
The Thesis committee for Joshua Allen Kelle certifies that this is the approved

version of the following thesis:

Frugal Forests: Learning a Dynamic and Cost Sensitive

Feature Extraction Policy for Anytime Activity Classification

APPROVED BY

SUPERVISING COMMITTEE:

Kristen Grauman, Supervisor

Peter Stone

Frugal Forests: Learning a Dynamic and Cost Sensitive

Feature Extraction Policy for Anytime Activity Classification

by

Joshua Allen Kelle

Thesis

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

The University of Texas at Austin

May 2017

Frugal Forests: Learning a Dynamic and Cost Sensitive

Feature Extraction Policy for Anytime Activity Classification

by

Joshua Allen Kelle, M.S.

The University of Texas at Austin, 2017

Supervisor: Kristen Grauman

Many approaches to activity classification use supervised learning and so rely
on extracting some form of features from the video. This feature extraction process
can be computationally expensive. To reduce the cost of feature extraction while
maintaining acceptable accuracy, we provide an anytime framework in which features
are extracted one by one according to some policy. We propose our novel Frugal
Forest feature extraction policy which learns a dynamic and cost sensitive ordering of
the features. Cost sensitivity allows the policy to balance features’ predictive power
with their extraction cost. The tree-like structure of the forest allows the policy to
adjust on the fly in response to previously extracted feature values. We show through
several experiments that the Frugal Forest policy exceeds or matches the classification
accuracy per unit time of several baselines, including the current state of the art, on
two challenging datasets and a variety of feature spaces.

1 Introduction

Activity recognition is an active field of research with the goal of designing
an algorithm than can automatically recognize activities being performed in a video.
For example, a video might contain a person skiing or making a sandwich.

Many attempts to solve this problem take a supervised learning approach,
where the typical pipeline is to extract some number of discriminative features from

iii

the video and then supply them to a trained classifier. Examples of such features
might be dense trajectories (Wang and Schmid, 2013), activation values from a Con-
volutional Neural Network (CNN) (Krizhevsky et al., 2012), or a histogram of the
objects present in the video (Pirsiavash and Ramanan, 2012, Jain et al., 2015). In-
deed, recent work has shown promising results from supervised learning methods
(Simonyan and Zisserman, 2014a, Pirsiavash and Ramanan, 2012, Ryoo et al., 2014,
Jain et al., 2015, Wang and Schmid, 2013).

Improvement over the years is due in large part to more effective and complex
features. Han et al. (2009) use a histogram of scene descriptors. Common CNN ap-
proaches require computing CNN features densely in time, over every frame (Xu et

al., 2015, Simonyan and Zisserman, 2014a, Zha et al., 2015). Pirsiavash and Ramanan
(2012) introduce the concept of the temporal pyramid, which triples the number of
features to leverage the temporal relationship between them. Laptev et al. (2008)
propose a multi-channel representation that uses both histograms of oriented gradi-
ents (HOG) and histograms of optical flow (HOF) simultaneously. Similarly, Wang
et al. (2013) combine dense trajectories with motion boundary histograms (MBH) to
achieve then-state-of-the-art performance. This trend in the literature suggests more
features are better.

However, increasingly complex features demand ever more computation for
feature extraction, a trade-off that is often overlooked in a literature that focuses on
final classification accuracy. This is a problem because some applications have strict
time requirements for classification at test-time. For example, robots must interact
with the world in real time, companies that host videos online want to reduce the time
between video upload and automatic content analysis and management, and patients
wearing mobile cameras to monitor their health need real time assistance in the case
of an emergency. The high computational complexity of feature extraction remains a
pain point for those who attempt to deploy activity classification models in practice.

The amount of wall-clock time required for feature extraction depends on the
machine used and how the feature is parameterized. To give a rough sense of extrac-
tion time, an efficient optical flow algorithm takes about 1 to 2 seconds per frame
(Liu, 2009). A heavily optimized implementation of CNN extraction has achieved
76 frames per second (Nvidia, 2015). Though these times could be considered fast,
conventional methods extract features from every frame of the video and thus scale

iv

Figure 1: A notional plot highlighting the effect of cost sensitivity on anytime clas-
sification accuracy. The solid curve corresponds to a cost sensitive policy, and the
dotted curve a cost insensitive one. Both policies lead to the same accuracy once all
features have been extracted, but the cost sensitive policy balances information with
extraction cost to improve accuracy more quickly.

linearly with video length. For a 5 minute video recorded at 30 fps, computation can
easily require an hour or more to extract flow-based features. Our method aims to
reduce extraction time by only extracting features from the most important frames.

We ask the question, can we save time by extracting just a subset of the
features while maintaining good classification accuracy? We answer this question
by developing an anytime algorithm that sequentially extracts features. That is, for
a given novel video that is to be classified, the algorithm dictates which feature to
extract next during the sequential feature extraction process.

We refer to any such algorithm as a feature extraction policy. A policy thus
implies an ordering over the features. The order in which features are extracted
becomes important. For a given task, it is often the case that some features provide
a larger boost to classification accuracy than others, whereas some features are less
expensive to compute. Intuitively, a good policy should automatically manage the
balance of these factors, selecting features in an order that increases classification
accuracy most quickly. Figure 1 shows this idea graphically with a hypothetical
Accuracy vs. Feature Extraction Time plot.

v

We formalize an abstraction for feature extraction policies and propose a novel
implementation using a random forest variant, which we call a Frugal Forest. This
policy is both cost-sensitive, meaning it takes into account how long each feature
takes to extract; and dynamic, meaning it takes into account previously extracted
feature values when estimating the usefulness of the remaining features.

Fundamentally, feature extraction policies are not new. Several works have
investigated policies aimed at speeding up object detection and recognition in 2D im-
ages (Gonzalez-Garcia et al., 2015, Alexe et al., 2012, Vijayanarasimhan and Kapoor,
2010, Karayev et al., 2012; 2014). In the video domain, Su and Grauman (2016) pro-
pose a feature extraction policy for activity classification based on a Markov Decision
Process (MDP), though it is not cost sensitive, and we show in several experiments
that our Frugal Forest is empirically superior. The Feature-Budgeted Random Forest
proposed by Nan et al. (2015) is both dynamic and cost sensitive but is fundamen-
tally different from our model. The Feature-Budgeted Random Forest is not anytime,
but instead learns a subset of features at training time and then extracts them all
in batch at test time. The hope is that this subset will take less than the budgeted
amount of time to extract, but this is not guaranteed. In contrast, our Frugal Forest
has no notion of a budget at training time and will simply extract features at test
time until it is stopped, allowing for anytime predictions.

We rigorously validate our model by subjecting it to a suite of six experiments.
These experiments use two challenging datasets, one first-person and one third-person,
that together contain more than 100 activity classes. The experiments also span a
diverse set of feature spaces to further stress robustness. Our Frugal Forest policy
surpasses or matches all baselines and the current state of the art for feature extraction
ordering for activity classification, ultimately showing its effectiveness at balancing
features’ predictive power with their cost.

2 Related Work

This section outlines previous work related to activity recognition and feature
selection and is divided into four categories. Subsection 2.1 discusses activity recog-
nition as a whole, without regard to feature extraction policies. Subsections 2.2 and
2.3 review works that aim to speed up computation on images for object localization

vi

and recognition and on videos for activity detection and recognition, respectively.
Lastly, subsection 2.4 looks at cost sensitive methods that include a notion of feature
extraction cost.

2.1 Activity Recognition

Inferring a person’s action based solely on the frames of a video has proven to
be quite challenging and has lead to a wide variety of approaches, as summarized in
recent surveys (Turaga et al., 2008, Aggarwal and Ryoo, 2011). Several approaches
use high level features such as objects or scenes for activity classification (Pirsiavash
and Ramanan, 2012, Jain et al., 2015, Yao et al., 2011, Rohrbach et al., 2012, Han
et al., 2009). Other approaches use lower level features such as frame-level activation
values from a CNN (Simonyan and Zisserman, 2014a, Xu et al., 2015, Zha et al.,
2015).

There is a closely related problem called activity detection in which the video
is not clipped to the extent of the activity, but rather the algorithm must localize
the activity in space and time (Ke et al., 2005, Duchenne et al., 2009, Satkin and
Hebert, 2010, Medioni et al., 2001, Yao et al., 2010, Kläser et al., 2010, Lan et al.,
2011, Yu and Yuan, 2015, Jain et al., 2014, Gkioxari and Malik, 2015, Gemert et al.,
2015, Chen and Grauman, 2012, Yu et al., 2011a). However, our method is restricted
to recognition, and so we do not focus on detection works.

