset aug-

mentation. Dixit et al. approach this by using attributes to generate more feature

descriptors to augment existing images [32]. However, unlike our approach, their

augmentation does not actually add new images to the training set. Lastly, as

discussed in detail in Section 2.2, the authors of [17] train a generative model con-

ditioned on attributes, and [18] uses that framework for improving performance

on pair-wise attribute ranking. Our work, though it uses the ideas of attribute-
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2.4 Learning with limited data: dataset augmentation

conditioned image generation using a CVAE [17] and “semantic jittering” [18],

differs in terms of the task we are tackling (binary attribute classification) and

our jittering methodology. Furthermore, the proposed method relies on the data

augmentation notion of label-preserving transformations, therefore not requiring

any further supervision.

8



Chapter 3

Approach

Overview

Recall that we are attempting to improve classification of binary visual attribute

labels within an image. Specifically, we aim to do so by augmenting our training

data with new, labeled images that we construct. We would like to make “label-

preserving” changes to our existing data, such that additional supervision is not

needed. As such, our methodology takes the follow steps:

1. Train attribute-conditioned generative model (section 3.1)

2. For each attribute we intend to learn, construct a training set that we then

jitter by adjusting the strengths of other attributes contained in the image,

using the generative model trained (Section 3.2)

3. Train classifiers with the new data combined with the original, and com-

pare with baselines. We also take steps to avoid the domain shift problem

(Section 3.3)

Figure 3.1 provides a visual showing the general experimental setup.

3.1 Attribute-conditioned generative model

As discussed in the Related Works section, there are a number of methods used

to generate synthetic images. Most of these involve a neural network of some

9



3.1 Attribute-conditioned generative model

(a)

(b)

Figure 3.1: This figure summarizes the flow of data: In (a) we use the origi-
nal training set of real images and their attributes to generate more using our
Conditional Variational Autoencoder (CVAE) generative model. Then, in (b)
we augment our original data with these synthetic images, and train a classifier
to compare against the two baselines. Here, LLJ stands for the extra images
produced via the “low-level jitter” mentioned above.

10



3.1 Attribute-conditioned generative model

Figure 3.2: This provides a visual of the CVAE model assumption - the generative
model for x depends on both z and attributes y. This dependence on y allows
us to change the resulting x in a controlled way.

form, recently of the GAN or VAE flavor. We use the CVAE generative model

proposed by the authors of aptly named Attribute2Image paper [17] for two

reasons: its generality and its success on a number of tasks. The authors of

[18] used it to improve visual comparisons and the original paper successfully

demonstrated attribute progression, meaning that we can intentionally jitter the

images to produce variety in our training set.

Let y ∈ RNy be a vector encoding the strength of each attribute {A1, . . . , ANy}
that the image exhibits. For example, in the case of shoes, it has real values de-

scribing how sleek, formal, comfortable, etc. the associated image is. Let z ∈ RNz

be the vector of latent variables, which provide a lower dimensional hidden rep-

resentation of the image, accounting for factors such as pose, lighting, etc. not

encoded in the attribute vector y. Using the CVAE method proposed in [17],

we learn a generative model pθ(x|y, z) such that we can produce synthetic im-

ages x ∈ RNx following this distribution. This model pθ is trained by indirectly

maximizing the log-likelihood of pθ(x|y). In practice, this is actually done by

maximizing the variational lower bound to make the problem tractable. Maxi-

mizing the variational lower bound requires us to introduce an auxiliary distribu-

tion qφ(z|x,y) to approximate the posterior pθ(z|x,y). The network architecture

consists of an CNN encoder, which takes as input an image x and associated at-

tributes y and produces its latent z representation. The decoder, which takes in

attributes y and latent variables z, and produces an image x. The conditioning of

the image on the attributes is what allows us to generate new images by tweaking

the y vector. See [17] for details.

11



3.2 Notation and image generation overview

3.2 Notation and image generation overview

Once the generative model is trained, we can use it to produce new images.

First, to train and measure the performance of our classifiers, we must define

the following splits in our data. Note that such splits are analogously constructed

for each attribute we want to classify (comfortable, sleek, casual, smiling, etc.),

but for brevity we describe it in the case of a single attribute.

