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An image retrieval system needs to be able to communicate with people
using a common language, if it is to serve its user’s information need. I propose
techniques for interactive image search with the help of visual attributes, which
are high-level semantic visual properties of objects (like “shiny” or “natural”),
and are understandable by both people and machines. My thesis explores at-
tributes as a novel form of user input for search. I show how to use attributes
to provide relevance feedback for image search; how to optimally choose what
to seek feedback on; how to ensure that the attribute models learned by a sys-
tem align with the user’s perception of these attributes; how to automatically
discover the shades of meaning that users employ when applying an attribute

term; and how attributes can help learn object category models.

I use attributes to provide a channel on which the user of an image
retrieval system can communicate her information need precisely and with as
little effort as possible. One-shot retrieval is generally insufficient, so interac-

tive retrieval systems seek feedback from the user on the currently retrieved

vil



results, and adapt their relevance ranking function accordingly. In traditional
interactive search, users mark some images as “relevant” and others as “ir-
relevant” | but this form of feedback is limited. I propose a novel mode of
feedback where a user directly describes how high-level properties of retrieved
images should be adjusted in order to more closely match her envisioned tar-
get images, using relative attribute feedback statements. For example, when
conducting a query on a shopping website, the user might state: “I want shoes

like these, but more formal.” 1 demonstrate that relative attribute feedback is

more powerful than traditional binary feedback.

The images believed to be most relevant need not be most informative
for reducing the system’s uncertainty, so it might be beneficial to seek feedback
on something other than the top-ranked images. I propose to guide the user
through a coarse-to-fine search using a relative attribute image representation.
At each iteration of feedback, the user provides a visual comparison between
the attribute in her envisioned target and a “pivot” exemplar, where a pivot
separates all database images into two balanced sets. The system actively de-
termines along which of multiple such attributes the user’s comparison should
next be requested, based on the expected information gain that would result.
The proposed attribute search trees allow us to limit the scan for candidate
images on which to seek feedback to just one image per attribute, so it is

efficient both for the system and the user.

No matter what potentially powerful form of feedback the system of-

fers the user, search efficiency will suffer if there is noise on the communica-
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tion channel between the user and the system. Therefore, I also study ways
to capture the user’s true perception of the attribute vocabulary used in the
search. In existing work, the underlying assumption is that an image has a
single “true” label for each attribute that objective viewers could agree upon.
However, multiple objective viewers frequently have slightly different inter-
nal models of a visual property. I pose user-specific attribute learning as an
adaptation problem in which the system leverages any commonalities in per-
ception to learn a generic prediction function. Then, it uses a small number of
user-labeled examples to adapt that model into a user-specific prediction func-
tion. To further lighten the labeling load, I introduce two ways to extrapolate

beyond the labels explicitly provided by a given user.

While users differ in how they use the attribute vocabulary, there exist
some commonalities and groupings of users around their attribute interpre-
tations. Automatically discovering and exploiting these groupings can help
the system learn more robust personalized models. I propose an approach to
discover the latent factors behind how users label images with the presence or
absence of a given attribute, from a sparse label matrix. I then show how to
cluster users in this latent space to expose the underlying “shades of mean-
ing” of the attribute, and subsequently learn personalized models for these
user groups. Discovering the shades of meaning also serves to disambiguate
attribute terms and expand a core attribute vocabulary with finer-grained

attributes.

Finally, I show how attributes can help learn object categories faster. 1
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develop an active learning framework where the computer vision learning sys-
tem actively solicits annotations from a pool of both object category labels and
the objects’ shared attributes, depending on which will most reduce total un-
certainty for multi-class object predictions in the joint object-attribute model.
Knowledge of an attribute’s presence in an image can immediately influence
many object models, since attributes are by definition shared across subsets of
the object categories. The resulting object category models can be used when
the user initiates a search via keywords such as “Show me images of cats” and
then (optionally) refines that search with the attribute-based interactions I

propose.

My thesis exploits properties of visual attributes that allow search to
be both effective and efficient, in terms of both user time and computation
time. Further, I show how the search experience for each individual user can
be improved, by modeling how she uses attributes to communicate with the
retrieval system. I focus on the modes in which an image retrieval system
communicates with its users by integrating the computer vision perspective
and the information retrieval perspective to image search, so the techniques I

propose are a promising step in closing the semantic gap.
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Chapter 1

Introduction

It is difficult to develop a machine vision system that perceives the
world like a person does. However, an image retrieval system needs to be able
to communicate with its user using a common language, if it is to serve the
user’s information need. When people perform a search, they usually have
a very specific idea of what they want to retrieve, and this idea cannot be
captured by simple tags or keywords, which are usually category labels. Users
might want to see what a given celebrity looks like, in which case the celebrity
can be treated as a category, and the search can be seen as a classification
problem. However, in most cases, the traditional categories we use in com-
puter vision are insufficiently descriptive of the user’s information need since
categories are too coarse-grained. For example, a user might want to buy
shoes that satisfy certain properties like color, heel height, texture etc., and
these properties cannot be captured by even the most fine-grained categories
that might reasonably exist in the world. The user might also search for stock
photography to include in a presentation, and she likely has a very specific

idea of what the photograph she wants to include should look like.

Keywords alone are not sufficient to capture the user’s mental picture



of what she is looking for. Even if all existing images were tagged to enable
keyword search, it is infeasible to pre-assign tags sufficient to satisfy any future
query a user may dream up. Furthermore, due to the well known semantic
gap—which separates the system’s low-level image representation from the
user’s high-level concept—one-shot retrieval performed by matching images
to keywords is unlikely to get the right results. One of the solutions which
retrieval systems employ to solve the problems caused by the semantic gap
is to allow the user to iteratively provide feedback on the results retrieved
in each round. The basic idea is to show the user candidate results, obtain
feedback, and adapt the system’s relevance ranking function accordingly. In
this interactive form of search, users mark some images as ‘“relevant” and
others as “irrelevant” [86, 23, 123, 182, 43, 152, 89|. Instead of requesting
feedback on some user-chosen set of the current results, some methods per-
form active selection of the images to display for feedback, by exploiting the
uncertainty in the system’s current model of relevance to find useful exemplars

[152, 89, 23, 182, 43].

However, this form of feedback is limited as it forces the retrieval system
to guess what about the images was relevant or irrelevant. For example, when
Jane searches for “black shoes”, retrieves a pair of pointy high-heeled black
shoes, and marks them as irrelevant, this might be because she did not want
these shoes to be “pointy”, or because she wanted them to be “fat”. However,
the system does not know which, and this uncertainty will negatively impact

the next page of image results. Furthermore, existing methods which actively



select the images for feedback use an approximation to finding the optimal
uncertainty reduction, whether in the form of uncertainty sampling [152] or
by employing sampling or clustering heuristics [23, 43]. Such methods also
only consider binary feedback (“this is relevant” / “this is irrelevant” ), which

is imprecise.

Recently, there has been work in the computer vision community on de-
veloping models for visual attributes, which are semantic properties of objects
that often extend across category boundaries [87, 40, 45, 107]. Some examples
of attributes are “furry”, “metallic”, “pointy”, “young”, and “smiling”. Some
researchers have explored attributes for search [83, 142, 134], but even though
one-shot attribute queries help a user more precisely state their goal, they are
still a form of keyword search and do not allow refinement of the search re-
sults. Further, systems which retrieve results based on multi-attribute queries
assume that all users mean the same thing when they make a certain attribute
statement, and that one classifier is sufficient to capture all variability within
a given attribute term [83, 142, 134]. However, other researchers and myself
find that there is substantial disagreement between users regarding attribute
labels [40, 110, 24|, and that different groups of users have different “shades

of meaning” in mind when they employ adjectives such as colors [37].

The central idea of my thesis is to explore visual attributes for semantic
feedback in interactive image search. Attributes can be either binary or relative
properties. In the first case, to learn an attribute model, we learn a binary

classifier which predicts whether the attribute is present or not. In the second



case, we learn a ranking model which predicts the relative strength of the
attribute in a given image. This model allows us to rank images on a spectrum
from “least” to “most” having the attribute. I will consider both binary and

relative attributes in this thesis.

Towards the broad goal of interactive search with attributes, I address
a number of technical challenges. First, I use attributes to provide a chan-
nel on which the user can communicate her information need precisely and
with as little effort as possible. I find that attributes enable more powerful
relevance feedback for image search compared to traditional binary feedback
(“This image is relevant; this one is not.” ), and show how to further select this
feedback so it is as informative as possible. I also investigate how users use
the attribute vocabulary during search, and ensure that the models learned
for each attribute align with how a user employs the attribute name, which
is determined by the user’s individual perception of this attribute. I propose
to automatically discover and exploit the commonalities that exist in user
perceptions of the same attribute, to reveal the “shades of meaning” of an
attribute and learn more robust models which are personalized for groups of
users. Finally, I use attributes in a joint object-attribute model to efficiently
learn object category models which can be used when a person initiates a

search with keywords.

Unlike existing relevance feedback for image retrieval [86, 123, 151,
23, 182, 43, 47], the attribute-based feedback I propose allows the user to

communicate to the retrieval system precisely how a set of results lack what the



user is looking for. Furthermore, unlike existing work in attribute-based search
[83, 142, 134, 117], I ensure that the user input to the system will be interpreted
as intended, by developing a new form of personalization that decreases the
noise on the user-system communication channel. Further, my approach differs
from existing work on attribute-based search that treats attributes as keywords
[83, 142, 134], so visual properties are considered to be either present or not
present, with no way to quantify to what extent or in what way they are
present. In that work, once a search is performed, there is no way to refine

the query. Instead I show how to use attributes to refine a search.