Activity recognition is a large field with many contributions, so we narrow our
focus for the remainder of this subsection to Pirsiavash and Ramanan (2012), Soomro
et al. (2012) and Jain et al. (2015) which are most related to our work because we
use their feature spaces and datasets.

Pirsiavash and Ramanan (2012) present the Activities of Daily Living (ADL)
dataset, a collection of egocentric videos that show people performing activities of
daily living. They propose a method for activity recognition that uses a bag-of-
objects (BoO) histogram as features. They use the concept of a temporal pyramid
which allows reasoning about the relative temporal distribution of objects. We also
use this concept of dividing the video volume into regions.

Soomro et al. (2012) created the UCF101 dataset. With 101 activity classes
and over 13,000 clips, it is larger and more realistic than most previous datasets.
Jain et al. (2015) use the BoO feature space on this dataset with up to 15,000 object

vii

classes. To our knowledge, Simonyan and Zisserman (2014a) achieve current state of
the art classification accuracy on the UCF101 dataset by combining CNNs and dense
trajectories.

Based on these recent successes, we evaluate our model in section 4 on two
feature spaces: bag-of-objects histograms, and a “multi-feature” space comprised of
combining multiple common feature types such as CNN activations, dense trajecto-
ries, and more. In both cases, we extend the idea of the temporal pyramid and divide
the video volume into a set of spatio-temporal regions, each of which contribute to
the overall feature vector representation of the video clip to be classified.

Even though we draw inspiration from these closely related works, our work
has a very different goal. The methods of these related works do not attempt to
measure accuracy until all features have been extracted and therefore do not study
a feature extraction policy. Our work is not a new approach to activity recognition,
but to intelligent feature extraction.

2.2 Prioritizing Feature Computation in Images

There is a large body of work focused on reducing computation time for recog-
nition in the image domain. Viola and Jones (2001) speed up object classification
by extracting features in a cascade, quickly eliminating negatives. Pedersoli et al.

(2015) propose a coarse-to-fine approach for feature extraction for object detection
in images. Others invent methods that operate only on small subsets of the image at
a time (Gonzalez-Garcia et al., 2015, Alexe et al., 2012, Sadeghi and Forsyth, 2014,
Dulac-Arnold et al., 2013). Butko and Movellan (2009) design a method for searching
for objects by maximizing expected information gain. Yu et al. (2011b) propose an
active method for scene recognition. Vijayanarasimhan and Kapoor (2010) develop a
dynamic feature prioritization method by applying a cost to each feature and estimat-
ing the value of information (VOI) for each feature. Similarly, Gao and Koller (2011)
develop a probabilistic method and assign costs to different classifiers. Karayev et

al. (2012; 2014) present a cost sensitive reinforcement learning approach to anytime
object recognition. We draw inspiration for a dynamic, cost-based system from these
works in our extension to classification in the video domain.

viii

2.3 Prioritizing Feature Computation in Video

An analogous body of work is concerned with reducing or prioritizing feature
extraction in the video domain. Early detection or classification in video describes
the problem of detecting or classifying an activity before the entire video is available.
Methods from Ryoo (2011), Ryoo et al. (2014), Hoai and De la Torre (2014) are
designed for streaming videos and involve collecting features before the video has
completed. Our method also attempts to reason about the contents of the video
before observing all features, but not in a streaming fashion. Rather, our method
is designed for the batch setting, where it has access to the whole video and is free
to jump forward and backward in time. Therefore our method does not attempt to
solve early classification.

Yeung et al. (2016) propose an active method that selects the next frame of a
video to analyze using a recurrent neural network in a batch setting, but this method
is used for detection rather than recognition. Davis and Tyagi (2006) use an hidden
Markov model (HMM) to determine a classification confidence and only continue
to process frames until a desired confidence is achieved. Their method operates on
sequential frames, though, which is different from an active policy like ours. Chen
et al. (2011) model a video using a chain graphical model and perform inference
to determine which regions of the video deserve further computation. This model
however, is not cost sensitive.

Su and Grauman (2016) develop a Q-learning approach that models the feature
selection for activity classification problem as a Markov Decision Process (MDP).
Their method learns a dynamic feature prioritization for activity recognition in both
the streaming and batch domains. However, their method does not account for feature
extraction costs and is not cost sensitive. While our idea could potentially also be
implemented with an MDP, our random forest approach has the advantages of being
quicker to train and easier to explain. That is, the tree structure makes it easy to
understand why the model makes the choices it does. Furthermore, we demonstrate
that our method competes well and improves over Su and Grauman (2016) when
feature extraction costs vary.

ix

2.4 Cost Sensitivity

Others have designed methods that take into account the cost of extracting
features. The high level idea is to extract features that balance discriminative power
with cost. Karasev et al. (2014) define the cost of evaluating a region of video to be
proportional to its size. The overall score of the feature is its estimated predictive
value minus its cost. This is similar our objective function. However, our method
is different because we use random forests to learn a policy with the goal of activity
classification whereas they take a VOI approach with the goal of video segmentation.
Additionally, their method requires explicitly modeling conditional probability distri-
butions and assumes objects to be spatially independent. Amer et al. (2012; 2013)
use AND-OR graphs to evaluate videos in a cost sensitive way. This method also
does not use random forests.

Nan et al. (2015) introduced feature budgeted random forests that also use
a cost sensitive object function. Our method does not use the concept of a budget.
Furthermore, their method fully traverses all trees at test time before providing a
classification, and so is not anytime. Supplying a budget is a trade-off. Without a
budget, the model greedily extracts features and allows the practitioner to stop the
model and perform classification at any time. With a budget, however, the model
can be less greedy and optimize for the specified budget. Additionally, a challenge
with budgets, as noted by Nan et al. (2015), is training time only has expected costs
of feature extraction and cannot guarantee it will meet the budget at test time.

Dredze et al. (2007) develop a cost sensitive, mutual information-based method
for quickly classifying email images as spam or not. Their MI

t

method sorts features
using a cost sensitive objective function for a fixed feature prioritization. Additionally,
they invent a decision tree-based just-in-time (JIT) feature extraction policy that is
both dynamic and cost sensitive. Their method, however, is not anytime, as the JIT
feature extraction fully traverses the tree. Furthermore, the setting of email images
provides metadata as features. Since metadata is far cheaper to compute than true
visual features, their method ends up simply extracting metadata first. This makes
sense for email image spam classification, but our activity recognition setting does
not have this luxury.

x

3 Approach

This section describes our overall approach and details Frugal Forests. We
first formalize feature extraction functions �

j

and spatio-temporal regions r

i

which
intuitively represent “what to look for” and “where to look for it in video space.”
We then define the cost function which approximates the amount of time needed to
extract a given feature �

j

over a region r

i

. We outline the anytime framework and
the general feature extraction policy abstraction it requires. We finish this section by
describing our Frugal Forest policy and how it implements this general abstraction.

3.1 Augmented Feature Space

Let the unit cube V represent the video we wish to classify to one activity class
label ` 2 L. Let � be the function that maps V to its feature vector representation
f = �(V), where f 2 Rp. Let region r be a rectangular space-time volume where r

is a subset of V . Thus f

i

= �(r
i

) is a feature vector representation of just the region
r

i

. Still, f

i

2 Rp. Let region set R = {r
i

: i = 0, ..., m} be a set of m regions. Let
the augmented feature vector f

0 2 Rp·m be the concatenation of all f

i

, i = 0, ..., m. A
classifier C : f

0 ! ` maps an augmented feature vector to a single activity class label
`. The classifier is trained on a fully observed feature set f

0. That is, all features have
been extracted.

Regions r

i

may vary in volume and shape, and may overlap with each other.
The intuition behind regions is they allow the classifier to leverage spatio-temporal
correlations between features. Our method is agnostic to choice of feature space �.
Some concrete examples of features could be bag-of-object histograms (Pirsiavash and
Ramanan, 2012, Jain et al., 2015), CNN activations (Krizhevsky et al., 2012), dense
trajectories (Wang and Schmid, 2013), etc.

Note that � might itself be logically composed of individual functions �

j

that
semantically extract different features. In the case of the BoO histogram feature
space, the feature representation � might be composed of one �

j

per object class,
each trained to detect a specific object. For example, a specific �

j

could correspond
to a “toothbrush” object detector, and �

j

(r
i

) means to run the toothbrush detector
on only the video sub-region r

i

.

xi

3.2 Feature Extraction Cost

We model the cost of extracting a feature to be the amount of time required to
compute the feature’s value. Since each �

j

might intrinsically take a different amount
of time to compute, each �

j

is associated with a respective cost factor c

j

. For example,
the feature space that is the combination of HOG features with HOF features, as in
the approach of Laptev et al. (2008), might assign �1 = HOG and �2 = HOF with
c1 < c2 because extracting optical flow-based HOF features is more expensive than
extracting spatial gradient-based HOG features over the same region.