DReal
train =

{
(x(i),y(i), z(i), l(i))

}Ntrain

i=1

Dval =
{

(x(i),y(i), z(i), l(i))
}Nval

i=1

Dtest =
{

(x(i),y(i), z(i), l(i))
}Ntest

i=1

where l(i) ∈ {0, 1} represents the label for the ith image, i.e., the ith example is

either comfortable or not. From DReal
train we generate the low-level jittered images

DLLJ
train, and using our CVAE, semantically jittered images DS

train.

DLLJ
train is generated using the methodology and parameters followed in [27],

with M ∈ N jittered versions of each original image in DReal
train.

To construct DS
train, let us first define ϕ that performs the jittered image

generation - it uses some deformed version of y and the latent z associated with

a “seed” image to get a new image with, ideally, the same label as the original.

The next section discusses the various ϕ functions we explore and specifics of

jittering. For each original image in DReal
train, we invoke ϕ a total of M times.

Combining all the resulting images for each original image, we get DS
train. This

means that |DS
train| = |DLLJ

train| = MNtrain.

3.3 Jitter techniques

In essence, jittering a “seed” image means sending its latent encoding z and

attributes y through the decoder of our CVAE, after tweaking y. Some important

questions are: How many, and which, attributes should be jittered? By how

much? How can we keep our changes label-preserving so that we can simply copy

over the label of one of the original images?

To begin answering these questions, the following hyperparameters need to

12



3.3 Jitter techniques

(a) ϕrandom (b) ϕSpearman

(c) ϕGaussian

Figure 3.3: Here we present the various techniques we use to create new attributes
y for image generation. Imagine we are training a classifier to determine if a
shoe is comfortable. The blue line represents the decision boundary. In (a), we
jitter each image’s attributes in a random fashion, but risk crossing the decision
boundary (in other words, are not “label-preserving”). In (b) we limit which
directions we can jitter in based on correlation (say if being comfortable is highly
correlated with being casual). Finally, in (c) we sample a new point, and assign
a label based on the label of the “nearest” point from the training set.

be defined: k1, k2 ∈ Z. k1 controls how much an individual attribute yj, j ∈
{1, . . . , Ny} can be jittered, and k2 controls how many such yj are jittered for

a given y. Specifically, when constructing the new, jittered vector y′ prior to

sending it to the decoder, we apply the following transformation:

13



3.3 Jitter techniques

Make a copy y′ of y. For k2 of the Ny individual attributes within y,

y′j ← yj + k1εj for εj ∼ N(0, σj)

where all the σj are per-attribute value standard deviations computed from DReal
train.

However, we still need to determine which attributes to jitter. Below, we describe

the three techniques used, with a visual representation for each in Figure 3.3.

• ϕrandom: Let us say we are training a classifier for comfortable. For a seed

image’s y, we need to determine which indices to tweak. The simplest

choice for selecting which attributes to jitter is to choose k2 random indices

in y, except the index corresponding to comfortable. This way, we are more

likely to maintain the original label. However, there is no guarantee that

attributes describing images in a dataset are independent from each other.

Therefore, this method theoretically runs the risk of indirectly jittering the

image in a way that is no longer label-preserving, as we may change an

attribute that is highly correlated with the attribute we are learning to

classify.

• ϕSpearman: This method aims to address the risk in the previous one by

making changes that are more likely to be label-preserving. The idea is

that we jitter those attributes that are least correlated with the classifi-

cation attribute. The measure of correlation between attributes we use is

Spearman correlation for ranked variables, which indicates how well the

values of one attribute can be represented as a monotonic function of an-

other. Specifically, let us say that our classification is being done on the kth

attribute. In this case, we compute the Spearman ρkj correlation coefficient

of attribute k with every j ∈ {1, . . . , Ny}. Then, we jitter the k2 attributes

with lowest |ρij|. By changing the values of unrelated attributes, we are

less likely to alter the label from the original image.

• ϕGaussian: One other method we explore is sampling y′ from a multivariate

Gaussian distribution. In this case, we are not jittering a seed image, but

rather constructing a Gaussian distribution along all the y seen in the

14



3.3 Jitter techniques

training data, and using that to add more variety than manually tweaking

a few attributes. Of course, by doing this, we have lost the ability to copy

the label from a seed image, since technically there is none. Thus, we apply

a nearest-neighbor heuristic to determine the label of the image that will

be generated using this attribute vector, with the metric for determining

“distance” being:

d(y′,y) =

Ny∑
j=1

|ρkj|(y′j − yj)2

where y′ is the sampled vector, ρkj is the Spearman correlation between

attributes k and j, and yj is the value of the jth attribute in the vector.