1.1 Comparative Relevance Feedback using Attributes

In the the first major component of my thesis, I propose a novel mode of
feedback where a user directly describes how high-level properties of exemplar
images should be adjusted in order to more closely match her envisioned tar-
get images. For example, when conducting a query on a shopping website, the
user might state: “I want shoes like these, but more formal.” When browsing
images of potential dates on a dating website, she can say: “I am interested in
someone who looks like this, but with longer hair and more smiling.” When
searching for stock photos to fit an ad, she might say: “I need a scene simi-
larly bright as this one and more urban than that one.” See Figure 1.1. In this
way, rather than simply state which images are (ir)relevant, the user employs
semantic terms to say how they are so. I expect that such feedback will enable

the system to more closely match the user’s mental model of the desired con-



Query:
“black shoes”

' - Initial top
v | TR search
results
L) 1)
Feedback: Feedback:
“more formal than these” “shinier than these”

Refined
w y ) M top search
results

Figure 1.1: WhittleSearch allows users to give relative attribute feedback on
reference images to refine their image search.

tent, and with less total interaction effort. I call the approach WhittleSearch,
since it allows users to “whittle away” irrelevant portions of the visual feature

space via precise, intuitive statements of their attribute preferences.

In order for a retrieval system to accept relative attribute feedback, it
needs to know how images place along each attribute spectrum. Following
[107], the system learns one ranking model per attribute, which is a one-time
procedure that takes place before any search begins. The system then needs a
method for updating its notion of relevance from relative attribute feedback.
In Chapter 3, I propose a simple strategy which counts how many relative
attribute feedback constraints each image satisfies, and then in Chapter 4, I

extend this approach by computing the probability that an image satisfies a



given set of constraints, thereby accounting for uncertainty in the attribute

predictions.

During search, a user sees a whole page of results, so feedback can be
given on any image of the user’s choosing. To match this scenario, the system
presents the user with a set of reference images and allows her to pair any of
these with any attribute in the vocabulary. This setup gives the user the most
freedom to comment on exactly what she finds important for achieving good
image results. In all but the first iteration, the presented reference images are
those currently ranked best by the system, which has the additional advantage
that the user is shown only those results which are relatively similar to (the
system’s estimate of) her target image. My results show that the proposed
form of feedback via relative attributes is more powerful than traditional binary

relevance feedback.

1.2 Actively Guiding the User’s Relevance Feedback

However, the images believed to be most relevant need not be most
informative for reducing the system’s uncertainty. As a result, when the user
is willing to cooperate with the system in order to achieve better final results,
it might be more beneficial to leave the choice of reference images on which to
seek feedback to the system. Therefore, in Chapter 4, I study how the system

can best select the feedback it requests.

The goal of actively selecting some images for feedback is to solicit

feedback on those exemplars that would most improve the system’s notion of



relevance. Many existing methods exploit classifier uncertainty to find use-
ful exemplars (e.g., [152, 89, 182]). However, traditional approaches have two
main limitations. First, these methods elicit traditional binary feedback (“Im-
age X is relevant; image Y is not.”) which is imprecise, as discussed above.
This makes it ambiguous how to extrapolate relevance predictions to other
images, which in turn clouds the active selection criterion. Second, existing
active selection techniques add substantial computational overhead to the in-
teractive search loop, since ideally they must scan all database images to find
the most informative exemplars. This is why prior efforts to display the exem-
plar set that minimizes uncertainty were forced to resort to sampling or clus-
tering heuristics due to the combinatorial optimization problem inherent when
categorical feedback is assumed (e.g., [122, 23, 43]), or to the over-simplified
uncertainty sampling [152] which does not guarantee global uncertainty reduc-

tion over the full dataset.

In the second major component of my thesis, I introduce a novel ap-
proach that addresses these shortcomings. I propose to actively guide the user
through a coarse-to-fine search using a relative attribute image representation.
At each iteration of feedback, the user provides a visual comparison between
the attribute in her envisioned target and a “pivot” exemplar, where a pivot
separates all database images into two balanced sets. In the previous form of
relevance feedback I proposed, the user is presented with a full page of image
results, and has the freedom to choose both the image to which she will com-

pare her mental model, and the attribute along which the comparison will be



Are the shoes you seek R
more or less feminine than ?

... more or less bright than % ?

Figure 1.2: The active version of WhittleSearch requests feedback in the form
of visual attribute comparisons between the user’s target and images selected
by the system. To formulate the optimal question to ask next, it unifies an
entropy reduction criterion with binary search trees in attribute space.

made. I now propose an additional form a feedback where the system makes
this choice, so the user is presented with a single image and a single attribute
and simply has to provide the value of the comparison (“more”, “less”, or
“equally”). The system actively determines along which of multiple attributes
the user’s comparison should next be requested, based on the expected infor-
mation gain that would result. This ensures that the system receives useful
feedback, and also can be advantageous if a user finds the choice of which

images and attributes to comment on burdensome.

The approach works as follows. Given a database of images, my system
first constructs a binary search tree for each relative attribute of interest (e.g.,
“pointiness”, “shininess”, etc.). Initially, the pivot exemplar for each attribute
is the database image with the median relative attribute value. Starting at the
roots of these trees, the system predicts the information gain that would result

from asking the user how his target image compares to each of the current



pivots. To compute the expected gain, I introduce methods to estimate the
likelihood of the user’s response given the feedback history. Then, among the
pivots, the most informative comparison is requested, generating a question
to the user such as, “Is your target image more, equally, or less pointy than
this image?” Following the user’s response, the system updates its relevance
predictions on all images. It also moves the current pivot down one level within
the selected attribute’s tree (unless the response is “equally”, in which case we
no longer need to explore this tree). The procedure iterates until the user is
satisfied with the top-ranked results. Please see Figure 1.2 for an illustration

of the key idea of this approach.

In technical terms, this problem setting demands repeatedly estimat-
ing the total expected error reduction over all unlabeled database images, as a
function of requesting any possible comparison from the user. Whereas prior
information-gain methods would require a naive scan through all database im-
ages for each iteration, the proposed attribute search trees allow us to limit
the scan to just one image per attribute. Thus, the active selection method
I propose is efficient both for the system (which analyzes a small number of
candidates per iteration) and the user (who locates his content via a small num-
ber of well-chosen interactions). My results show that the proposed method
retrieves more accurate results and makes its choices faster than relevant base-

lines.
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1.3 Accounting for Differing User Perceptions of At-

tributes

No matter what potential power of feedback we offer a user, search
efficiency will suffer if there is noise on the communication channel between
the user and the system. In other words, if the user says “A” and the system
understands “B”, most searches will be unsuccessful. In existing work, train-
ing an attribute predictor largely follows the same procedure used for training
any image classification system: one collects labeled image exemplars, ex-
tracts image descriptors, and applies discriminative learning. The underlying
assumption is that an image has a single “true” category label that objective
viewers could agree upon. Yet, while this holds for objects (a horse is a horse,
of course'), an attribute inherently has more leeway. Multiple objective view-
ers are bound to have slightly different internal models of a visual property.
Indeed, researchers collecting attribute-labeled datasets report significant dis-

agreement among human annotators [40, 110, 35].

The differences may stem from several factors: the words for attributes
are imprecise (when is the cat “overweight” vs. “chubby”?), their meanings
often depend on context (the shoe appears “comfortable” for a wedding, but
not for running) and even cultures (languages have differing numbers of color
words, ranging from two to eleven), and they often stretch to refer to quite

distinct object categories (e.g., “pointy” pencil vs. “pointy” shoes). For all

1See [104] for work on predicting which entry-level noun users commonly agree upon and
use to describe an object.
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Figure 1.3: Visual attribute interpretations vary slightly from viewer to viewer.
This is true whether the attributes are modeled as categorical or relative prop-
erties. For example, 5 viewers confidently declare a shoe as formal (left) or
more ornamented (right), while 5 others confidently declare the opposite! I
propose to adapt attribute models to take these differences in perception into
account.

such reasons, people inevitably craft their own definitions for visual attributes.
Notably, their definitions vary whether we consider binary or relative attributes

(see Figure 1.3).

This variability has important implications for any application where
a person uses attributes to communicate with a vision system, and particu-
larly for image search. Failing to account for user-specific notions of attributes
will lead to discrepancies between the user’s precise intent and the message
received by the system. Yet, even when training labels are solicited from mul-
tiple annotators, existing methods learn only a single “mainstream” view of
each attribute, forcing a consensus through majority voting. This is the case
whether using binary [45, 87, 40] or relative [107] attributes. For binary prop-
erties, one takes the majority vote on the attribute present/absent label. For
relative properties, one takes a majority vote on the attribute more/less label.
Note that using relative attributes does not resolve the ambiguity problem.

The point in relative attributes is that people may agree best on comparisons
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or strengths, not binary labels. However, just like categorical attributes, rela-
tive attributes assume that there is some single, common interpretation of the
property shared consistently by all viewers—namely, that a single ordering of

images from least to most [attribute] is possible.

In the third major component of my thesis, I study ways to capture
the user’s true perception of the attribute vocabulary used in the search. I
propose to model attributes in a user-specific way, in order to capture the
inherent differences in perception. How can this be done efficiently? The most
straightforward approach—to learn one function per attribute and per user,
from scratch—is certainly not scalable in most reasonable application settings,
and ignores the reality that people do share some foundational definition of a

visual property.

Instead, I pose user-specific attribute learning as an adaptation prob-
lem. First, my system leverages any commonalities in perception to learn a
generic prediction function, namely, a classifier for a binary attribute (e.g.,
“pointy”) or a ranking function for a relative attribute (e.g., “pointier than”).
Then, it uses a small number of user-labeled examples to adapt that model
into a wuser-specific prediction function. In technical terms, this amounts to
imposing regularizers on the learning objective favoring user-specific model
parameters that are similar to the generic ones, while still satisfying the user-

specific label constraints [177, 50].

To further lighten the user’s labeling load, I introduce two ways to

extrapolate beyond the labels explicitly provided by a given user. In the
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first, the system connects relative attribute statements given by the user on
multiple different images to obtain new implicit constraints via transitivity.
In the second, it detects discrepancies between the system’s generic attribute
models and the user’s perception, and creates implicit constraints to correct
the models. Both ideas serve to generate additional plausible user-specific

labels without directly requesting more labels from the user.

While adapted attributes are applicable to any task demanding precise
human-system communication about visual properties, I focus specifically on
their impact for image search. I demonstrate the advantages of personalized
retrieval when a user queries for images with multi-attribute keywords or uses
attributes to provide relevance feedback on selected reference images. In this
context, I demonstrate that a user’s search history offers a natural source
of data for inferring user-specific labels. My results show that the learned
user-adaptive models align more closely with individual users’ perceptions of
attributes, and enable more accurate results to be retrieved, compared to both

generic models and ones learned solely from the given user’s data.