We reason that the cost of extracting a feature �

j

on some region r

i

is pro-
portional to the region’s volume Vol(r

i

) and the feature’s intrinsic cost c

j

. Many
common visual features (CNN activations, HOG, HOF, dense trajectories, etc.) rely
on extraction techniques that require iterating over most or all pixels in the given
region r

i

. The running time of such techniques increases with volume as they must
accommodate more pixels. Therefore, region volume is a good proxy for feature ex-
traction time. One could extract features sparsely, only at space-time interest points.
However, identifying the interest points requires operating over the whole image. Fur-
thermore, dense features tend to give superior results to sparse, interest-point features
(Wang et al., 2009).

During the process of extracting multiple features in sequence, it is possible to
come upon a feature that has already been partially or totally computed. For example,
suppose �

j

is an object detector with c

j

= 1, r1 is the full video volume, and r2 is
the first quarter of the video volume. That is, Vol(r1) = 1 and Vol(r2) = 0.25. If the
system first invokes �

j

(r2), then it has already done 25% of the work of computing
�

j

(r1), and so Cost(�
j

, r1) should be discounted to only the remaining 0.75. Likewise,
if instead �

j

(r1) was computed first, the cost of computing �

j

(r2) would be zero.
Formally, we define the discount factor d to be the percentage of r

i

that has already
been evaluated under �

j

.

Cost(�
j

, r

i

) = (1� d) · c
j

· Vol(r
i

) (1)

xii

3.3 Feature Extraction Policy

In general, a policy in our context is any algorithm that can supply to the
system the “next” feature to extract. Thus the policy defines a sequential feature
ordering.

In our framework, a generic policy ⇡ has a training phase and a testing phase.
During the training phase, the policy is allowed access to training data and the cost
function. During the testing phase, the policy supports two operations: (1) the next

operation returns the feature index to be extracted next as an (i, j) tuple that specifies
the desired �

j

and r

i

, and (2) the observe operation provides the policy an (i, j, �
j

(r
i

))

triple which can be recorded as part of the policy’s state and used by the policy to
adapt to observed feature values on the fly. The testing phase framework is shown in
algorithm 1. The loop condition is defined by the practitioner. Example conditions
include a fixed amount of time, a fixed number of feature extractions, a classification
confidence threshold, etc.

Algorithm 1 Testing phase framework
1: initialize f

0 expected value
2: repeat
3: (i, j) ⇡.next()
4: v �

j

(r
i

)
5: set(f 0

, i, j, v)
6: ⇡.observe(i, j, v)
7: ŷ C(f 0)
8: until < condition >

Feature values that have not yet been extracted are called missing. Initially,
every feature value is missing. Missing values are temporarily assigned their respective
expected value, as computed from training data. Once a feature’s true value v = �

j

(r
i

)

has been extracted, its entry in f

0 is overwritten. Alternatively, missing values can be
imputed by more sophisticated models given the set of features extracted so far. We
show that using a Gaussian Mixture Model (GMM) to impute missing values leads to
higher classification accuracy. GMM imputation works as follows: Complete training
data (no missing values) is clustered using a k-component GMM. At testing time, the
missing values of an incomplete feature vector f

0 are imputed to be a weighted average
of the GMM components where the weights are the normalized log probabilities that

xiii

the data point f

0 was generated by each component given the feature values extracted
so far.

3.4 Frugal Forest Policy

We first describe the case of a single decision tree policy, then we describe how
we extend to a forest policy.

A policy can be implemented as a binary1 decision tree where each node con-
tains a feature index of the form (i, j), a scalar threshold t, a pointer to its left child,
and a pointer to its right child. The feature ordering is defined by a traversal from the
root node to a leaf node. Figure 2 shows an example decision tree that uses objects
in the video as the features.

At training time, a node’s feature index (i, j) and threshold t are chosen to
greedily maximize some objective function. For a traditional decision tree, this objec-
tive function is information gain. We design a cost sensitive objective function that
accounts for feature extraction cost:

ObjFn(i, j, t) = InfoGain(i, j, t)� �Cost(�
j

, r

i

) (2)

where � 2 R is a scalar hyperparameter that governs the importance of cost relative
to information gain and is chosen via validation data. This allows our policy to select
features that balance predictive power with cost. For example, the feature with the
highest information gain might be very expensive to compute, while a different feature
might be cheap while still yielding decent information gain. The normal decision tree
would simply always select the feature with highest information gain regardless of
cost. We call trees trained with this modified objective function Frugal Trees.

At testing time, there is a notion of a current node n which is initialized to the
root. When the next operation is invoked, the policy returns the feature index (i, j)

of the current node n. When the observe operation is invoked with the argument
v = �

j

(r
i

), the policy compares v to the threshold t of the current node and updates
the current node to become its left child if v < t or its right child otherwise. This

1A tree of higher arity would work as well. Our binary tree logically accommodates non-binary
features by allowing the same feature to be tested multiple times along a path from the root node
to a leaf node.

xiv

Figure 2: Hypothetical portion of a decision tree policy where features are the presence
or absence of objects in the video. Starting at the root node, the first feature selected
is �

j

= “mug” at r

i

= the spatial center of the frames. If a mug is detected in this
region, the activity could likely be “making coffee” or “making tea,” as was learned
during training. To reduce this uncertainty, the policy then selects to look for a tea
bag near the temporal beginning of the video, having learned that tea bags usually
appear at the start of the “making tea” activity. If instead a mug is not detected, it is
likely the activity is one that does not involve a mug. The policy begins to investigate
the plausibility of other activity classes by selecting to look for a “TV remote” in the
bottom left region of the frames.

xv

allows the policy to adjust the feature ordering as it gains information about the
content of the video. Figure 2 shows an example decision tree policy that uses object
presence or absence as features.

Our policy is implemented as a random forest, a collection of such decision
trees. Following the usual random forest algorithm originally described by Breiman
(2001), each tree is trained on a random sample of the training data and is restricted
to a random sub-sample of the features. We call random forests that are composed
of Frugal Trees as Frugal Forests.

With multiple trees, there are options when deciding how to traverse them at
test time. We use a breadth-first traversal in which the forest maintains an array of
current nodes, one for each tree. Sequential calls to next cycle through the array of
current node pointers, effectively letting the trees take turns. This is in contrast to
a depth-first traversal in which the policy fully traverses one tree before moving on
to the next. We choose to use the breadth-first traversal over depth-first because the
experiments in subsection 4.6 show breadth-first as having a slight, if any, empirical
edge over depth-first. We hypothesize this is because traversing deeper in the tree
yields features that are more specific to the test instance at hand. Fitting to the test
instance is precisely what we want at test time, but because of feature sub-sampling,
the depth-first traversal begins fitting prematurely. The feature sub-sampling dur-
ing forest training encourages diversity among trees, and so a breadth-first traversal
selects more general features first, allowing the policy to extract more general infor-
mation about the test instance before diving deeper. In this sense, the depth-first
traversal attempts to fit to the test instance too soon, whereas the breadth-first
traversal immediately gets the benefits of feature sub-sampling.

It is worth reiterating that this forest policy does not perform classification,
and so the trees do not vote or otherwise combine results. The forest only serves to
order features during the sequential extraction process. A separate, potentially non-
forest, classifier makes the activity class prediction. Our experiments use a logistic
regression classifier, as described in section 4.

xvi

4 Results

This section is divided into 6 subsections. The first defines the baseline meth-
ods to which we compare our model, and the rest present various experiments. Sub-
section 4.2 defines the datasets and compares the anytime performance of our Frugal
Forest policy to that of the baselines. Subsection 4.3 shows experiments that com-
pare directly to the Q-Learning baseline of Su and Grauman (2016) by modifying the
region sets R to match theirs. Since these region sets reduce cost variation, these ex-
periments also serve as a stress test, introducing a situation where our method cannot
benefit from cost sensitivity. Subsection 4.4 shows one experiment that mirrors one of
the primary experiments but reduces the amount of cost variation available by using
uniform cost factors c

j

. The experiments in subsection 4.5 explore the effects of im-
puting missing feature values. Finally, the experiments in subsection 4.6 investigate
the differences in performance between depth-first and breadth-first forest traversals.