This distance measure penalizes differences in attributes that are highly

correlated with the classification attribute. Consequently, the label l′ of

our newly generated image is

l′ = l(∗) where ∗ = argmin
i

d(y′,y(i)).

That is, we assign to our newly generated image the label l(∗) of the example

in DReal
train whose y minimizes the above distance term. Other metrics could

have been used, and may be candidates for exploration in future work.

Lastly, though this method is not label-preserving in the same sense as the

previous methods, it does not require additional supervision, which is the

underlying goal.

For each of methods above, we pass the z of the seed image to the decoder,

and in the case of the ϕGaussian, the latent variables z(∗) of the image whose

attributes we determine to be the closest match to the sampled y′ as determined

above. The z for each of the original data are computed in a pre-processing step

after training the CVAE, using the general energy minimization for posterior

inference proposed by [17].
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3.4 Classification overview

3.4 Classification overview

Having generated synthetic images in a variety of ways, we would like to compare

how classification accuracy improves when using these new data. As mentioned

in prior sections, we have DReal
train, DLLJ

train, and DS
train. Note that for a given ex-

periment, if |DReal
train| = N , then |DS

train| = |DLLJ
train| = MN , for choice of M. To

measure the benefit of the dataset augmentation with both forms of jitter, we

train three different classifiers for each attribute, with the training data being

DReal
train, DReal

train

⋃
DLLJ
train, and DReal

train

⋃
DS
train. See Figure 3.1.

The actual classifier used is the AlexNet CNN [24]. We use one that has been

pre-trained on the ImageNet dataset, and replace the fully connected layers and

fine-tune those for classifying binary attribute labels. The network is trained

using SGD with initial learning rate equal to 0.01, which is reduced over time.

Furthermore, early stopping via the validation set Dval is employed to avoid

overfitting. The important point is that the same treatment is applied to all sets

of training data (DReal
train, DReal

train

⋃
DLLJ
train, and DReal

train

⋃
DS
train), and that we use

traditionally accepted methods (AlexNet, fine-tuning, early stopping, dropout,

etc.). Since we are exploring the effect of our dataset augmentation methods in a

binary classification task, we use binary cross entropy as the loss function. Since

the test sets contain a class-imbalance, we measure performance using

F1 =

(
recall−1 + precision −1

2

)−1
= 2 · precision · recall

precision + recall

instead of regular accuracy (to avoid seemingly high performance by simply learn-

ing to output the label of the majority class).

3.5 Addressing domain shift

An important point to note is that the images generated by the CVAE do not look

the same as the original images (Figure 3.4). This domain shift is natural since the

CVAE attempts to model an image based on a lower dimensional representation

of latent variables and associated attributes. Therefore, the synthetic images are

not expected to look like exactly like the originals. However, the classifier is more
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3.5 Addressing domain shift

likely to learn well if all the data is in the same domain. Thus, using the same

approach, we shift all the original data (training, validation, and test sets) into

this “reconstructed” domain. To do so, we simply take each real image x, and

send its associated y and z thru the decoder to a get the reconstructed image

x′. Note that these images are not jittered in the sense that y was passed for

reconstruction without any modification.

It is reasonable to run our experiment on the reconstructed images because

we can also shift the test set to this domain. As as long as the classifier learns

to output the correct label (irrespective of the domain of the input images), the

numerical results of classification on either domain are comparable. As such,

we run our classification experiments in both domains. Initially, we leave the

DReal
train dataset untouched and simply augment it with our synthetic images. In an

alternative experiment, to alleviate the issues discussed above, we shift DReal
train (and

DLLJ
train) to the reconstructed domain prior to augmenting with the semantically

jittered images.