1.4 Discovering Attribute Shades of Meaning

So far, I have discussed generic attribute models, which assume that all
users perceive the attribute in the same way; and user-specific models, which
assume that each user’s perception is unique. However, one could also consider
a middle ground between the universal and personalized models. While users

differ in how they perceive and use attributes, it is likely that there are some
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commonalities between users in terms of how they interpret and utilize the
attribute vocabulary. In other words, there might be groupings among users
with respect to how they use a given attribute term. If a system can auto-
matically discover these groupings, which I refer to as “schools of thought”,
then it can personalize attribute models towards these schools, rather than
towards individual users. Relying on the perception of a school as opposed
to of an individual user can help avoid over-personalization, which might be
misled by noise in a user’s annotations. Focusing on the commonalities allows
the system to learn the important biases that users have in interpreting the
attribute, as opposed to minor differences in labeling which may stem from

factors other than a truly different interpretation.

If schools of thought do exist among users, they will be based on the
slightly different understanding or use of the attribute term that users in each
school of thought might have. In other words, each school will subscribe to
a slightly different “shade” of the attribute. Thus, by discovering schools of
thought, a system also discovers the shades of meaning that a given attribute
contains. For example, for the attribute “open” in Figure 1.4, it might discover
that some users have peep-toed shoes in mind when they say “open”, while

others might have flip-flops in mind when they use the same word.

The shade discovery method I propose allows for an attribute vocabu-
lary to be expanded. Existing approaches for automatic attribute discovery are
quite different from what I propose. Unsupervised discovery methods detect

clusters or splits in the low-level image descriptor space [106, 96, 33, 116, 138,
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Figure 1.4: My attribute shade discovery method uses the crowd to discover
factors responsible for an attribute’s presence, then learns predictive models
based on those visual cues. For example, for the attribute open, the method
will discover shades of meaning, e.g., peep-toed (open at toe) vs. slip-on
(open at heel) vs. sandal-like (open at toe and heel), which are three visual
definitions of openness. Since these shades are not coherent in terms of their
global descriptors, they would be difficult to discover using traditional image
clustering.
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178]. While they might discover finer-grained shades of some property, they
need not be nameable by people (semantic). Furthermore, discovery methods
are intrinsically biased by the choice of features. For example, the set of salient
splits in color histogram space will be quite different than those discovered in a
dense SIFT feature space. Similarly, unsupervised methods that cluster global
descriptors have no way to intelligently focus on only localized regions of the

image, yet an attribute may occupy an arbitrarily small part of an image.

In the fourth component of my work, my goal is to automatically dis-
cover the shades of an attribute. An attribute “shade” is a visual interpreta-
tion of an attribute name that one or more people apply when judging whether
that attribute is present in an image. Similarly, if learning relative attributes, a
shade is an interpretation when judging whether that attribute is present more

in image A or image B. In order to discover shades, the approach I propose
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relies on a set of sparse annotations from a large pool of users, and performs
matrix factorization over these labels to discover the underlying factors con-
tributing to the annotations. After finding these latent factors, the method
can cluster users (to discover “schools of thought”) or images (to discover the

images representative of a “shade”) in this latent factor space.

On two datasets, I find that not only are the discovered shades visually
meaningful, but they are also well-aligned with annotators’ textual explana-
tions of their labels. Most importantly, I show their practical utility to reliably
estimate perceived attributes in novel images, which is crucial for any appli-
cation relying on the descriptive nature of attributes (e.g., image search or

zero-shot learning).

1.5 Using Attributes To Help Learn Object Category
Models

So far, I have studied techniques for providing precise relevance feed-
back for image search using attribute constraints, as well as ensuring the accu-
racy of this feedback by learning user-specific or shaded attribute models. In
the final component of my thesis, I explore the role of attributes in interactive
(human-in-the-loop) object category learning. I develop an active learning
framework where the computer vision learning system actively solicits anno-
tations from a pool of both object category labels and the objects’ shared
attributes, depending on which will have the most impact for learning a joint

object-attribute model. By simultaneously weighing requests in both label
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Figure 1.5: Object and attribute label requests affect an object category
model’s understanding of each training image in distinct ways. This example
illustrates how the different label requests about the image (left) will influence
the different components of the learned models (right, color-coded by type
of impact). For example, whereas getting the “panda” label may reduce un-
certainty about that class and refine the model’s distinctions with other bear
classes (top), getting the “spotted” label could have even greater influence,
strengthening discriminability for the striped and spotted attributes alike.
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spaces, the learner can more efficiently refine its object models because at-
tributes are by definition shared across subsets of the object categories. Thus,
knowledge of an attribute’s presence in an image can influence many object
models. At the same time, attributes’ presence or absence in an image is often
correlated, suggesting that many images do not require a full annotation of all
attributes. See Figure 1.5. A novel aspect of the approach 1 propose is that
it both weighs different annotation requests and also models dependencies be-
tween the target label space and a latent but human-describable label space.
Only limited prior work explores either one or the other aspect [157, 143, 112].
The resulting object category models can be used when the user initiates a
search via keywords such as “Show me images of cats” or “Show me images of

sofas.”

Roadmap Figure 1.6 shows an overview of my work in this thesis. In the
next chapter, I review related work on attributes, relevance feedback for im-
age search, active learning, domain adaptation, collecting crowd labels and
modeling users, and polysemy. In Chapter 3, I describe my work on providing
relevance feedback using attributes (upper-right in Figure 1.6). In Chapter 4,
I describe how such feedback can be actively requested by the retrieval system
(lower-right in Figure 1.6). In Chapter 5, I propose techniques for learning
user-specific attribute models (upper-center in Figure 1.6). In Chapter 6, I
present a methodology for discovering attribute shades of meaning, and show

how the corresponding schools of thought among users enable the learning of
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Figure 1.6: Overview of the work in this thesis. I show how to use relative
attributes to provide relevance feedback (right), how to learn attribute models
that align with each user’s perception (middle), and how to employ attributes
to efficiently learn object categories (upper left), all of which are crucial for
serving the user’s information need (lower left).

Actively requested relative attribute relevance feedback

“More feminine than these.”

more robust attribute prediction models (center in Figure 1.6). In Chapter 7,
I describe how attributes can be used to actively learn object category mod-
els, which can be employed when the user initializes a search with keywords
(upper-left in Figure 1.6). In Chapter 8, I discuss some opportunities for future

work that my thesis presents, and then conclude.

Impact Given the rate at which visual data is generated today, image re-
trieval systems cannot rely on pre-tagged images. Vision systems offer an
approach to automatically analyze the content of images, and I demonstrate
how we can best expose what the system has discovered about an image to

the user, through a communication channel over visual attributes. Given the
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abundance of data today, people frequently do not have time to simply browse
results, so a retrieval strategy that pinpoints the most useful feedback a person
can provide is particularly useful. Unlike existing work on visual attributes,
my work pays close attention to the retrieval system’s users, by removing the
assumption that “one model fits all” and modeling how a user applies at-
tributes to communicate with the retrieval system. I focus on the modes in
which an image retrieval system communicates with its users by integrating
both the computer vision and the information retrieval perspective to image
search, so the techniques I propose are a promising step in closing the semantic
gap. Due to their computational efficiency, my methods are highly applicable
in practice. I expect they will inspire a change in the interactions that image

retrieval systems employ in the future.
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Chapter 2

Related Work and Background

I first overview work on learning visual attributes, developing attribute
vocabularies, and using attributes for object recognition and image retrieval.
I then describe the state of the art of relevance feedback for interactive image
search. Next, I discuss active selection approaches for object category learning
and test-time prediction, as well as work on adapting object category models.
Finally, I present some strategies for collecting annotations via crowdsourcing,

and on handling polysemy in object names.

2.1 Visual Attributes

Visual attributes are semantic properties of objects that serve as a
middle ground between low-level features (e.g., color, texture) and high-level
categories. Attributes describe the physical properties of objects such as ma-
terials, textures, shapes, and colors; the intended uses of objects or scenes; the
habitat and behavior of animals; and other properties. Originally introduced
in [45, 87, 40], attributes offer a semantic representation shared among objects.
Attributes may be expressed categorically, as a property that is either present

or absent [40, 87, 83, 142, 134, 110]. If so, they are called binary attributes.
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Parikh and Grauman propose to model attributes relatively, as a comparative
property that is present with a certain strength [107]. Sadovnik et al. study

whether an attribute should be treated as a binary or relative property [127].

2.1.1 Learning Visual Attribute Models

Frequently attribute models are learned in fashion similar to object
models for object category recognition. First, training data is collected, usually
using non-experts annotators on crowdsourcing platforms such as Amazon
Mechanical Turk (MTurk). Features that describe the training images are
extracted using computer vision techniques. A computational model (such as
a classifier) is then learned using the features and label annotations. This
model can now predict the label for a novel image, using its automatically

extracted features.

In order to obtain attribute annotations, Lampert et al. and Parikh and
Grauman request labels from trusted annotators [87, 107]. Alternatively, labels
can be collected redundantly from a number of untrained users on MTurk.
Farhadi et al. perform a majority vote to arrive at the final attribute label [40],
and in Chapters 3 and 4 I follow this practice too. Patterson and Hays use the
count of users who voted for each possible label value to judge the strength of
attribute presence [110], while Kumar et al. and Russakovsky and Li use this
count to determine on which labels annotators unanimously agree and discard
the rest [85, 124]. If attributes are assumed to be binary, annotators are usually

presented with a page of images and asked to click on those which have the
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attribute (e.g., as in Patterson and Hays [110]), or shown a single image and
asked to check off the attributes that are present (e.g., as in Endres et al. [35]).
In the case of relative attributes, annotators are asked to determine which of
two images (or categories) has the attribute to a greater extent, effectively
making a statement of the kind “A coast (or this coast) is more open than a

forest (or this forest)” (as in Parikh and Grauman [107]).