4.1 Baselines

1. Random Policy

The Random policy maintains a set S of unobserved features (i, j). The train

operation initializes S to be the set of all features. The next operation returns
an element of S uniformly at random. The observe(i, j, v) operation removes
element (i, j) from S and ignores v. This policy thus extracts features in a
uniform random order.

2. MI
t

(Dredze et al.)

This is the MI
t

method proposed by Dredze et al. (2007) based on mutual
information. This policy maintains a queue Q of unobserved features. The train

operation initializes Q to be contain all features, sorted in ascending order of
their score according to score(x) = (1 � ↵)(1 � MI(x, y)) + ↵ ⇥ t

x

where x

is the feature, y is the label, MI is the mutual information function, t

x

is the
time required to extract feature x, and ↵ is a hyperparameter that governs the
trade off between mutual information and cost. The next operation returns the
element (i, j) at the head of Q. The observe(i, j, v) operation pops the head
element, which is enforced to be (i, j), from Q and ignores v. This policy thus

xvii

extracts features in a meaningful and cost sensitive, but fixed order.

3. Vanilla Random Forest

The Vanilla Random Forest policy is a random forest whose trees are trained
with the objective function that only maximizes information gain. The next

and observe operations are as defined in section 3.4. This policy thus extracts
features in a meaningful and dynamic, but cost-insensitive order.

4. Q-Learning (Su et al.)

The Q-Learning policy of Su and Grauman (2016) models the problem as an
MDP where each state s is a function of all observed feature values so far, and
the action space A the set of all unobserved features (i, j). The train operation
implements Q-Learning to learn the Q function. The next operation returns
the (i, j) action with the highest Q-value in the current state. The observe

operation implements the MDP transition from state s to the next state s

0.
Similarly to the vanilla random forest policy, this Q-Learning policy extracts
features in a meaningful and dynamic, but cost-insensitive order.

Our experiments vary in region set instantiation. Different region sets imply a
different feature space f

0. Therefore, models are not easily comparable across region
sets. The Q-Learning baseline was trained and evaluated using only the region sets
of its original paper (Su and Grauman, 2016). Two of our experiments match these
region sets. The others do not, and so the Q-Learning baseline is omitted there.

4.2 Primary Experiments

We validate our method against the baselines using three primary experiments.
The first uses the Activities of Daily Living (ADL) dataset with a bag-of-objects his-
togram (BoO) feature space where objects are detected using deformable parts models
(DPM) (Pirsiavash and Ramanan, 2012). Activity classes are usually a function of the
objects present, and more importantly, the objects interacted with. This is especially
true for egocentric data because the camera does not observe most of the subject’s
movements, and so common flow-based features are no longer effective. As shown by
Pirsiavash and Ramanan (2012), the BoO feature space captures this object-centric
relation well. The next experiment uses the UCF101 dataset (Soomro et al., 2012)

xviii

Figure 3: Example frames from the ADL dataset (Pirsiavash and Ramanan, 2012).
In the top two frames, object classes and locations are annotated.

with a BoO feature space where objects are detected using a CNN (Jain et al., 2015).
The last uses the UCF101 dataset with a “multi-feature” feature space that combines
five common feature types, described in more detail later.

Experiment Setup

ADL: The ADL dataset (Pirsiavash and Ramanan, 2012) is a collection of
egocentric videos from people wearing chest-mounted cameras performing activities
of daily living. There are a total of 18 annotated activity classes, including “brushing
teeth,” “doing laundry,” etc. There are 20 videos, each recorded by a different person,
and each with multiple clips. Clips are pre-segmented to start and end with the
activity. The authors of the dataset also provide DPM output for 26 object classes,
including “microwave,” “tooth paste,” etc. Figure 3 shows example frames from the
videos in this dataset.

Since each object class is extracted with a different DPM, we model each DPM
as a function �

j

for j = 1, ..., 26. We let costs c

j

= 1 for all j, assuming each DPM
takes roughly the same amount of time to run. Furthermore, following Yan et al.

(2014) we reason that about 30% of the computation of any DPM �

j

is low-level
image convolutions that can be shared across object classes j. The remaining 70%
can only be shared within object classes.

xix

Figure 4: Nine of the ten spatial regions comprising S for the ADL dataset.
Each white rectangle represents the full XY extent of a frame, and the gray rect-
angle inside represents the extent of the spatial region s

i

2 S. The one spa-
tial region not shown is the one that occupies the entire frame. This set of re-
gions allows the policy to learn spatial correlations of objects at the granularity of
{left, center, right} ⇥ {top, middle, bottom}. The regions overlap to prevent harsh
boundaries between them that would prevent objects straddling such a boundary
from being detected, essentially providing a small amount of spatial invariance, or
“wiggle room.” The spatial region that covers the whole frame (not shown) is able to
detect objects that are too large to fit within any of the other nine regions.

We define the region set R by first defining a spatial set S of 10 overlapping
rectangles of varying size in the XY plane (see figure 4), and a temporal set T of seven
overlapping intervals of varying size in the time dimension (see figure 5). The region
set R is the cross product S ⇥ T . The total number of regions is |R| = |S| · |T | = 70,
giving an overall augmented feature space of dimension dim(f 0) = 26 · 70 = 1820.
Varying the size of the rectangles in S provides more information about the size and
location of the object.

UCF (objects): The UCF101 dataset (Soomro et al., 2012) is comprised of
13320 YouTube clips, each belonging to one of 101 annotated activity classes. It is a
challenging dataset for activity recognition with such a diverse set of activity classes.
As with ADL, clips are pre-segmented to start and end with the activity. Figure 6

xx

Figure 5: The seven temporal intervals comprising T for the ADL dataset. Values
are in fractions of full video length. The first three intervals make up the temporal
pyramid developed by Pirsiavash and Ramanan (2012). The four shorter intervals
enable more fine grained temporal reasoning and allow the policy to reason about
objects appearing only in the beginning, end, or middle of the video. For example,
when the subject is making a sandwich, a “fridge” object might appear only at the
beginning and end of the video when the subject gets out and puts away sandwich
ingredients, but not during the middle of the video when the subject is making the
sandwich. This pattern cannot be captured by the first three temporal intervals alone.

Figure 6: Example frames from the UCF101 dataset (Soomro et al., 2012). There is
great diversity among activity classes.

xxi

Figure 7: The eight temporal intervals comprising R for the UCF101 dataset. Values
are in fractions of full video length. As with the ADL dataset, we add to the temporal
pyramid of Pirsiavash and Ramanan (2012) by including more fine grained temporal
intervals. Here, the intervals are smaller than in the ADL case because videos of the
UCF101 dataset are easier to classify correctly with fewer frames.

shows several example frames from this dataset.
Jain et al. (2015) present an activity recognition model trained on this dataset

using the familiar bag-of-objects histogram feature space. They provide object detec-
tor outputs for 15,000 object classes, but we use their method of identifying “preferred
objects” to reduce this to only the 75 most preferred object classes. As described by
Jain et al. (2015), the idea behind “preferred objects” is that not all 15,000 object
classes are needed for a maximally discriminative representation. Instead, each ac-
tivity class is associated with a subset of k object categories. For each activity class,
its “preferred” objects are those that are most responsive. The total set of preferred
objects is the union over activity classes of these subsets.

Unlike with the ADL dataset, here objects are detected with a CNN. Specifi-
cally, we use the fc-7 layer activations of VGG-16 (Simonyan and Zisserman, 2014b).
Since the CNN detects all objects simultaneously, there is only one feature extraction
function �, and we let its corresponding cost factor c be 1. Since the CNN operates
on the whole image, all regions r

i

span the full XY extent of the video, and so regions
only vary along the temporal dimension. We use a region set R with 8 regions, again
overlapping and of varying size (see figure 7). Thus dim(f 0) = 75 · 8 = 600. But
each invocation of � yields 75 values (one per object class), so the policy only reasons
about 8 actions (i, j).

UCF (multi-feature): This experiment uses the same UCF101 dataset but
a different feature space that is a concatenation of five feature types :

xxii

1. CNN activations from the fc-7 layer of VGG-16 (Simonyan and Zisserman,
2014b), averaged over time (4096 dimensions). This feature type captures high-
level features that are indicative of ImageNet object classes (because this net-
work was trained on ImageNet).

2. Bag-of-HOG histogram (Laptev et al., 2008) (4000 dimensions). This feature
type captures low-level spatial structure.

3. Bag-of-HOF histogram (Laptev et al., 2008) (4000 dimensions). This feature
type captures low-level temporal motion.

4. Bag-of-MBH histogram (Wang and Schmid, 2013) (4000 dimensions). This
feature type captures relative motion between entities in the video.