Note that we could employ domain adaptation techniques such as those dis-

cussed in [47, 48] to overcome the domain gap, but we leave this as future work.
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3.5 Addressing domain shift

(a) (b)

(c) (d)

Figure 3.4: Images with original images from the shoes and faces datasets, along
with their reconstructed versions to demonstrate the “domain shift.” It would be
better, when training a classifier, that the data all be in the same domain.
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Chapter 4

Results

In Section 4.1 we discuss the two datasets that we experiment on. Section 4.2

discusses the initials results in the original domain, while Section 4.3 discusses the

results after ensuring all data is in the same domain as described in Approach. In

Section 4.4 we introduce a scenario in which the data augmentation techniques

presented better outperform the baselines for the first dataset. Section 4.5 dis-

cusses some qualitative results and provides some commentary on how they relate

to the numerical ones.

4.1 Datasets

Below we discuss the details of the two datasets on which we experiment, the

UT-Zap50K [7,18] shoes dataset and the CelebA [39] faces dataset. The method

was initially developed on the UT-Zap50K dataset.

4.1.1 UT-Zap50K shoes dataset

The first dataset, UT-Zap50k, contains 50,025 images of shoes and attribute

values describing the strength of the following attributes exhibited by each image:

Comfortable, Casual, Simple, Sporty, Colorful, Durable, Supportive, Bold, Sleek,

Open [7]. This dataset was initially created from an online shoe catalog and

curated for the purpose of improving fine-grained comparisons between relative

attributes. Prior work took the labeled pairs in the dataset and learned a ranking

19



4.1 Datasets

function to get the y’s [18]. Thus, the attribute values y essentially represent

the degree to which an image does or does not exhibit an attribute. However, by

thresholding these relative attribute values, we can get binary attributes. These

serve as the labels that we want to learn to predict. The images x across the

entire dataset are all centered and placed on a white background for consistency

(Figure 4.1).

A subset of ∼13k images were used to train the generative CVAE model. We

used small subsets of size N of the the remaining ∼37k to fine-tune a pre-trained

AlexNet for classifying on each of the different attributes mentioned above. In

order to illustrate the improvement the dataset augmentation provided over the

baselines, the N were chosen to be fairly small. For this dataset, we performed

two kinds of experiments. The first, discussed in Section 4.2, the training data

were made to contain an equal number of positive and negative examples. For

instance, if we were training a classifier to determine whether a shoe is sporty or

not, then there would be N
2

sporty shoes and N
2

non-sporty shoes in the original

dataset used. In the second experiment, we explore the ability of our method to

adaptively generate examples of the deficient class. In this case, the data splits

were intentionally kept unbalanced (still randomized, however).

4.1.2 CelebA faces dataset

The CelebA dataset is substantially bigger than the shoes dataset, with 202,599

images and 40 binary attribute annotations. These binary attributes serve as

the labels when doing classification on said attributes, such as Arched Eyebrows,

Attractive, Bald, Bangs, Black Hair, Blond Hair, Blurry, Brown Hair, Bushy

Eyebrows, Chubby, Double Chin, Eyeglasses, Goatee, Gray Hair, High Cheek-

bones, Male. The CVAE is trained the same way as the UT-Zap50k dataset,

using the methods of [17]. The attribute data that comes with CelebA are binary

attribute values ±1 indicating the presence or absence of an attribute. Thus we

do not need to threshold for our training/testing labels. However, we do not

learn a ranking function for the y’s in this case, but treat the binary labels of ±1

as real numbers and jitter those using the methods described in Approach. The

images x of the faces are centered and somewhat aligned, though there are still
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4.1 Datasets

Figure 4.1: Examples of images from the UT-Zap50k dataset, with positive and
negative examples of some of the attributes we aim to predict.
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4.2 Initial results

Casual Comfort Simple Sporty Colorful Durable Supportive Bold Sleek Open Average

Real 0.897 0.943 0.763 0.873 0.763 0.902 0.835 0.757 0.882 0.852 0.847

+Low Level Jitter 0.900 0.935 0.766 0.876 0.768 0.907 0.846 0.752 0.873 0.853 0.848

O
u
rs

+Semantic Jitter - Random 0.899 0.945 0.755 0.875 0.760 0.919 0.846 0.749 0.894 0.855 0.850

+Semantic Jitter - Spearman 0.900 0.945 0.755 0.875 0.754 0.920 0.846 0.747 0.893 0.856 0.849

+Semantic Jitter - Gaussian 0.893 0.933 0.743 0.861 0.766 0.895 0.832 0.757 0.877 0.844 0.840

Table 4.1: UT-Zap50K original results (N=50): Real, Real + Low Level Jitter, and averages
of each of our proposed methods. Numbers displayed are F1 scores, with standard error on the
order of 0.001.

some variations in pose, lighting, etc. See Figure 4.2 for examples.