Several datasets have been released which provide attribute labelings.
Lampert et al. and Branson et al. provide datasets that capture the attributes
of animals [87, 17|, Kumar et al. provide a dataset of human face attributes
[84], Berg et al. provide a dataset of shoes [11] which I augment with attributes
(see Chapter 3), Patterson and Hays provide a scene attribute dataset [110],
Matthews et al. provide a materials attribute dataset [99], and Farhadi et al.

provide a dataset with attributes of general objects [40].

Attribute models are commonly learned as classifiers [87, 40, 83, 110,
134, 11, 170] from images that have and ones that do not have the attribute.
For relative attributes, the comparative judgments regarding attribute strengths
are used similarly to relevance judgments for learning document rankings. In
other words, the ranking model tries to preserve the order of training images
along the given attribute dimension, as well as encourage a large margin be-
tween examples of different ranks (attribute strengths). See [107, 78, 108, 64]
for more details. Usually attributes are learned on the entire image level, but

Duan et al. propose techniques for learning localized attributes [33].

Most researchers treat attributes as independent of one another, but
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Wang and Mori and Siddiquie et al. also model the correlations between at-
tributes [170, 142]. This allows a more efficient learning of attributes, since
labels for one attribute can impact another attribute’s model, and the learned
models are also more accurate, since one avoids making invalid independence
assumptions. Jayaraman et al. show how to learn more accurate attribute

models by decorrelating attributes [63].

2.1.2 Defining Attribute Vocabularies

When working with attributes, an important question is how to de-
fine the attribute vocabulary, that is, the set of attribute names to be learned.
Most work using attributes assumes that images are fully labeled with all their
attributes, either through a top-down labeling of the object classes (e.g., all
bears are “furry” [87, 107]) or by individually providing attributes for each
image [40, 35]. Some researchers elicit discriminative properties from annota-
tors [110, 97|, which they use to define an attribute vocabulary. To alleviate
this burden of choosing a vocabulary manually or with great crowdsourcing ef-
fort, Ferrari and Zisserman study ways to learn attribute classifiers from noisy
keyword search data [45], and Rohrbach et al. propose ways to mine attributes
from script data [119]. Berg et al., Ordonez et al., and Rohrbach et al. suggest
to automatically discover the attributes and objects’ semantic relatedness from
web images and text sources [11, 105, 120]. For animal species, field guides
are a natural source of attribute names [166, 17]. Since not all words will be

visually detectable, the authors of [11, 7] show how to prune the vocabulary
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automatically. Additionally, Parikh and Grauman show how to interactively

develop a discriminative vocabulary of nameable attributes [106].

2.1.3 Discovering Non-Semantic Attributes

While the term “attribute” typically connotes a semantic property, as
in the previous subsection, some researchers also use the term to refer to discov-
ered non-semantic features [96, 116, 178, 138]. The idea is to identify “splits”
or clusters in the low-level image descriptor space, often subject to constraints
that deter redundancy and promote discriminativeness for object recognition.
However, being bottom-up, there is no guarantee the splits will correspond to
a nameable property. Hence, unlike the attribute shades discovery approach
I present in Chapter 6, they are non-semantic and inapplicable to descriptive
attribute tasks, like image search or zero-shot learning. One can attempt to
assign names to discovered “attributes” after the fact [106, 33, 178], but the
patterns that are even discoverable remain biased by the chosen low-level im-
age feature space. In contrast, in this thesis I need attributes which people
can use to communicate with a vision system, so these discovery methods are

orthogonal to my work.

2.1.4 Subjectivity in Attribute Perception

While so far we have considered attributes to be objective properties,
some researchers report significant disagreement over the attribute label among

annotators [40, 35, 110]. Curran et al. [24] analyze how people perceive sub-
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jective properties like “cool” and “cute”, but do not propose vision techniques
to account for the subjectivity. As discussed above, typically discriminative
classifiers or ranking algorithms are used to predict attributes. To my knowl-
edge, all prior work assumes monolithic attribute predictors are sufficient, and

none attempts to model user-specific perception, as I propose.

This includes prior methods that represent attributes relatively [107,
141]; although they permit looser comparative labels, they still assume a single
underlying relative concept and learn a single “true” ordering of images. Rel-
ative attributes represent whether an image has a property “more” or “less”,
and they construct a universal model for, e.g., “less brown” vs. “more brown”.
The point is that people may agree best on comparisons or strengths, not bi-
nary labels. However, just like categorical attributes, relative attributes as-
sume that there is some single, common interpretation of the property shared
consistently by all viewers—namely, that a single ordering of images from least
to most [attribute| is possible. They do not address the issue that one person
may say “image X is browner than Y”, while another may say the opposite.
The approaches presented in Chapters 5 and 6, on the other hand, are con-
cerned with discovering multiple models for varying perceptions of brown, e.g.,

chocolate brown vs. goldish brown.

2.1.5 Attributes for Object Recognition

One of the common uses of attributes is as mid-level features for ob-

ject recognition. Recent work explores several ways to use visual attributes
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in object recognition [87, 40, 84, 170, 17, 141, 110]. Since attributes are of-
ten shared among object categories (e.g., “made of wood”, “plastic”, “has
wheels”), they are amenable to a number of interesting tasks. Lampert et
al. and Parikh and Grauman perform zero-shot learning to recognize unseen
objects from category descriptions [87, 107]. Akata et al. propose to perform
zero-shot learning by embedding class labels in the space of attribute labels [2].
Farhadi et al. describe unfamiliar objects or novel instances [40]. Branson et
al. categorize images of birds with a 20-questions game [17]. Saleh et al. detect
anomalous objects with the aid of attributes [133]. Wah and Belongie detect
that a previously unfamiliar object category is presented to the system [163].
Sadovnik et al. suggest how one can uniquely identify individuals through an
attribute description [126]. Donahue and Grauman use attributes as an effec-
tive medium through which to explain to a visual system what identifies an
image as belonging to a given category [30]. Kulkarni et al. perform on-the-fly

classification via attribute-based transfer [82].

By integrating the learning process for both objects and attributes,
Wang and Forsyth use weak supervision more effectively [164], and Kumar et

al. and Wang et al. improve object recognition accuracy [84, 170].

2.1.6 Attributes for Image Search

While attributes are most commonly used for recognition, they are also
sometimes used to aid image retrieval. Attributes were only recently intro-

duced in the computer vision community, but in the multimedia community,
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semantic concepts have long been used as an intermediate representation for
image retrieval [144, 115, 101, 167]. Concepts are tags that can be assigned
to images manually or automatically, and they serve to index an image so it
can be retrieved when its concept representation matches some query. Unlike
attributes in computer vision, concepts simply denote the presence or absence
of a certain feature of an image; concepts are not meant to be properties of
objects, nor to be shared by objects, as concepts are sometimes objects them-
selves. Examples of concepts are “outdoors”, “face”, “people”, “landscape”,

and “speech” [101].

Similarly to semantic concepts, visual attributes can be used used as
the feature space in which retrieval is performed [31, 167]. Attributes can
also be used more directly to issue multi-attribute keyword queries to retrieval
systems, either of the form “find images of smiling Asian men” [83, 142, 117]
or of the form “find images of men smiling more than/similarly to this one”
[134, 78]. Some recent work studies techniques for optimizing retrieval using
multi-attribute queries. Siddiquie et al. model the dependencies between at-
tributes [142], Scheirer et al. calibrate SVM decision scores per attribute [134],
and Rastegari et al. selectively merge some of the attributes in a query [117].
Vaquero et al. and Reid and Nixon use attributes as an effective way to retrieve

subjects in video surveillance data [156, 118].

While it is known that attributes can provide a richer representation for
image retrieval than raw low-level image features, no previous work considers

attributes as a handle for user feedback, as I propose.
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Existing work assumes that search users mean the same as other users
when they employ a certain attribute term. I show this assumption does not

hold and propose how to learn user-specific attributes in Chapter 5.

2.2 Relevance Feedback in Image Search

In a major part of this thesis, I study how to best use attributes in order
to perform rich relevance feedback. Relevance feedback has long been used to
improve interactive image search [86, 123, 151, 23, 182, 43, 47]. The idea is to
tailor the system’s ranking function to the current user. This injects subjec-
tivity into the model, implicitly guiding the search engine to pay attention to
certain low-level visual cues more than others. An early approach to relevance
feedback involved allowing users to adjust the weight that different feature
spaces contribute to the overall similarity between the query and database
images [46, 94, 61]. A more recent family of approaches allows users to give
(usually iterative) feedback on the relevance of selected exemplar images. Rui
et al. [123] ask the user to provide relevance scores for a set of images, and the
retrieval system learns how much each feature type should contribute to the
image matching and retrieval based on this feedback. Ferecatu and Geman
[43] ask the user to mark which image in a display set is closest to his target,
and the system updates its relevance estimate for each image based on this in-
formation. Cox et al. [23] ask the user to provide relative similarity judgments:
the displayed images which are marked by the user are more similar to the

target than those left unmarked. Fogarty et al. allow users to train concept
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models for concepts they would like to retrieve by providing examples [47].
Zhou et al. provide a comprehensive survey of relevance feedback methods in

[182].

Like existing interactive methods, the approach I propose in Chapter 3
aims to elicit a specific user’s target visual concept. However, while prior work
restricts input to the form “A is relevant, B is not” or “C is more relevant
than D”, my approach allows users to comment precisely on what is missing
from the current set of results. I show that this richer form of feedback can

make refinement more effective.