5. Bag-of- Dense Trajectories (DT) histogram (Wang et al., 2013) (4000 dimen-
sions). This feature type captures mid-level spatio-temporal video dynamics.

To reduce dimensionality, we apply PCA to each of the five feature types in-
dependently, keeping only the 100 largest components of each. Concatenation results
in only 500 dimensions. We refer to this feature space as “multi-feature.”

We use the same 8 regions as in the previously described experiment, shown
in figure 7 . Thus, dim(f 0) = 500 · 8 = 4000. There is one feature extraction function
�

j

for each feature type. Each invocation of a function �

j

yields a vector of feature
values �

j

(r
i

) = v 2 R100. The action space of the policy thus has size 5 · 8 = 40.
Assigning values to the cost factors c

j

of the different feature types is not
straightforward, in part because the time required to extract such features depends
on several hyperparameters (e.g. bin size for HOG). We use the relative ordering
HOG < MBH < HOF < CNN < DT based on the following logic: HOF, MBH,
and DT require expensive optical flow computation. HOF and MBH are similar in
cost, while DT is the most expensive because it requires tracking post processing.
HOG only requires a small number of convolutions per image, so it is the cheapest.
A forward pass of VGG-16 incurs thousands of convolutions per frame (Simonyan
and Zisserman, 2014b), expensive enough to surpass optical flow. Accordingly, we
come up with a reasonable set of cost factors ~c = (6, 1, 4, 3, 10) (order is the same as
the ordered list above, i.e. HOG is the cheapest and dense trajectories are the most
expensive).

xxiii

Since cost sensitivity is an advantage for our Frugal Forest method, larger
variance among the cost factors c

j

should be best handled by our method. We test
this theory, and the robustness of our method, with the experiment in subsection 4.4
in which all cost factors are set to c

j

= 1.

Implementation Details

Both the Vanilla Forest and the Frugal Forest were composed of 80 trees. When
training the forests, each tree was exposed to a random subset of 160 features during
the ADL and UCF (objects) experiments, and 2000 features for the UCF (multi-
feature) experiment. The Frugal Forest was trained with � = 0.4. The MI

t

model
was trained with ↵ = 0.5. Missing feature values were imputed with a 10-component
GMM for the ADL and UCF (objects) experiments, and a 100-component GMM
for the UCF (multi-feature) experiment. All of these parameters were chosen via
validation data. The classifier was a logistic regression model. The GMM and the
classifier were trained on fully-observed training data (no missing values). We perform
cross validation with splits recommended by the respective datasets. Accuracy is
measured as the mean along the diagonal of the classification confusion matrix.

Results

Figure 8 shows the results of these three experiments in the form of Classi-
fication Accuracy vs Normalized Cumulative Cost plots, where cost is a proxy for
computation time. Notice that every curve starts and ends at the same points. These
points correspond to when no features have yet been extracted, and when every
feature has been extracted. In these cases, the classifier will give the same result
regardless of policy.

The rest of this section is split into three parts, each evaluating the results of
the respective three plots.

ADL: Figure 8a shows results for the ADL experiment. Our Frugal Forest
has the fastest gain in accuracy. The Vanilla Forest has similar accuracy after a
cumulative cost of around 0.2, but the Frugal Forest is more accurate at the very
beginning. When the Frugal Forest attains an accuracy of 20%, the Vanilla Forest
attains an accuracy of about 16%.

xxiv

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

ADL

Frugal Forest

Vanilla Forest

MI
t

(Dredze et al.)

Random

(a) Primary experiment with the ADL dataset and BoO feature space.
This experiment emphasizes the importance of being dynamic.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.0

0.1

0.2

0.3

0.4

0.5

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

UCF (objects)

Frugal Forest

Vanilla Forest

MI
t

(Dredze et al.)

Random

(b) Primary experiment with the UCF101 dataset and BoO feature space.
This experiment emphasizes the importance of being cost sensitive.

xxv

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

UCF (multi-feature)

Frugal Forest

Vanilla Forest

MI
t

(Dredze et al.)

Random

(c) Primary experiment with the UCF101 dataset and multi-feature space.
This experiment emphasizes the importance of being both dynamic and
cost sensitive.

Figure 8: Results from primary experiments, spanning two challenging datasets and
two different feature spaces. In all cases, our Frugal Forest policy exceeds or matches
all baselines, showing the power of combining cost sensitivity with being dynamic.

A perhaps surprising result is that the Random policy is competitive with MI
t

.
This is caused by two reasons, both specific to the dataset. The first is that mutual
information is not a good metric for selecting features on the ADL dataset because the
same objects are commonly seen across different activity classes. Intuitively, detecting
the object class “mug” is not enough to be certain of the activity class because many
activities could feasibly include a mug, including “washing dishes,” “moving dishes,”
“making tea,” “making coffee,” and “drinking coffee/tea.” Or perhaps the person is
performing an unrelated activity and the mug happens to be visible in the background.
The key to doing well on this dataset is effectively modeling the spatio-temporal
relationship between objects. For example, if the mug is present in the center of the
frame for the majority of the video while a tea bag is present only briefly near the
beginning of the video, then it becomes more likely the person is “making tea.” The
downfall of mutual information here is that it does not capture relationships between
objects, but rather scores each object independently. A tree structure captures these
relationships well, each node conditioning on the objects detected or not detected in
its ancestor nodes, leading the two forest methods to their superior performance.

xxvi

The second reason is that cost sensitivity only plays a minor role in perfor-
mance with this dataset. On top of this, the Random policy happens to select cheap
features more often than expensive ones because there are more cheap features avail-
able than expensive ones, further reducing the cost sensitivity benefit the MI

t

policy
has over the Random policy. Indeed, the cost insensitive Vanilla Forest policy does
nearly as well as its cost sensitive Frugal Forest counterpart, further supporting the
claim that cost sensitivity does not play as important a role with this dataset as with
others.

UCF (objects): Figure 8b shows the results for the UCF (objects) experi-
ment. Our Frugal Forest method is again the best policy, but the plot overall looks
quite different from the ADL experiment. The “step-like” shape of the curves show
that classification accuracy remains constant until more features become available.
The “steps” do not appear in the ADL experiment because it uses finer-granularity
features and costs, a byproduct of its larger region set R and more feature extractor
types �

j

.
The Frugal Forest and MI

t

policies do particularly well here, balancing cost
with predictive power. These two models nearly match each other while the Vanilla
Forest does quite poorly, suggesting cost sensitivity is more important than being
dynamic for this particular dataset and feature space. This result is opposite the
one observed in the ADL experiment and can likewise be explained by the nature
of the datasets. The videos in the UCF101 dataset are short, and the activities are
very distinct from one another, e.g. “lifting weights” vs. “surfing” vs. “haircut” etc.
Here, detecting just one object can be enough to correctly infer the activity. For
example, detecting the object class “barbell” in a single frame is likely sufficient to
correctly classify the video clip as “lifting weights.” Moreover, the video settings are
all different, so we don’t see extraneous objects in the background of the video like
we see in the ADL dataset.

Notice that Random does much better than the Vanilla Forest. As in the
previous experiment, there are more cheap features to choose from than expensive
features. Consequently, the Random policy happens to select cheap features quite
often. In this experiment, there are five “cheap” features (i, j) that each cost 0.1,
meaning the volume of their region is Vol(r

i

) = 0.1; two “expensive” features that
each cost 0.5, where the volume of the region is half the total video volume; and one

xxvii

very expensive feature that costs 1.0, where the region is the whole video volume. This
leads the Random policy to outperform the more sophisticated Vanilla Forest policy,
which selects the more expensive features due to their higher predictive power. Indeed,
the Vanilla Forest curve remains near zero until normalized cumulative cost reaches
0.5, indicating the first feature extracted was expensive for most cross validation folds.

UCF (multi-feature) Figure 8c shows the results for the UCF (multi-feature)
experiment. Again, our Frugal Forest policy is the best, this time with a more pro-
nounced lead over the baselines in the beginning. The MI

t

baseline catches up to our
Frugal Forest at around a normalized cumulative cost of 0.3, and even briefly exceeds
it near the end.