CelebA is an extension upon the CelebFaces dataset [38], to which the authors

of [39] added the binary attribute labels. This dataset was then used for the

purpose of large scale attribute classification. Liu et al. used the entire training

set of ∼160k images to get state of the art performance of this task. The need

for such large amounts of training data further motivates generating synthetic

images to augment smaller datasets.

Empirically, we found that the training sizes N needed for this dataset are

much larger than for the UT-Zap50k classification task, at least on the pre-trained

AlexNet that we are fine-tuning. As in the case for UT-Zap50k, for the primary

experiment, the randomized training data were made to contain an equal number

of positive and negative examples. Currently, we have not explored the class

imbalance case for CelebA faces.

4.2 Initial results

The results shown in Tables 4.1 and 4.2 are for classifiers trained on the following

datasets (for methodology, refer to Approach). As mentioned above, the same

number of positive and negative examples were in the initial dataset DReal
train:

1. Real (Baseline): All real images.

2. +Low Level Jitter (Baseline): The real images from Real, plus the

ones produced via low level jitter.

3. +Semantic Jitter - Random: Real images plus images generated by

random perturbations of attribute vectors.
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4.2 Initial results

Figure 4.2: Examples of images from the CelebA dataset, with positive and
negative examples of some of the attributes we aim to predict.
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Table 4.2: CelebA original results (N=7500): Real, Real + LLJ, and averages of our proposed
methods. Note: Numbers displayed are F1 score * 100 (space constraints because displaying
results on 40 attributes). Standard error on average was around 1.5, indicating that that may
not really be any improvement using these methods.

4. +Semantic Jitter - Spearman: Real images plus images generated by

similar perturbations, except on uncorrelated attributes.

5. +Semantic Jitter - Gaussian: Real images plus those generated by

multivariate Gaussian sampling of the attribute vectors.

As we can see from Tables 4.1 and 4.2, the results with the dataset augmen-

tation techniques listed above do not offer much improvement in general. For the

UT-Zap50K, on average Random Jitter shows a minor increase over the base-

lines. The numbers shown are averages taken over five different runs, with a

standard error on the order of 0.001. With this in mind, the attributes durable

and sleek show substantial improvements over the baselines, potentially because

they are less correlated with the other attributes, making changes more label-

preserving. However, it is not entirely clear why these particular attributes do

well. On average, the improvement is not significant for any of the augmentation

techniques.

For the CelebA dataset, on average low-level jitter actually does a little bit

better, but there 7/40 attributes for which our experimental classifiers performed
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4.3 Domain shift avoidance

Casual Comfort Simple Sporty Colorful Durable Supportive Bold Sleek Open Average

Real (original) 0.897 0.943 0.763 0.873 0.763 0.902 0.835 0.757 0.882 0.852 0.847

+Low Level Jitter (original) 0.900 0.935 0.766 0.876 0.768 0.907 0.846 0.752 0.873 0.853 0.848

Real (reconstructed) 0.889 0.940 0.725 0.870 0.732 0.905 0.851 0.730 0.874 0.883 0.840

+Low Level Jitter (reconstructed) 0.896 0.944 0.738 0.878 0.743 0.913 0.854 0.725 0.888 0.884 0.846

O
u
rs

+Semantic Jitter - Random 0.897 0.943 0.732 0.881 0.752 0.930 0.860 0.734 0.897 0.891 0.852

+Semantic Jitter - Spearman 0.897 0.945 0.732 0.882 0.748 0.925 0.865 0.726 0.894 0.888 0.850

+Semantic Jitter - Gaussian 0.890 0.925 0.731 0.848 0.754 0.886 0.839 0.738 0.862 0.878 0.835

Table 4.3: UT-Zap50K reconstructed results (N=50): Real, Real + LLJ, and averages of each of
our proposed methods. As before, numbers are F1 scores, with standard error once again on the
order of 0.001. The bold values show the best results for all classifiers in the reconstructed space,
indicating that we generally beat the reconstructed baselines. It is, however, also important to
compare with the baselines in the original space (above the double lines).