2.2.1 Active Selection of Solicited Feedback

In practice, the images displayed to the user for feedback are usually
those ranked best by the system’s current relevance model. However, if a user
is cooperative, it can be more valuable to present a mix of probable relevant
and irrelevant examples for feedback. If feedback is binary, with the user
labeling examples as relevant (positive) or irrelevant (negative), the selection
can naturally be cast as an active learning problem: the best examples to show
are those that will be most informative to the relevance classifier. For example,
Tong et al. use the decision boundary of a “relevant” / “not relevant” SVM
to determine on which examples to request feedback [152]. Li et al. employ
query-by-committee to select the instances on which to request feedback [89].
The review by Zhou et al. discusses other existing approaches for optimally

selecting the examples for feedback [182].
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The majority of the active selection methods discussed above look for
images that the retrieval system is most uncertain about, and not ones that
are likely to impact the system’s uncertainty over the relevance of all dataset
images. Prior efforts to display the exemplar set that minimizes uncertainty
over the entire database were forced to resort to sampling or clustering heuris-
tics due to the combinatorial optimization problem inherent when categorical
feedback is assumed. Cox et al. use sampling to find images whose labeling
is likely to terminate the search the fastest [23]. Ferecatu and Geman use
heuristics to find the most balanced display scheme which is likely to have
the highest entropy [43]. Sampling is a necessary procedure for other active
learning work, e.g., work by Roy and McCallum [122] for document classifica-
tion. In contrast, I show that eliciting comparative feedback on ordinal visual
attributes naturally leads to an efficient sequential selection strategy, where
each comparison is guaranteed to decrease the predicted relevance of half of

the unexplored database images.

2.2.2 Personalization of Search

In information retrieval, researchers have studied methods to provide
each user with personalized search results, by learning what each user per-
ceives as relevant in the context of their information need, as discussed by
Pasi [109]. Teevan et al. and Joachims treat personalization as a form of rele-
vance feedback which can be mined explicitly but also implicitly, by creating

user profiles or mining clickthrough data [149, 64]. Whereas personalization
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generally entails learning a user-specific relevance function from scratch—there
is no “universal” prior on relevance—in Chapter 5 I propose a method to lever-
age a generic model for the attribute as a starting point, and efficiently adapt

it towards the user’s preferences. As I demonstrate, doing so saves user time.

2.3 Active Selection for Learning Object Categories

Both relevance feedback and object category learning can be improved
through intelligent selection of the data on which feedback or labels are re-
quested. Researchers have developed techniques in which a system that is
learning object category models makes active requests to the human teacher
to label certain data. There is work in active learning, which denotes making
active requests for the data that the system uses for training. In active testing,
the system selects the questions that it asks during the classification of a single

test instance. I overview each in turn next.

2.3.1 Active Learning for Classification

Active learning tackles the expense of the human labeling work in pro-
viding supervision to a computer vision system. It typically reduces the la-
beling effort by selecting the most uncertain exemplar to get labeled with its
object category name(s) [112, 180, 66, 62]. Some work further shows how to
actively integrate annotations of different levels, i.e., by alternately request-
ing segmented regions or asking about the contextual relationships between

objects in an image [157, 158, 143].
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Attributes present an annotation level which is distinct from object
category labels. In the realm of natural language processing, researchers de-
velop ways to actively ask people which words may be relevant for a document
classification task [114, 32]; words could be seen as a loose analogue for at-
tributes, though I do not consider requests about visual attribute relevance.
A few methods investigate training classifiers with actively selected attribute
labels. Parkash and Parikh perform active learning where the teacher provides
guidance to the learning system in the form of relative attribute statements,
e.g., “This is not a giraffe because its neck is not long enough” [108]. Once
the teacher explains an incorrect prediction with an attribute, images with the
right attribute strength (according to the explanation) are added as negative
training data for the given object class, but their attribute values are not used
anymore. Mensink et al. perform attribute-based classification (similarly to
Lampert et al. [87]) and employ attributes in an interactive labeling scenario
[100], but they do not allow the active learning to choose from a pool of object

and attribute labels, as I propose in Chapter 7.

Active visual learning methods generally do not account for the depen-
dencies between labels on the same image. An exception is the scene classi-
fication method of Qi et al. [112], which learns with multi-label images and
requests the most informative image-label pair. However, its selection strat-
egy considers only the local effects of a candidate label request, by measuring
the uncertainty and label correlations for each individual image in isolation.

In contrast, I propose a selection method that evaluates the influence of the
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candidate label if propagated to all current models, which is critical to achieve

the goal of exploiting shared latent attributes to reduce annotation effort.

2.3.2 Active Testing and Twenty Questions

While the above work tackles active learning, active testing methods
deduce the object label for a single novel image by asking a person to provide
information about it. Geman and Jedynak choose a series of useful “tests”
(e.g., features to extract) to classify an image [49]. Branson et al. actively
choose the attribute questions (“does the bird have a yellow beak?”) which
they ask a human in the loop in order to classify a single image [17]. In
the latter case where a person answers the tests, attributes are well-suited as
intermediate labels that will lead to the right category label, since as Branson
et al. argue, for fine-grained recognition tasks like bird species identification,

it is easier for a person to label an attribute than to classify the image [17].

In Chapter 4, I describe work on active selection for image feedback,
which shares the spirit of rapidly reducing uncertainty through a sequence of
useful questions. However, my aim is distinct. My method selects queries
to efficiently find a target in a database of images, as opposed to classify
a single image. Moreover, my approach solicits visual comparisons—key to
eliminating irrelevant content in search—whereas prior work solicits traditional

image labels.
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2.4 Learning Visual Categories with Domain Adapta-

tion

Active selection helps learn models more efficiently with less data, and
transfer learning shares the spirit of minimizing the need for annotated data
for every category. In Chapter 5, I show how to adapt a generic attribute
model to learn a user-specific one. Somewhat analogously, transfer learning
work in object recognition leverages previously learned object categories when
training a new category for which few labeled images are available (e.g., [146,
5, 41, 113]). Also related are domain adaptation methods (e.g., [130, 55, 54]),
which account for the feature distribution mismatch between a source domain
(in which objects are learned) and a target domain (in which the objects must
be recognized). For example, as Saenko et al. argue, this allows a classifier

trained on web images to work well on images taken by a robot [130].

Conceptually my adaptation goal is closer in spirit to speaker-dependent
speech recognition. Speaker adaptation methods have long been used in the
speech community to adapt parameters of a speaker-independent model; for
example, Gauvain et al. account for an individual’s idiosyncrasies (voice, ac-
cent, etc.) [48]. Also related is collaborative spam filtering, where a personal-
ized spam classifier can make use of a global non-personal one, e.g., work by
Attenberg et al. [4]. T explore existing adaptation formulations for SVMs by
Yang et al. and Geng et al. [177, 50]. Using them to learn user-specific at-
tribute models is novel, and I introduce methods to infer user-specific training

labels.
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2.5 Aggregating Crowd Labels

Researchers frequently need to obtain labels on possibly large amounts
of new data. Learning from multiple noisy labelers is increasingly important
for training data-hungry vision systems, particularly given the inexpensive
annotation which researchers can request on Mechanical Turk from untrained
labelers. Typically, an image labeling task is “crowdsourced” by submitting
it to workers on Mechanical Turk, then aggregating their labels through a

majority vote.

Crowd input has been aggregated in novel ways for image cluster-
ing [53], image similarity [148], and object labeling [171]. In [171], modeling
annotators’ competence and bias makes it possible to discover their “schools of
thought”, and subsequently undo their biases to produce more reliable ground
truth. Tian and Zhu also discover schools of thought that exist among workers
[150], and Gomes et al. present a clustering method that acknowledges that
workers can have their own notion of categories [53]. Kajino et al. first learn
“personal classifiers” for each worker, and then integrate these to achieve one
common model [67]. Ertekin et al. modify majority voting by accounting for
the reliability of each worker [36]. Yan et al. integrate the skills of different
users into an active learning formulation, so they choose both the instances to

be labeled and the workers to label them [176].

While the above work models each worker’s school of thought, most
authors still aim for consensus and recover a single model that captures the

opinion of the crowd [171, 36, 53, 150, 176, 67]. In contrast, the adaptive at-
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tribute models I propose in Chapter 5 recover an individual user’s subjective
attribute model from their annotations, by properly adapting a generic model
over all previously seen users. Furthermore, in my work the task is not recog-
nition but search, which is inherently more person-dependent since relevance
is defined only for a specific user. Note that I focus on individual users who

are trying to perform a search, as opposed to “crowds” on MTurk.

Also in the realm of crowdsourcing, matrix factorization is often used to
complete user-label matrices and solve collaborative filtering problems (e.g.,
the Netflix challenge) by exploiting commonalities among users [132, 175].
Rather than impute missing labels, I propose to use the latent factors them-
selves to represent the interplay between language, human perception, and
image examples. I show how to use the recovered schools of thought to build

content-based attribute models.

2.6 Polysemy of Words in Images

A polysemous word has multiple “senses” or meanings, which can be
found in a dictionary. Similarly, in Chapter 6, I aim to discover the (likely
unlisted in a dictionary) “senses” of an attribute term. Some existing work
bridging text and visual analysis aims to cluster web images according to dis-
tinct senses [8, 92, 128, 12]. However, the focus is on nouns/object categories,
not descriptive properties. Typically the visual differences (or surrounding
text context) are fairly stark (e.g., a river bank or financial bank). In contrast,

the attribute shades I study in Chapter 6 are often subtle differences in inter-
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pretation. Furthermore, unlike a truly polysemous word, for which one can
enumerate the multiple dictionary definitions, attribute shades are often more
difficult to definitively express in language. I show how to automatically infer

them from trends in crowd labels.
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Chapter 3

WhittleSearch: Image Search with Relative
Attribute Feedback

In this chapter, I will demonstrate how attributes can provide a rich
form of relevance feedback for interactive image search.! By being more fine-
grained than categories and also extending across category boundary lines,

attributes enable a very precise description of the user’s information need.

Using the relevance feedback paradigm, the approach I propose allows
a user to iteratively refine the search using feedback on attributes, as discussed
in Chapter 1. The user initializes the search with some keywords—either the
name of the general class of interest (“shoes”) or some multi-attribute query
(“black high-heeled shoes” )—and my system’s job is to help refine from there.
If no such initialization is possible, the search simply begins with a random
set of images for feedback. The top-ranked images are then displayed to the

user, and the feedback-refinement loop begins.