This combination of dataset and feature space provides roughly equal benefit
to cost sensitivity and to being dynamic. This claim is supported by the fact that the
cost sensitive MI

t

policy roughly matches the dynamic Vanilla Forest. The Random
policy, which is neither cost sensitive nor dynamic, is the worst policy of the four,
achieving the lowest classification accuracy per unit time. Our Frugal Forest realizes
both benefits, exceeding all baselines by a clear margin in the beginning. Compared
to the previous UCF (objects) experiment, this new feature space invalidates the
“one feature is enough” property. Rather, the result of extracting one feature value
v = �

j

(i, j) allows the policy to make important adjustments, as was the case with
the ADL experiment. However, the degree to which this is important is not as high
as in ADL. This experiment can be viewed as a middle ground between the first two
experiments with respect to the importance of cost sensitivity and being dynamic.

Finally, notice that overall accuracy jumps from about 0.5 in the previous
experiment to about 0.7 in this one. This supports the idea that more complex feature
spaces can indeed be effective and necessary, and that it is not always sufficient to
settle for faster, simpler features.

It is worth pointing out that the final accuracies (when all features are ex-
tracted) reported in this work do not beat the current state of the art, as Pirsiavash
and Ramanan (2012) and McCandless and Grauman (2013) achieve higher overall
accuracy on the ADL dataset, and Jain et al. (2015) and Simonyan and Zisserman
(2014a) achieve higher overall accuracy on the UCF101 dataset. Final accuracy is
not the metric of concern here, as it is not a function of the feature extraction policy.
Rather, our goal is to improve accuracy when only a fraction of all features can be

xxviii

extracted.
These experiments show the benefits a feature extraction policy can gain from

being dynamic, from being cost sensitive, and from being both. Our proposed ap-
proach combines these two crucial ingredients to produce a feature extraction policy
that effectively selects the “right” features when needed regardless of dataset or feature
space.

4.3 Comparison to Q-Learning (Su and Grauman)

We perform two experiments in this subsection that directly compare our Fru-
gal Forest model to the Q-learning model of Su and Grauman (2016). To properly
compare our two respective policies, we must use the same feature space. This means
using the same set of features �

j

and regions r

i

. Therefore we modify our experiments
to match those of Su and Grauman (2016). In both experiments, the region set used
are defined such that regions r

i

do not overlap. This greatly reduces cost variation
among features, preventing our Frugal Forest from realizing its cost sensitivity ad-
vantage. Even under these inherently cost-insensitive conditions, our method still
outperforms the baselines.

Experiment Setup

The first of the two experiments is analogous to the primary experiment shown
in figure 8a. It uses the ADL dataset and the BoO feature space, but defines the region
set by dividing the video volume into a uniform grid, splitting each video dimension
into two halves. This gives a total of eight equally sized and non-overlapping regions,
each with Vol(r

i

) = 1
8 . We denote this volume division as the “2x2x2” pattern.

The second experiment is analogous to the primary experiment shown in figure
8b. It uses the UCF101 dataset and BoO feature space, but defines the region set by
dividing the video volume into fourths along the time dimension. Regions still span
the full extent of the X and Y dimensions because objects are detected using a CNN
which requires a fixed image width and height. This results in a total of four equally
sized and non-overlapping regions r

i

, each with Vol(r
i

) = 1
4 . We denote this volume

division as the “1x1x4” pattern.

xxix

Results

Like in subsection 4.2, we present results and analysis for each of the two
experiments separately.

ADL: Figure 9a shows results for the ADL experiment on the “2x2x2” region
set, comparing against the existing Q-Learning approach. Uniform sized regions
together with uniform cost factors c

j

= 1 means the cost of extraction is the same
for every feature, before discounting is applied. Non-overlapping regions implies that
any non-zero discount can only arise from running different DPM object detectors
�

j

over the same region r

i

. Recall there is a 30% discount when running a DPM
over a region that has already been evaluated by a different DPM because low level
convolutions can be shared (Yan et al., 2014). All of this together implies that there
is very little cost variation to be exploited, especially at the beginning of the feature
extraction process. This is why the Vanilla Forest matches our Frugal Forest in the
beginning, and nearly matches it throughout.

The explanation for the poor performance of MI
t

is the same as before: the
ADL dataset rewards dynamic polices more than cost sensitive ones.

The Q-Learning policy falls well below both forest polices despite its dynamic
nature. It matches the forests only at the very beginning and diverges when classifi-
cation accuracy reaches about 15%.

It is also important to notice the drop in final classification accuracy compared
to the primary ADL experiment in subsection 4.2 (30% vs. 35%). This is evidence
that the richer representation provided by the overlapping and non-uniform region
set is indeed helpful.

UCF (objects): Figure 9b shows results for the ADL experiment on the
“1x1x4” region set. This experiment is even more extreme, fully eliminating all cost
variation. This takes away all cost-sensitive advantages of the Frugal Forest and
logically reduces it to a Vanilla Forest. Similarly, the MI

t

policy becomes equivalent
to a policy that simply ordering features by their mutual information score with
respect to the labels, ignoring cost. Additionally, this setup has only one feature
extraction function � (i.e. the CNN) and four regions r

i

, leading to a total of only 4
features (i, j) the policy has to choose from. This reduction in action space reduces
the advantage our Frugal Forest gets from its being dynamic.

As expected, the Vanilla Forest matches our Frugal forest exactly. The MI
t

xxx

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
C

la
ss

ifi
ca

ti
on

A
cc

ur
ac

y
ADL

uniform regions

Frugal Forest

Vanilla Forest

Q-Learning (Su et al.)

MI
t

(Dredze et al.)

Random

(a) Experiment with the ADL dataset, BoO feature space, and the “2x2x2”
region set of Su and Grauman (2016).

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.0

0.1

0.2

0.3

0.4

0.5

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

UCF (objects)
uniform regions

Frugal Forest

Vanilla Forest

Q-Learning (Su et al.)

MI
t

(Dredze et al.)

Random

(b) Experiment with the UCF101 dataset, BoO feature space, and the
“1x1x4” region set of Su and Grauman (2016).

Figure 9: Results from two experiments comparing directly against the Q-Learning
method of Su and Grauman (2016). The modified regions hinder our Frugal Forest
method’s ability to leverage cost sensitivity. Still, our method matches or exceeds all
other methods.

xxxi

policy matches the forests until the last fourth of the feature extraction process, sug-
gesting either the advantage of being dynamic is not totally gone, or that information
gain happened to be a better metric than mutual information in this case. Random is
slightly worse than the other baselines, proving that the order in which these features
are extracted still matters.

With the dynamic aspect diminished and cost sensitivity fully eliminated, this
experiment represents the “worst case” scenario for Frugal Forests. Yet, even under
these extreme conditions, Frugal Forests do not become worse than other methods.
Because our method’s foundation is information gain, it still produces a good fea-
ture ordering, even after the benefits of being dynamic and cost sensitive have been
stripped away.

4.4 Multi-Features with Uniform Cost Factors

Since cost sensitivity is an advantage for our Frugal Forest method, larger
variance among the cost factors c

j

should be best handled by our method. We test
this theory, and the robustness of our method, with an experiment in which all cost
factors are set to c

j

= 1.

Experiment Setup

The experiment setup is identical to the previous experiment that uses the
UCF101 dataset with the “multi-feature” feature space, shown in figure 8c, except
that all five cost factors are set to the same value. This setup removes the cost
variation due to cost factors c

j

, but not the cost variation due to the non-uniform,
overlapping region set. So overall cost variation is reduced but not eliminated.

Results

Figure 10 shows results for this experiment. Still, no baseline outperforms
our Frugal Forest in the beginning. The margin between our Frugal Forest and the
baselines is smaller than in the corresponding primary experiment using non-uniform
cost factors, shown in figure 8c. This smaller margin is caused by the reduction in
cost variation exploitable by our Frugal Forest policy.

xxxii

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Cumulative Cost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
la

ss
ifi

ca
ti

on
A

cc
ur

ac
y

UCF (multi-feature)
uniform cost factors

Frugal Forest

Vanilla Forest

MI
t

(Dredze et al.)

Random

Figure 10: Experiment with the UCF101 dataset using the “multi-feature” feature
space. All five feature types have the same cost factor c

j

= 1. This reduces the
benefit of cost sensitivity, which is why our Frugal Forest policy leads by a smaller
margin than in the corresponding experiment that used non-uniform cost factors,
shown in figure 8c.

After about half way through the feature extraction process, the Vanilla Forest
begins to outperform the Frugal Forest. One possible explanation for this phenomenon
is that, in cases when cost plays a lesser role, as in this experiment, investing in the
more expensive features can lead to higher classification accuracy later on.

Notice that the Vanilla Forest also outperforms the cost sensitive MI
t

baseline
toward the end of the feature extraction process, unlike in the non-uniform cost
experiment. This further supports the reasoning that cost sensitivity is the reason
that the Frugal Forest and MI

t

policies fall behind the Vanilla Forest policy near the
end of the process.