slightly better than the baselines. However, these numbers are the averages across

only three trials and the standard error is ∼1.5 on average, making the improve-

ments over baselines a little less meaningful. However, the quality of the jitter

and the synthetic images may not be the only culprit. It is odd that low-level

jitter provides such little improvement over the Real classifier. We speculate that

this is due to a sub-optimal experimental design. Using the pre-trained AlexNet

as we did in the case of UT-Zap50K may not have been ideal - state-of-the-art

classifiers on face datasets [39] use cascading neural networks to first do face de-

tection and then classification, and are pre-trained on faces to begin with. Since

faces are more uniform than the thousands of classes in ImageNet, a network

pre-trained on faces would give us more conclusive results than the current setup

with an AlexNet pre-trained on the ImageNet dataset.

However, there is another likely reason for limited improvements of our method

over the baselines. Recall from Approach (Figure 3.4) that the synthetically gen-

erated images don’t look quite like the real ones. In other words, the real images

and the synthetic ones are not quite in the same domain. We hypothesize that

this affects the training of the classifiers in a negative manner and in the next

section, we present results with all data in the same domain.

4.3 Domain shift avoidance

With all training data in same domain, for the Zap50k dataset, the synthetic

images do add some value. We can see this in Table 4.3, as one of the jitter

techniques (generally Random Jitter) outperforms both reconstructed baselines
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Real 87 34 39 95 50 39 50 43 59 57 91 27 64 54 52 93 39 71 81 57
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Table 4.4: CelebA reconstructed results: Real, Real + LLJ, random jitter, spearman jitter ,
and gaussian sampling. Note: Numbers displayed are rounded F1 score * 100 (space constraints
because displaying results on 40 attributes). Standard error on average was around 1.5, indi-
cating once again that that may not really be any improvement using these methods. However,
this may be the result of improper experimental design (see Section 4.2).

for 9/10 attributes. Of course, in some cases the margin of improvement is very

small (i.e. comfort). On average, though, it performs noticeably better than the

reconstructed baselines, with double the improvement over low-level jitter. For

the attributes on which it did well before, it continues to perform well (sleek and

durable), but with a larger margin.

Note that the Real baseline trained on the original images generally performs

better than the Real baseline trained on the reconstructed images. This is to be

expected as the reconstructed image is a lossy version of the original. However,

this leads to an important point: outperforming the baselines in the reconstructed

space is not sufficient - we have to show improvement over the baselines in the

original domain, because otherwise there was no benefit to transforming the orig-

inal, supervised data to the reconstructed space and adding more data in that

domain. When comparing our experimental, augmented classifiers against the

original domain baselines, the additional value of the augmentation is less ap-

parent. We outperform the original domain baselines on 6/10 attributes, and on

average, the improvement is of lesser magnitude.
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4.4 Addressing dataset class imbalance

Casual Comfort Simple Sporty Colorful Durable Supportive Bold Sleek Open Average

Real (original) 0.868 0.929 0.773 0.820 0.660 0.857 0.750 0.717 0.791 0.834 0.800

+Low Level Jitter (original) 0.889 0.935 0.781 0.829 0.722 0.875 0.833 0.721 0.793 0.844 0.822

Real (reconstructed) 0.882 0.924 0.723 0.813 0.691 0.871 0.796 0.672 0.807 0.848 0.803

+Low Level Jitter (reconstructed) 0.893 0.927 0.736 0.827 0.691 0.886 0.813 0.701 0.813 0.842 0.812

+Semantic Jitter - Random 0.907 0.941 0.738 0.851 0.714 0.892 0.819 0.717 0.824 0.867 0.827

Table 4.5: UT-Zap50K results on imbalanced dataset of size N=50, with jitter used to balance
out dataset. As before, after repeating experiments five times, std. error is on the order of
0.001.

For CelebA, Table 4.4 shows that Random version of our techniques performs

roughly as well as low-level jitter on average, but not better. Compared to the

7/40 from Table 4.2, we have that for 9/40 of the attributes in Table 4.4 one of

our jitter techniques performs as well or better than the baselines. However, the

improvements are once again not very significant and are inconclusive, for reasons

discussed in Section 4.2.