!This work was published in the Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) 2012 with the title “WhittleSearch: Image Search
with Relative Attribute Feedback” and authors Adriana Kovashka, Devi Parikh, and Kris-
ten Grauman. I wrote the majority of the code and conducted most experiments and data
collection, while Devi Parikh wrote some code, collected some data, and conducted some ex-
periments in Section 3.5.6, and all authors contributed to developing the algorithm, devising
the experiments, and writing the paper.
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Offline, the system firsts learn a set of ranking functions, each of which
predicts the relative strength of a nameable attribute in an image (e.g., the
degree of “shininess”, “furriness”, etc.). At query time, the system presents an
initial set of reference images or a single image paired with an attribute, and
the user provides relative attribute feedback. Using the resulting constraints
in the multi-dimensional attribute space, the system updates its relevance
function, re-ranks the pool of images, and displays to the user the image(s)
which are most relevant. (Later, in Chapter 4, I extend this idea to also
display to the user the image(s) most likely to reduce the system’s uncertainty.)
This procedure iterates using the accumulated constraints until the top ranked

images are acceptably close to the user’s target.

Throughout, let D = {I;,...,Ix} refer to the pool of N database
images that are ranked by the system using its current scoring function S; :
I — R, where t denotes the iteration of refinement. The scoring function
is trained using all accumulated feedback from iterations 1,...,¢t — 1, and it
supplies an ordering (possibly partial) on the images in D. S;(I;) captures the
likelihood that image I; is relevant to the user’s information need, given the

feedback received before iteration t.

At each iteration ¢, the top K < N ranked images T; = {I}1,..., L;x} C
D are displayed to the user for further feedback, where S;(Iy1) > S;(li2) >
o > Si(Lik). A user then gives feedback of his choosing on any or all of the

K refined results in T;. We refer to T; interchangeably as the reference set or

top-ranked set.
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In the following, I first describe a traditional binary relevance feed-
back model (Section 3.1), since it will serve as a strong baseline to which to
compare my approach. Then I introduce the proposed new mode of relative
attribute feedback (Section 3.3) after describing how relative attribute models
are learned (Section 3.2). Finally, I extend the idea to accommodate both

forms of input in a hybrid approach (Section 3.4).

3.1 Background: Binary Relevance Feedback

In a binary relevance feedback model, the user identifies a set of relevant
images R and a set of irrelevant images R among the current reference set T;.
In this case, the scoring function S? is a classifier (or some other statistical
model), and the binary feedback essentially supplies additional positive and
negative training examples to enhance that classifier. That is, the scoring
function SP,; is trained with the data that trained S} plus the images in R

labeled as positive instances and the images in R labeled as negative instances.

As a baseline, we use a binary feedback approach that is intended to
represent traditional approaches such as [23, 43, 123, 151, 152]. While a variety
of classifiers have been explored in previous systems, we employ a support
vector machine (SVM) classifier for the binary feedback model due to its strong
performance in practice. Thus, the scoring function for binary feedback is
SP(I;) = wyx] + b, where wy, b are the SVM parameters and a; denotes the

visual features extracted from image I;, to be defined below.

By definition, the classification approach to relevance feedback requires
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instances with both positive and negative feedback. In practice, it may be
valuable to gather more or less of either type, depending on the data. See
[168, 69, 34] for an examination of the different contribution of positive and

negative feedback.

3.2 Learning to Predict Relative Attributes

Suppose we have a vocabulary of M attributes Ay, ..., Ay, which may
be generic or domain-specific for the image search problem of interest. For
example, a domain-specific vocabulary for shoe shopping could contain at-
tributes such as “shininess”, “heel height”, “colorfulness”, etc., whereas for
scene descriptions it could contain attributes like “openness”, “naturalness”,
“depth”. While we assume this vocabulary is given, recent work suggests it

may also be discoverable automatically (see Section 2.1.2).

To leverage the proposed relative attribute feedback, my method re-
quires attribute strengths on all images? and a means to aggregate cumulative

constraints on individual attributes, as I describe in the following.

Typically semantic visual attributes are learned as categories: a given
image either exhibits the concept or it does not, and so a classification approach
to predict attribute presence is sufficient [115, 101, 179, 87, 40, 83, 170, 31]. In

contrast, to express feedback in the form sketched above, we require relative

2Tt would be too expensive to manually annotate all images with their attribute strength,
so we will learn to extrapolate a small set of annotations to a prediction function over all
database images.
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Is the shoe in Image 1 more or less feminine than the shoe in Image 2?
o The shoe in Image 1 is more feminine than the shoe in Image 2.

o The shoe in Image 1 is less feminine than the shoe in Image 2.

o The shoes in Image 1 and Image 2 are equally feminine.

How obvious is the answer to the previous question?

o Very obvious

o Somewhat obvious

o Subtle, not obvious

Image 1 Image 2

Figure 3.1: Interface for image-level relative attribute annotations.

attribute models [107] that can predict the degree to which an attribute is
present. Therefore, we first learn a ranking function for each attribute in the
given vocabulary. One might informally treat classifier outputs as “strengths”,
yet doing so is inconsistent with a training procedure that actually targets hard
categorical labels. Results in [107] confirm that simply treating a binary clas-
sifier output value as the strength of presence is inferior in practice compared

to training ranking functions.

For each attribute A,,, we obtain supervision on a set of image pairs
(,7) in the training set J. We ask human annotators to judge whether that
attribute has stronger presence in image ¢ or j, or if it is equally strong in
both. Such judgments can be subtle, so on each pair we collect five redundant
responses from multiple annotators on Amazon Mechanical Turk, in order to
elicit the most common perception of the attribute and reduce the impact
of noisy responses. See Figure 3.1. To ensure annotation quality and distill
reliable relative constraints for training, we use only those for which most label-
ers agree on one of the three possible responses (“more”, “less”, or “equally”).

This yields a set of ordered image pairs O,, = {(4,j)} and a set of un-ordered
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pairs E,, = {(¢,7)} such that (i,5) € O,, = i > j, i.e., image i has stronger
presence of attribute A,, than j, and (i,7) € E,, = i~ j, i.e., i and j have

equivalent strengths of A,,.

I stress the design for constraint collection: rather than ask annotators
to give an absolute score reflecting how much the attribute m is present, we
instead ask them to make comparative judgments on two exemplars at a time.
This is both more natural for an individual annotator, and also permits seam-
less integration of the supervision from many annotators, each of whom may

have a different internal “calibration” for the attribute strengths.

Next, to learn an attribute’s ranking function, we employ the large-
margin formulation of Joachims [64], which was originally shown for ranking
web pages based on clickthrough data, and recently used for relative attribute
learning [107]. Suppose each image I; is represented in R¢ by a feature vector

x; (we use color and GIST). We aim to learn M ranking functions, one per

attribute:
am () = wl x;, (3.1)
form =1,..., M, such that the maximum number of the following constraints
is satisfied:
V(i,j) € O : wha; > wl x;. (3.2)

Joachims’ algorithm approximates this NP hard problem by introduc-

ing (1) a regularization term that prefers a wide margin between the ranks
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assigned to the closest pair of training instances, and (2) slack variables &;; on

the constraints, yielding the following objective [64]:

L 1
minimize (?\w%\ |5+ C Z 5,-]-) (3.3)
st whe; > whw;+1—E&;; V(i) € O
fij 2 07

where C' is a constant penalty. The objective is reminiscent of standard SVM
training (and is solvable using similar decomposition algorithms), except the
linear constraints enforce relative orderings rather than labels. The method is

kernelizable. We use Joachims’ SVMRank code [65].3

Having trained M such functions, we are then equipped to predict the
extent to which each attribute is present in any novel image, by applying the
learned functions aq, ..., ay; to its image descriptor . Note that this training
is a one-time process done before any search query or feedback is issued, and
the data J used for training attribute rankers is not to be confused with our

database pool D.

These predicted attribute values a,,(I;) are what we can observe for
image I;. They are a function of (but distinct from) the “true” latent attribute
strengths A,,([;). I will refer to both below. Using standard features and

kernels, I find that 75% of held-out ground truth comparisons are preserved

3Note that one can also use the equality constraints in F,, for training these ranking
functions, as in [107]. In my approach, I use these constraints to compute parameters for
scoring relevance, in Section 4.2.
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by attribute predictors trained with ~200 pairs. Thus, they are quite reliable;
more elaborate features [83] or learning algorithms [90] would likely improve

them even further, but this is outside the scope of this thesis.

Whereas Parikh and Grauman [107] propose generating supervision for
relative attributes from top-down category comparisons ( “person X is (always)
more smiley than person Y”), my approach extends the learning process to
incorporate image-level relative comparisons (“image A exhibits more smiling
than image B”). While training from category-level comparisons is clearly
more expedient, I find that image-level supervision is important in order to
reliably capture those attributes that do not closely follow category bound-
aries. The “smiling” attribute is a good example of this contrast, since a given
person (the category) need not be smiling to an equal degree in each of his/her
photos. In fact, my user studies on MTurk show that category-level relation-
ships violate 23% of the image-level relationships specified by human subjects
for the “smiling” attribute. In Section 3.5.6, I detail related studies analyzing

the benefits of instance-level comparisons.

3.3 Relative Attribute Feedback

With the ranking functions learned above, we can now map any image
from D into an M-dimensional space, where each dimension corresponds to
the relative rank prediction for one attribute. It is in this feature space I

propose to handle query refinement from a user’s feedback.

A user of the system has a mental model of the target visual content he
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seeks. To refine the current search results, he surveys the K top-ranked images
in T;, and uses some of them as reference images with which to better express
his envisioned optimal result. These constraints are of the form “What I want
is more/less/similarly m than image I;,”, where m is an attribute name, and

I, is an image in T, (the subscript ¢; denotes it is a re ference image at iteration

!
t). These relative constraints are given for some combination of image(s) and

attribute(s) of the user’s choosing,.

The conjunction of all such user feedback statements gives us a set of
constraints for updating the scoring function. For all statements of the form
“I want images exhibiting more of attribute m than reference image I;,”, our
updated attribute-based scoring function S, ; should satisfy:

fale) > 5P (1), VI 1 €D (3.4)

st am(l;) > am(ly;), am(lj) < am(ly;),

where as before x; denotes the image descriptor for image I; used to predict
its relative attributes, and images I; and I; are otherwise equivalently ranked
by the scoring function S§ at the previous iteration. This simply reflects that
images having more of the desired property m than the displayed reference
image are better than those that do not. I stress that the relative attribute
values on all images are predicted using the learned function a,, (as opposed

to having ground truth on the attribute strengths in each image).