Identifying the “best” policy in this case depends on how much computation
is allowed. The Frugal Forest policy selects features to optimize accuracy for less
computation. In this case, the Frugal Forest policy is the better choice if less than
half of the features can be extracted. On the other hand, if more than half of the
features can be afforded, then the cost-insensitive Vanilla Forest policy would be the
better choice.

As a reminder, the goal of this work is to achieve good classification accuracy
while using just a fraction of computation required to extract all features. Under this

xxxiii

light, this experiment reinforces the usefulness of the Frugal Forest policy and cost
sensitivity in general.

4.5 Imputation Experiment

This experiment explores the effect of imputing missing values. Specifically, we
compare GMM imputation to the less sophisticated method of just using the missing
feature’s expected value.

Experiment Setup

The experiment setup is the same as the first two primary experiments de-
scribed in subsection 4.2. The first uses the ADL dataset with the BoO feature
space. The second uses the UCF101 dataset with the BoO feature space.

Results

Figure 11 shows the results of this experiment. All policies benefit from GMM
imputation over mean imputation. This shows that the more sophisticated GMM
imputation method provides better estimates of missing feature values, in turn im-
proving intermediate classification accuracy.

4.6 Forest Traversal Experiments

This experiment aims to explain why the breadth-first forest traversal might
perform better than depth-first. We run three experiments that evaluate our Frugal
Forest policy under both breadth-first and depth-first scenarios.

Experiment Setup

The experiment setup is the same as the primary experiments described in
4.2. The first uses the ADL dataset with the BoO feature space. The second uses
the UCF101 dataset with the BoO feature space. The third uses the UCF101 dataset
with the “multi-feature” feature space.

xxxiv

Figure 11: Experiment showing the effect of GMM imputation for missing feature
values on anytime classification accuracy. Solid curves use GMM imputation whereas
dashed curves use the simpler mean imputation. All policies benefit roughly equally
from GMM imputation, so some policies are omitted from the plot to prevent the
plots from becoming too cluttered.

xxxv

(a) Experiment showing a small difference between breadth-first and
depth-first forest traversals on the ADL dataset using the BoO feature
space.

(b) Experiment showing breadth-first and depth-first forest traversals give
identical results on the UCF101 dataset using the BoO feature space.

xxxvi

(c) Experiment showing breadth-first and depth-first forest traversals give
identical results on the UCF101 dataset using the “multi-feature” feature
space.

Figure 12: Experiment showing the breadth-first forest traversal having a slight edge,
if any, over the depth-first traversal on the ADL dataset, but showing no difference
between the two traversals on the UCF101 dataset. This leads to the conclusion that
the optimal traversal method is dependent on dataset.

Results

Figure 12 shows the results of rerunning the three primary experiments with
both breadth-first and depth-first traversals of our Frugal Forest policy. The ADL
experiment shown in 12a displays a small difference in classification accuracy be-
tween the two traversals in the beginning. The UCF experiments, however, show no
difference in classification accuracy at all between the two traversals.

To understand why the two traversal methods produce a difference in the ADL
experiment but not the UCF experiment, recall an important difference between these
two datasets: The UCF101 dataset has the “one object is enough” property, where
the one-to-one correspondence between object presence and activity class is high.
This property applies to the “multi-feature” case, too, in that extracting one highly
responsive flow descriptor could be enough to reveal the activity class, for example.
In contrast, objects in the ADL dataset are often present in multiple activity classes.
This is because the same objects are used across activity classes and because irrelevant

xxxvii

objects can be seen in the background.
We interpret the process of traversing down a single tree as refining the current

belief about the content of the video and its activity class. Intuitively, the tree
“narrows in” on a certain activity class, or group of related activity classes, as it
travels from root to leaf.

With the “one object is enough” property in mind, it makes sense that the early
refinement of the depth-first forest traversal doesn’t hurt accuracy. The policy will
iterate through objects until it detects one, at which point there is enough confidence
to begin refinement. The opposite is true for the ADL experiment. If the policy
begins narrowing in immediately, it selects features that turn out not to be as helpful
as the more exploratory features selected by the breadth-first traversal.

Though the empirical difference between the two traversal methods is small,
it is robust to changes in hyperparameter values. Varying the number of trees in the
forest and the number of sub-sampled features per tree produces a similar result.

5 Conclusion

Our work is motivated by the fact that visual features for activity classifica-
tion are computationally expensive to compute. Furthermore, the current trends in
the literature suggest that features are becoming even more expensive as yet more
complex video representations lead to higher classification accuracy. Some real-world
applications cannot afford to extract all features. We attempt to solve this problem by
learning an anytime feature extraction policy that will select features for on-demand
extraction in a sequence that increases classification accuracy most quickly. We pro-
pose the Frugal Forest as a feature extraction policy that is both dynamic, observing
extracted feature values and adapting to new information on the fly; and cost sensi-
tive, balancing a feature’s estimated informative value with its extraction cost. These
two properties together allow our Frugal Forest to achieve better activity classification
accuracy per unit time than other methods.

We conducted experiments across two prominent and difficult activity recog-
nition datasets and used a variety of different visual features. These experiments
showed our Frugal Forest exceeding or matching all baselines. In addition, we con-
ducted experiments that show our Frugal Forest policy is resilient to “worst case”

xxxviii

situations that reduce or eliminate cost variation among features.
We showed that imputing missing feature values helps improve accuracy per

unit cost, comparing Gaussian Mixture Model (GMM) imputation to the simpler
mean imputation.

Lastly, we investigated the difference between breadth-first and depth-first
forest traversals and their effect on anytime classification accuracy. We hypothesized
that a breadth-first traversal selects more exploratory features in the beginning of
the feature extraction process, whereas a depth-first traversal will quickly refine the
current belief. The more exploratory breadth-first method showed to be slightly more
beneficial for the ALD dataset while the UCF101 dataset showed no difference because
of its “one object is enough” property.

In conclusion, our Frugal Forest feature extraction policy attains the highest
anytime classification accuracy per unit cost of all our baselines, including the current
state of the art. The superior performance is attributed to two properties: being
dynamic, and cost sensitivity.

Future work might investigate the use of gradient boosted trees which have
shown promising results (Friedman, 2001) and might make for a better feature extrac-
tion policy than a random forest. One practical difference between gradient boosted
trees and random forests is that gradient boosted trees cannot be trained in parallel
because each successive tree depends on the previous ones, whereas the trees of a ran-
dom forest can be trained independently. This will likely lead to increased training
time, however training time is usually of small concern relative to test time accuracy.

Another avenue of potential future work would be to apply Frugal Forests
to the streaming domain, where the policy does not have access to the whole video
and thus cannot jump forward in time. Such a scenario would require modifying the
training algorithm so that tree nodes only select regions of video that are estimated to
be available by the time that node is reached during test time. This begs the question,
how should the test time framework respond when the policy selects a video region
that is not yet available? A naive solution would have the system block until the
selected video region becomes available, but this approach has the obvious drawback
of sitting idle. An alternative test-time solution could be to skip nodes that select
unavailable video regions, putting such nodes in a queue and coming back to them
later.

xxxix

After researching the potential impact that dynamic and cost sensitive meth-
ods can have on anytime classification, we are excited to see further advances in the
future.

xl

Bibliography

Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM

Computing Surveys (CSUR), 43(3):16, 2011.

Bogdan Alexe, Nicolas Heess, Yee W Teh, and Vittorio Ferrari. Searching for objects
driven by context. In Advances in Neural Information Processing Systems, pages
881–889, 2012.

Mohamed Amer, Dan Xie, Mingtian Zhao, Sinisa Todorovic, and Song-Chun Zhu.
Cost-sensitive top-down/bottom-up inference for multiscale activity recognition.
Computer Vision–ECCV 2012, pages 187–200, 2012.

Mohamed R Amer, Sinisa Todorovic, Alan Fern, and Song-Chun Zhu. Monte carlo
tree search for scheduling activity recognition. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1353–1360, 2013.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Nicholas J Butko and Javier R Movellan. Optimal scanning for faster object detection.
In Computer vision and pattern recognition, 2009. cvpr 2009. ieee conference on,
pages 2751–2758. IEEE, 2009.

Chao-Yeh Chen and Kristen Grauman. Efficient activity detection with max-subgraph
search. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Confer-

ence on, pages 1274–1281. IEEE, 2012.

Daozheng Chen, Mustafa Bilgic, Lise Getoor, and David Jacobs. Dynamic processing
allocation in video. IEEE transactions on pattern analysis and machine intelligence,
33(11):2174–2187, 2011.