4.4 Addressing dataset class imbalance

Recall that for the results shown in section 4.2, DReal
train was balanced in terms of

the number of positive and negative examples. It is conceivable, however, that a

given dataset is small and not balanced in this sense. In such a scenario, it would

be valuable to be able to adaptively generate more examples of the deficient class

to boost performance.

To test this, we construct training sets DReal
train that are 80% negative examples

and 20% positive. Then, we train the all Real baselines on it as before. For

the jitter techniques, though, we create 80% of the synthetic images using the

positive images as a seed, and vice versa for the negative class. This effectively

yields DLLJ
train and DS

train such that when combined with the initial dataset, there

are 50% positive and negative examples.

For the experiments whose results are shown in Table 4.5, we learn from

the previous experiments and train our experimental classifiers after shifting the

original data to the reconstructed space. As before, the performance gain is only

significant if this new classifier performs better than our baselines trained on

images in the original domain as well. Once again, it does so for 6/10 of the

attributes. We do substantially better than the original domain classifier trained

only on the real images. However, on average, we do not beat the original domain
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4.5 Effect of increasing N

low-level jitter baseline by much, as it also benefits from addressing the class

imbalance. In the reconstructed space, we beat both baselines by a substantial

margin. Of course, the results of our data augmentation are not better than the

results from training a classifier on real images in the original domain from a

balanced DReal
train.

At present, we do not have corresponding results for CelebA, but the results

on UT-Zap50k suggest it may be worth exploring. However, to get conclusive,

meaningful results, the method should be explored after adopting an experimental

setup that is more appropriate for the faces dataset.

4.5 Effect of increasing N

Recall that N is the amount of data in the original training set DReal
train. It is

interesting to consider the effects of our data augmentation as this N increases.

Of course, increasing N improves all classifiers’ performance. The expectation in

the scenarios where we outperform baselines is that as N increases, the difference

between the baseline classifiers and the experimental ones should decrease, i.e.

the marginal benefit of the synthetically generated data decreases for increasing

N . Not all results follow this trend, as the synthetic images often add little to no

performance improvement. As an example, Figure 4.3 shows this phenomenon

on both datasets.

This phenomenon makes intuitive sense for the following reason: As the num-

ber of real training images increases, using synthetically generated images, which

are by nature imperfect, matters less. The CNN can learn from the original data

which is assumed to be labeled correctly. The tricks we play to get labeled syn-

thetic images have room for error in both the image quality and their associated

label. Thus, having more real data with human supervision is understandably

more valuable.

Once again, the overlapping error bars in Figure 4.3b shows us that we cannot

make any conclusions about the results on CelebA as the standard error on our

trials is too large. The results on UT-Zap50k are more consistent, and in the

reconstructed space (where our classifiers offer more improvement), we see value
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4.5 Effect of increasing N

added at first, but less so for larger N .
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4.5 Effect of increasing N

(a) Performance of all classifiers across N on the UT-Zap50k dataset, for average across
all attributes.

(b) Performance of all classifiers across N on the CelebA dataset, for average across all
attributes.

Figure 4.3: Plots demonstrating trend of increasing N on performance. Data
points taken from results run in the reconstructed space. In cases where experi-
mental beats baselines, margin of improvement decreases as N increase.
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4.6 Qualitative results

4.6 Qualitative results

We see from Attribute2Image [17] that we can intentionally change the image

visually along a given attribute. Figure 4.4 shows a number of jittered examples

that preserve the original label we are classifying on. Alongside our semantically

jittered images, we can see the original and a low-level jittered version. Though

our version typically looks blurrier than the original image and low-level jitter,

it still adds variety along jittered attributes while maintaining the label. In fact,

it adds changes that low-level jitter cannot. For instance, in Figure 4.4c, low-

level jitter scales up the image, whereas we are able to change some structure of

the shoe by making it more “open.” Furthermore, by jittering an attribute like

“colorful,” we can also add changes similar to low-level jitter (Figure 4.4b).

However, this begs the following question: if we can do things that low-level

jitter cannot, why do we not beat the original domain low-level jitter baseline by

much, on average? Qualitative results provide two primary reasons. First, the

generative model does not always produce appropriate images. Figure 4.5 shows

that sometimes the images end up disfigured or do not preserve the original label.

Figure 4.6 shows that this is especially the case for our Gaussian sampling method.