Similarly, for all statements of the form “I want images exhibiting less

of attribute m than [;,”, our updated scoring function should satisfy:
i) > Sia(L), VI, I €D (3.5)
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st am(l;) < am(ly;), am(l;) > am(ly;)

For all statements of the form, “I want images that are similar in terms

of attribute m to I;,”, the constraints are:
(L) > Sfa (1), VI €D (3.6)

st (am(Ly;) =€) < am(l) < (am(ly;) +€),

am(1l;) < am(_ftf) —e€ or any(l;) > am(ftf) + €,

where € is a constant specifying the distance in relative attribute space at which
instances are considered dissimilar. Note that these similarity constraints differ
from binary feedback, in that they single out an individual attribute. The
implementation in this chapter focuses on the two relative forms of feedback

(“more”, “less”).

Each of the above carves out a relevant region of the M-dimensional
attribute feature space, whittling away images not meeting the user’s require-
ments. We combine all such constraints to adapt the scoring function from S}
to ¢, . Let F = {(I;;,m,r)} denote the set of all accumulated comparative
constraints thus far. Each item in F consists of a reference image I, for at-
tribute m, and a user response r € {“more”, “less”, “equally” }. The number
of such feedback constraints is |F|, and we take the intersection of all |F| feed-
back constraints thus far to identify the set of top ranked images, for which

2 1(1;) = |F|. Those satisfying all but one constraint receive score |F| — 1,

and so on, until images satisfying no constraints receive the score 0. See Figure
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something perspective !
more natural B
than this.” “I want
S something
less natural
than this.”
natural

“l want something with
more perspective than this.”

Figure 3.2: A toy example illustrating the intersection of relative constraints
with M = 2 attributes. The images are plotted on the axes for both attributes.
The space of images that satisfy each constraint are marked in a different color.
The region satisfying all constraints is marked with a black dashed line. In
this case, there is only one image in it (outlined in black). Best viewed in
color.

3.2. The final output at iteration 7" of our search system will be a sorting of

the database images in D according to their likelihood of being relevant.

Formally, and to maintain consistency with Chapter 4, we can describe
the relevance function as follows. Let Gi; € {0, 1} be a binary random variable
representing whether image I; satisfies the k-th feedback constraint. For exam-
ple, if the user’s k-th comparison on attribute m yields response r = “more”,
then Gy, = 1 if the database image I; has attribute m more than the corre-
sponding reference image I;,. The estimate of relevance is thus proportional

to the probability that any |F| feedback comparisons are satisfied:
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i

SH(L) =Y P(Gri = 1|1, F). (3.7)

k=1
Using Iverson bracket notation, we set the probability that an individ-
ual constraint is satisfied given that the user’s response was r for reference I,

to:
[am(L;) > am(Ly,)] if r = “more”

lam(L;) < am(Iy,)] if r= “less”.

P(Gri = 1|13, Fy) = { (3.8)

One could also learn a ranking function for 57, ; using these constraints
within the large-margin objective above; however, for the sake of determining
the ordering on the data—as is needed to refine the top ranked results—its
behavior would be equivalent. Thus we take this purely set-logic approach, as

it is less costly.

I stress that the proposed form of relative attribute feedback refines
the search in ways that a straightforward multi-attribute [85, 142, 134] query
cannot. That is, if a user were to simply state the attribute labels of inter-
est (“show me black shoes that are shiny and high-heeled”), one can easily
retrieve the images whose attribute predictions meet those criteria. However,
since the user’s description is in absolute terms, it cannot change based on the
retrieved images. In contrast, with access to relative attributes as a mode of
communication, for every new set of reference images returned by the system,

the user can further refine his description.

Similarly to multi-attribute queries, faceted browsing or search—where

the retrieval system organizes documents or products according to several
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properties (facets) and allows the user to query with different combinations of
the facets [153, 72, 81, 10, 155]—is also a form of keyword search with fixed
values for the attribute properties. However, while this form of search may
be appropriate for content where properties can be objectively measured and
quantized, it does not suffice for search over items where a user’s preferences
and goals may be very specific and possibly subjective. Further, it is not
easy to quantize attributes in order to show multiple-valued facets, e.g., to
determine what lies within a range of 0.2 to 0.4 of “pointiness”, as that varies

across datasets and contexts.

Once a cycle of feedback and refinement is completed, the method re-
peats the loop, accepting any additional feedback from the user on the newly
top-ranked images. In practice, the system can either iterate until the user’s
target image is found, or else until his “budget” of interaction effort is ex-

pended.

3.4 Hybrid Feedback Approach

So far, we have considered relative attribute feedback in isolation and
discussed its advantages over traditional binary relevance feedback. However,
binary relevance feedback and relative attribute feedback can have comple-
mentary strengths: when reference images are nearly on target (or completely
wrong in all aspects), the user may be best served by providing a simple binary
relevance label. Meanwhile, when a reference image is lacking only in certain

describable properties, he may be better served by the relative attribute feed-
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back. Thus, it is natural to combine the two modalities, allowing a mix of

feedback types at any iteration.

To this end, one can consider a learned hybrid scoring function. The
basic idea is to learn a ranking function Sy, that unifies both forms of con-
straints. Recall that R and R denote the sets of reference images for which
the user has given positive and negative binary feedback, respectively. Let
Vi C D denote the subset of images satisfying k of the relative attribute

feedback constraints, for k =0, ..., F. We define a set of ordered image pairs
Os = {{R x R} U{Vp x Vp_ 1} U---U{V; x Vo}}, (3.9)

where x denotes the Cartesian product. This set O, reflects all the desired
ranking preferences—that relevant images be ranked higher than irrelevant
ones, and that images satisfying more relative attribute preferences be ranked

higher than those satisfying fewer.

Note that the subscript s in O, distinguishes the set from those indexed
by m above, which were used to train relative attribute ranking functions in

Section 3.2.

Using training constraints O, we can learn a function that predicts
relative image relevance for the current user with the large-margin objective
in Equation3.3. The result is a parameter vector w, that serves as the hybrid
scoring function Sy, ;. Since there are many more pairs in O, that come from

relative attribute feedback than from binary relevance feedback, we set the
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penalty on the binary feedback pairs to be inversely proportional to the fraction

of such pairs in the set O.

To recap the approach section, we now have three forms of scoring
functions to be used for refining search results: traditional binary feedback

(S), relative attribute feedback (S%), and a hybrid that unifies the two (S").

3.5 Experimental Validation

I analyze how the proposed relative attribute feedback can enhance
image search compared to classic binary feedback, and study what factors

influence their behavior.

3.5.1 Experimental Design

Datasets 1 use three datasets: the Shoes from the Attribute Discovery
Dataset [11], the Public Figures dataset of human faces [84] (PubFig), and
the Outdoor Scene Recognition dataset of natural scenes [103] (OSR). These
datasets validate my approach in diverse domains of interest: finding products,
people, and scenes. The Shoes data contains 14,658 shoe images from like.
com. I augment the data with relative attributes (see Table 3.1) which cover
many useful properties of shoes. I collect labels for the shoe attributes by
computing a majority vote across labels from 5 workers per image. For PubFig
I use the subset from [107], which contains 772 images from 8 people and 11
attributes. OSR consists of 2,688 images from 8 categories and 6 attributes

107].
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Shoes OSR Pubfig
pointy at the front natural masculine-looking
open open white
bright in color perspective young
covered with ornaments | large-objects smiling
shiny diagonal-plane chubby
high at the heel close-depth visible forehead
long on the leg bushy eyebrows
formal Narrow eyes
sporty pointy nose
feminine big lips
round face

Table 3.1: A list of the attribute names for the Shoes, OSR, and PubFig
datasets.

Figure 3.3 shows some example images from each dataset, and Table 3.1
lists the attribute names per dataset. For OSR and PubFig, I use whichever
attributes the datasets included. For Shoes, I define my own attribute vocab-
ulary such that it is compact but provides good coverage of the properties of
shoes one might want to describe. As we will see below, I obtain strong results
on all three datasets. This shows that my approach is not very sensitive to
the choice of attribute vocabulary, as long as the attributes used can be both
learned with reasonable accuracy by the machine, and understood well by the

user.

For image features x, I use GIST [103] and LAB color histograms for
Shoes and PubFig, and GIST alone for OSR, since the scenes do not seem well

characterized by color.

I have released the features for Shoes, as well as the MTurk annotations
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Figure 3.3: Example images from the Shoes, OSR, and PubFig datasets.
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for all three datasets, on http://vision.cs.utexas.edu/whittlesearch/.
The features for OSR and PubFig are provided on https://filebox.ece.

vt.edu/"parikh/relative.html.

Methodology For each query we select a random target image and score
how well the search results match that target after feedback. This target
stands in for a user’s mental model; it allows us to prompt multiple subjects for
feedback on a well-defined visual concept, and to precisely judge how accurate
results are. This part of my methodology is key to ensure consistent data

collection and formal evaluation.

We use two metrics: (1) the ultimate percentile rank assigned to the
user’s target image, which captures the fraction of images that are ranked below
the target image, and (2) the correlation between the full ranking computed by
S; and a ground truth ranking that reflects the perceived relevance of all images
in D. Higher ranks are better, since that means the target image appears
among the top-ranked search results presented to the user. Similarly, higher
correlations are better. The two metrics give complementary information:
while rank reveals how the exact target image ranks, NDCG reveals how many
images very similar to the target are found among the top-ranked results.
My method often produces a partial ordering where multiple images satisfy
the same number of constraints; thus, we assign all n images that satisfy all
constraints a raw rank of 1, then all images in the next equivalence class a raw

rank of n + 1, and so on.
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The correlation metric captures not only where the target itself ranks,
but also how similar to the target the other top-ranked images are. We form
the ground truth relevance ranking by sorting all images in D by their distance
to the given target. To ensure this distance reflects perceived relevance, we
learn a metric based on human judgments. Specifically, we show 750 triplets
of images (1, j, k) from each dataset to seven MTurk human subjects, and ask
whether images ¢ and 7 are more similar, or images ¢ and k. Using their
responses, we learn a linear combination of the image and attribute feature
spaces that respects these constraints via [64]. Our ground truth rankings
thus mimic human perception of image similarity. To score correlation, we use
Normalized Discounted Cumulative Gain at top K (NDCGQK) [70], which
scores how well the predicted ranking and the ground truth ranking agree,
while emphasizing items ranked higher. We use K = 50, based on the typical

number of images visible on a single page of image search results.