James W Davis and Ambrish Tyagi. Minimal-latency human action recognition using
reliable-inference. Image and Vision Computing, 24(5):455–472, 2006.

Mark Dredze, Reuven Gevaryahu, and Ari Elias-Bachrach. Learning fast classifiers
for image spam. In CEAS, 2007.

xli

Olivier Duchenne, Ivan Laptev, Josef Sivic, Francis Bach, and Jean Ponce. Auto-
matic annotation of human actions in video. In Computer Vision, 2009 IEEE 12th

International Conference on, pages 1491–1498. IEEE, 2009.

Gabriel Dulac-Arnold, Ludovic Denoyer, Nicolas Thome, Matthieu Cord, and Patrick
Gallinari. Sequentially generated instance-dependent image representations for
classification. arXiv preprint arXiv:1312.6594, 2013.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

Tianshi Gao and Daphne Koller. Active classification based on value of classifier. In
Advances in Neural Information Processing Systems, pages 1062–1070, 2011.

JC Gemert, Mihir Jain, Ella Gati, Cees GM Snoek, et al. Apt: Action localization

proposals from dense trajectories. BMVA Press, 2015.

Georgia Gkioxari and Jitendra Malik. Finding action tubes. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 759–768,
2015.

Abel Gonzalez-Garcia, Alexander Vezhnevets, and Vittorio Ferrari. An active search
strategy for efficient object class detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3022–3031, 2015.

Dong Han, Liefeng Bo, and Cristian Sminchisescu. Selection and context for action
recognition. In Computer Vision, 2009 IEEE 12th International Conference on,
pages 1933–1940. IEEE, 2009.

Minh Hoai and Fernando De la Torre. Max-margin early event detectors. International

Journal of Computer Vision, 107(2):191–202, 2014.

Mihir Jain, Jan Van Gemert, Hervé Jégou, Patrick Bouthemy, and Cees GM Snoek.
Action localization with tubelets from motion. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 740–747, 2014.

Mihir Jain, Jan C van Gemert, and Cees GM Snoek. What do 15,000 object cate-
gories tell us about classifying and localizing actions? In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 46–55, 2015.

xlii

Vasiliy Karasev, Avinash Ravichandran, and Stefano Soatto. Active frame, location,
and detector selection for automated and manual video annotation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2123–
2130, 2014.

Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely object
recognition. In Advances in Neural Information Processing Systems, pages 890–898,
2012.

Sergey Karayev, Mario Fritz, and Trevor Darrell. Anytime recognition of objects and
scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 572–579, 2014.

Yan Ke, Rahul Sukthankar, and Martial Hebert. Efficient visual event detection
using volumetric features. In Computer Vision, 2005. ICCV 2005. Tenth IEEE

International Conference on, volume 1, pages 166–173. IEEE, 2005.

Alexander Kläser, Marcin Marszałek, Cordelia Schmid, and Andrew Zisserman. Hu-
man focused action localization in video. In European Conference on Computer

Vision, pages 219–233. Springer, 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

Tian Lan, Yang Wang, and Greg Mori. Discriminative figure-centric models for joint
action localization and recognition. In Computer Vision (ICCV), 2011 IEEE In-

ternational Conference on, pages 2003–2010. IEEE, 2011.

Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning
realistic human actions from movies. In Computer Vision and Pattern Recognition,

2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

Ce Liu. Beyond pixels: exploring new representations and applications for motion

analysis. PhD thesis, Citeseer, 2009.

Tomas McCandless and Kristen Grauman. Object-centric spatio-temporal pyramids
for egocentric activity recognition. In BMVC, volume 2, page 3, 2013.

xliii

Gérard Medioni, Isaac Cohen, François Brémond, Somboon Hongeng, and Ramakant
Nevatia. Event detection and analysis from video streams. IEEE Transactions on

pattern analysis and machine intelligence, 23(8):873–889, 2001.

Feng Nan, Joseph Wang, and Venkatesh Saligrama. Feature-budgeted random forest.
arXiv preprint arXiv:1502.05925, 2015.

Nvidia. Gpu-based deep learning inference: A performance and power analysis. In
Whitepaper, 2015.

Marco Pedersoli, Andrea Vedaldi, Jordi Gonzalez, and Xavier Roca. A coarse-to-fine
approach for fast deformable object detection. Pattern Recognition, 48(5):1844–
1853, 2015.

Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-
person camera views. In Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 2847–2854. IEEE, 2012.

Marcus Rohrbach, Michaela Regneri, Mykhaylo Andriluka, Sikandar Amin, Manfred
Pinkal, and Bernt Schiele. Script data for attribute-based recognition of composite
activities. In European Conference on Computer Vision, pages 144–157. Springer,
2012.

MS Ryoo, Thomas J Fuchs, Lu Xia, JK Aggarwal, and Larry Matthies. Early recogni-
tion of human activities from first-person videos using onset representations. arXiv

preprint arXiv:1406.5309, 2014.

Michael S Ryoo. Human activity prediction: Early recognition of ongoing activities
from streaming videos. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 1036–1043. IEEE, 2011.

Mohammad Amin Sadeghi and David Forsyth. 30hz object detection with dpm v5.
In European Conference on Computer Vision, pages 65–79. Springer, 2014.

Scott Satkin and Martial Hebert. Modeling the temporal extent of actions. Computer

Vision–ECCV 2010, pages 536–548, 2010.

xliv

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

Yu-Chuan Su and Kristen Grauman. Leaving some stones unturned: dynamic feature
prioritization for activity detection in streaming video. In European Conference on

Computer Vision, pages 783–800. Springer, 2016.

Pavan Turaga, Rama Chellappa, Venkatramana S Subrahmanian, and Octavian
Udrea. Machine recognition of human activities: A survey. IEEE Transactions

on Circuits and Systems for Video Technology, 18(11):1473–1488, 2008.

Sudheendra Vijayanarasimhan and Ashish Kapoor. Visual recognition and detection
under bounded computational resources. In Computer Vision and Pattern Recog-

nition (CVPR), 2010 IEEE Conference on, pages 1006–1013. IEEE, 2010.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I–I. IEEE, 2001.

Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In
The IEEE International Conference on Computer Vision (ICCV), December 2013.

Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, and Cordelia
Schmid. Evaluation of local spatio-temporal features for action recognition. In
BMVC 2009-British Machine Vision Conference, pages 124–1. BMVA Press, 2009.

Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense trajecto-
ries and motion boundary descriptors for action recognition. International journal

of computer vision, 103(1):60–79, 2013.

xlv

Zhongwen Xu, Yi Yang, and Alex G Hauptmann. A discriminative cnn video repre-
sentation for event detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1798–1807, 2015.

Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z Li. The fastest deformable part
model for object detection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2497–2504, 2014.

Angela Yao, Juergen Gall, and Luc Van Gool. A hough transform-based voting
framework for action recognition. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 2061–2068. IEEE, 2010.

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas, and
Li Fei-Fei. Human action recognition by learning bases of action attributes and
parts. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages
1331–1338. IEEE, 2011.

Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning
of action detection from frame glimpses in videos. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2678–2687, 2016.

Gang Yu and Junsong Yuan. Fast action proposals for human action detection and
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1302–1311, 2015.

Gang Yu, Junsong Yuan, and Zicheng Liu. Unsupervised random forest indexing for
fast action search. In Computer Vision and Pattern Recognition (CVPR), 2011

IEEE Conference on, pages 865–872. IEEE, 2011.

Xiaodong Yu, Cornelia Fermüller, Ching Lik Teo, Yezhou Yang, and Yiannis Aloi-
monos. Active scene recognition with vision and language. In Computer Vision

(ICCV), 2011 IEEE International Conference on, pages 810–817. IEEE, 2011.

Shengxin Zha, Florian Luisier, Walter Andrews, Nitish Srivastava, and Ruslan
Salakhutdinov. Exploiting image-trained cnn architectures for unconstrained video
classification. arXiv preprint arXiv:1503.04144, 2015.

xlvi

	Introduction
	Related Work
	Activity Recognition
	Prioritizing Feature Computation in Images
	Prioritizing Feature Computation in Video
	Cost Sensitivity

	Approach
	Augmented Feature Space
	Feature Extraction Cost
	Feature Extraction Policy
	Frugal Forest Policy

	Results
	Baselines
	Primary Experiments
	Comparison to Q-Learning (Su and Grauman)
	Multi-Features with Uniform Cost Factors
	Imputation Experiment
	Forest Traversal Experiments

	Conclusion