These issues have an effect on the classifier trained, as can be seen from the

poor performance of the Gaussian sampling method in the tables above. Second,

and perhaps more importantly (as this effects all images produced, not just the

disfigured ones), the images produced are not as crisp and they contain less detail.

It may be unreasonable to expect this to beat classifiers trained on sharper and

more detailed images. Despite the lossy nature of these images, however, we beat

the baselines in reconstructed space. This motivates the following claim: since

our jitter does seem to add useful variety, if we are able to produce sharper,

semantically jittered images, we may be able to consistently outperform low-level

jitter in either domain.

As a whole, the qualitative results motivate the validity of our method to add

variety to the training data, but also indicate that there is room for improvement

if we want to consistently beat all baselines.
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4.6 Qualitative results

(a) Original label: not durable. Low
level jitter: rotation. Semantic jitter: �
simple, � colorful.

(b) Original label: casual. Low level jit-
ter: color changes. Semantic jitter: �
open, � colorful.

(c) Original label: not sporty. Low level
jitter: scaled up and slight color change.
Semantic jitter: � open.

(d) Original label: not sleek. Low level
jitter: shrinked and slight color change.
Semantic jitter: � casual, � supportive.

(e) Original label: not young. Low level
jitter: scaled up and color changes. Se-
mantic jitter: � black hair, � smiling.

(f) Original label: no bangs. Low level
jitter: translation. Semantic jitter: �
arched eyebrows, � bags under eyes.

(g) Original label: beard. Low level jit-
ter: scaled up and slight color change. Se-
mantic jitter: � oval face, attractive.

(h) Original label: straight hair. Low
level jitter: rotationd and color change.
Semantic jitter: � big nose, � male.

Figure 4.4: Sample triplets from both datasets with {original image, a low-level
jittered version, a semantically jittered version (random attribute selection)}. In
each case, we see that, visually, the jittered images have the same label as the
original image. We cannot claim that our method is strictly better than low-level
jitter - the image variety is of a different type.
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4.6 Qualitative results

(a) Jittered image somewhat mangled (b) Jitter did not preserve label: balding

(c) Jittered image somewhat mangled
(d) Jitter did not preserve label: blond
hair

(e) Jittered image totally mangled (f) Jitter did not preserve label: beard

Figure 4.5: Samples from both datasets showing cases where our image generation
did not work well. We see cases where the generated image is mangled, or the
jitter was not label-preserving.
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4.6 Qualitative results

(a) Correctly labeled as not casual (b) Incorrectly labeled as casual

(c) Correctly labeled as open (d) Incorrectly labeled as not open

(e) Correctly labeled as male (f) Incorrectly labeled as not male

(g) Correctly labeled as wearing eye-
glasses

(h) Incorrectly labeled as wearing eye-
glasses

Figure 4.6: Samples from both datasets showing cases where our Gaussian sam-
pling method produces jittered images with correct and incorrect labels. The
prevalence of incorrectly labeled images indicates a better labeling scheme needs
to be applied.
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Chapter 5

Conclusions and Future Work

As a whole, results on the second dataset (CelebA) were inconclusive. This may

be in part due to suboptimal experimental setup - AlexNet may not have been the

appropriate architecture for the task. An immediate next step would be to provide

a more rigorous examination of our data augmentation technique on CelebA using

more a more tailored experimental setup, such as using a ResNetpre-trained on

faces.

With the series of experiments undertaken, results on Zap50k show some

promise. While keeping the real data in the original domain we noticed that the

synthetic images only helped in a select few cases. With the domain shift trick,

we were able to increase the value of data augmentation using our semantic jitter,

and in some cases it showed substantial improvement over all baselines. Lastly,

when using this technique to address dataset class imbalance, we had similar

positive results.

Of course, our techniques are most useful when there is a limited amount of

real data - our synthetic images are not a replacement for real images, but in

the absence of enough, we can boost performance by creating some more. As

the amount of real data increases, the marginal utility of this data augmentation

decreases.

While we have shown instances where our approach has merit, it is not valu-

able in all cases, and often offers little improvement over low-level jitter. Based

on the qualitative results, we hypothesize that our jitter does add meaningful

variety, but to beat all baselines we likely need higher quality generative models.
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One avenue for future work to achieve this would be to train the CVAE to learn

a larger dimensional latent encoding, z. We could also try using a conditional

GAN instead and perform similar jittering.
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