Feedback generation We use MTurk to gather feedback for my method
and the binary feedback baseline. We pair each target image with 16 reference
images. For our method we ask, “Is the target image more or less (attribute
name) than the reference image?” (for each (attribute name)), while for the
baseline we ask, “Is the target image similar to or dissimilar from the reference
image?” We also request a confidence level for each answer; see Figure 3.1.
We get each pair labeled by five workers and use majority voting to reduce

noise. When sampling from these constraints to impose feedback, we sort the
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constraints by their average confidence level across all workers, and we take
the most confident ones. In this way, our feedback generation simulates a live
feedback session, in which a user will most likely comment on those properties

of the target and reference images which are most evident.

Since the MTurk annotations are costly, for studies on the impact of
iterative feedback, impact of the amount of feedback, and impact of the type
of reference images, we generate feedback automatically. This works as fol-
lows. For relative constraints, we randomly sample constraints based on the
predicted relative attribute values, checking how the target image relates to
the reference images. In other words, the simulated user randomly chooses an
attribute and one of the n top-ranked images at that round, and compares his
target image to the chosen reference image along the given attribute dimen-
sion. For example, if the target’s predicted “shininess” is 0.5 and the reference
image’s “shininess” is 0.6, then a valid constraint is that the target is “less
shiny” than that reference image. For binary feedback, we analogously sample
positive/negative reference examples based on their image feature distance to
the true target. In particular, we sort the n currently top-ranked in terms of
their Euclidean distance in raw feature space to the target image. We then
generate constraints that say the top quartile of these images are “similar to”
the target image, while the bottom quartile are “dissimilar from” the target.
When scoring rank, we add Gaussian noise to the predicted attributes (for my
method) and the SVM outputs (for the baseline), to coarsely mimic people’s

uncertainty in constraint generation.
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The automatically generated feedback is a good proxy for human feed-
back since the relative predictions are explicitly trained to represent annotator
judgments. It allows me to test performance on a larger scale. Of course, like
any simulated study, the simulated experiments I conduct have some limita-
tions. For example, if noise has some other distribution than Gaussian, or
users behave in some manner which is in dramatic contrast to the Gaussian
noise model, the results might differ. However, I confirm the validity of my
simulated experiments with the user-generated feedback experiments in Sec-

tion 3.5.5.

As mentioned in Section 3.2, I train each attribute model with about
200 image pairs. The performance of attribute-based feedback may vary de-
pending on the quality of the models. For example, it is possible that a smaller
number of human feedback statements may be required to accomplish the same
task if the attribute models are trained with more data and are therefore more

reliable.

3.5.2 Impact of Iterative Feedback

First I examine how the rank of the target image improves as the meth-
ods iterate. Both methods start with the same random set of 16 reference
images. At each round of feedback, both methods obtain eight automatically
generated feedback constraints, each time re-scoring the data to revise the top

reference images (using S¢ and S? for my method and the binary baseline,
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Figure 3.4: Impact of iterative feedback: Iteration experiments on the three
datasets. My method often converges on the target image more rapidly.

respectively).?

Figure 3.4 shows the results, for 50 such queries. My method outper-
forms the binary feedback baseline for all datasets, more rapidly converging
on a top rank for the target image. On PubFig my method’s advantage is
slight, however. I suspect this is due to the strong category-based nature of
the PubFig data, which makes it more amenable to binary feedback; adding
positive labels on exemplars of the same person as the target image is quite
effective. In contrast, on scenes and shoes where images have more fluid cat-
egory boundaries, my approach’s advantage is much stronger. The searches
tend to stabilize after 2-10 rounds of feedback. The run-times for my method

and the baseline are similar.

4To ensure new feedback accumulates per iteration, we do not allow either method to
reuse a reference image.
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Figure 3.5: Impact of the amount of feedback: Ranking accuracy as a function
of amount of feedback. While more feedback enhances both methods, the
proposed attribute feedback yields faster gains per unit of feedback.

3.5.3 Impact of Amount of Feedback

Next I analyze the impact of the amount of feedback, using automati-
cally generated constraints. Figure 3.5 shows the rank correlation results for
100 queries. These curves show the quality of all top-ranked results as a func-
tion of the amount of feedback given in a single iteration. Recall that a round
of feedback consists of a relative attribute constraint or a binary label on one
image, for my method or the baseline, respectively. For all datasets, both
methods clearly improve with more feedback. However, the precision enabled
by attribute feedback yields a greater “bang for the buck”—higher accuracy
for fewer feedback constraints. The result is intuitive, since with my method
users can better express what about the reference image is (ir)relevant to them,

whereas with binary feedback they cannot.

A multi-attribute query baseline that ranks images by how many binary
attributes they share with the target image achieves NDCG scores 40% weaker

on average than my method when using 40 feedback constraints. This result
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Dataset-Method | Near | Far | Near+Far | Mid
Shoes-Attribute 39 | .29 .40 .38
Shoes-Binary A2 .05 27 .06
PubFig-Attributes | .60 | .41 .58 .52
PubFig-Binary 39 | .21 .64 15
OSR-Attributes .53 | .27 .52 40
OSR-Binary A8 | .18 .32 A1

Table 3.2: Impact of the reference images: Ranking accuracy (NDCG@50
scores) as we vary the type of reference images available for feedback.

supports my claim that binary attribute search lacks the expressiveness of

iterative relative attribute feedback.

3.5.4 Impact of Reference Images

The results thus far assume that the initial reference images are ran-
domly selected, which is appropriate when the search cannot be initialized with
keyword search. We are interested in understanding the impact of the types
of reference images available for feedback. Thus, we next control the pool of
reference images to consist of one of four types: “near”, meaning images close

7

to the target image, “far”, meaning images far from the target, “near+far”,
meaning a 50-50 mix of both, and “mid”, meaning neither near nor far from

the target. Nearness is judged in the GIST/color feature space.

Table 3.2 shows the resulting accuracies, for all types and all datasets
using 100 queries and automatic feedback. Both methods generally do well
with “near+far” reference images, which makes sense. For attributes, we ex-

pect useful feedback to entail statements about images that are similar to the
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Shoes OSR PubFig Shoes

Figure 3.6: Ranking accuracy with user-generated feedback with randomly
chosen (first three plots) and keyword-initialized reference images (fourth plot).
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target overall, but lack some attribute. Meanwhile, for binary feedback, we
expect useful feedback to contain a mix of good positives and negatives to train
the classifier. We further see that attribute feedback also does fairly well with
only “near” reference images; intuitively, it may be difficult to meaningfully
constrain precise attribute differences on an image much too dissimilar from

the target.

3.5.5 Ranking Accuracy with User-Given Feedback

Having analyzed in detail the key performance aspects with automati-
cally generated feedback, now I report results using user-generated feedback.
Figure 3.6 (first three plots) shows the ranking correlation for both methods on
16 queries per dataset after one round of eight feedback statements. Attribute
feedback largely outperforms binary feedback, and does similarly well on OSR.
One possible reason for the scenes being less amenable to attribute feedback is
that people seem to have more confusion interpreting the attribute meanings
(e.g., “amount of perspective” on a scene is less intuitive than “shininess” on
shoes). In Chapters 5 and 6, I propose methods that will help account for

these ambiguities and differences in user perception.
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Query: “l want a bright, Selected feedback

open shoe that is short
on the leg.”

More open than

&9 N 0 JH
. BV I

Figure 3.7: Example search result with iterative relative attribute feedback.

Next, I consider initialization with keyword search. The Shoes dataset
provides a good testbed, since an online shopper is likely to kick off his search
with descriptive keywords. Figure 3.6 (fourth plot) shows the ranking accuracy
results for 16 queries when we restrict the reference images to those match-
ing a keyword query composed of three attribute terms. Both methods get
four feedback statements (I expect less total feedback to be sufficient for this
setting, since the keywords already narrow the reference images to good ex-
emplars). My method maintains its clear advantage over the binary baseline.
This result shows (1) there is indeed room for refinement even after keyword

search, and (2) the precision of attribute statements is beneficial.

Figure 3.7 shows a real example search using relative attribute feedback
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Query: “l want a Selected feedback

non-open shoe that Dissimilar from Similar to
is long on the le

and covered in ﬂm o

ornaments.”

4 More bright in color Less open than
than é‘ﬁ 2

Figure 3.8: Example search result with hybrid feedback.

done on MTurk. Note how the user’s mental concept is quickly met by the
returned images. In particular, the user can precisely pinpoint the shoe heel
height, by making a “less” statement in Round 1 and a “more” statement in

Round 2.

Figure 3.8 shows a real example using a hybrid of both binary and
attribute feedback. This suggests how a user can specify a mix of both forms

of input, which are often complementary.

3.5.6 Consistency of Relative Supervision Types

Finally, I examine the impact of how human judgments about relative

attributes are collected.

Class-level vs. instance-level For all results above, we train the relative

attribute rankers using image-level judgments. How well could we do if simply
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Class | Instance
Shoes | 26.10% | 22.89%
Scenes | 38.92% | 33.41%
Faces | 28.38% | 30.16%

Table 3.3: Errors for class- vs. instance-level attribute training.

training with class-based supervision, i.e., “coasts are more open than forests”?
To find out, we use the relative ordering of classes given in [107] for PubFig and
OSR, and define them for Shoes. We train ranking functions for each attribute
using both modes of supervision. Table 3.3 shows the percentage of ~200
test image pair orderings that are violated by either approach. Intuitively,
instance-level supervision outperforms class-level supervision for Shoes and
OSR, where categories are more fluid. Further, the 20 MTurkers’ inter-subject
disagreement on instance-level responses was only 6%, versus 13% on category-
level responses. Both results support the proposed instance-level design for

relative attribute training.

Absolute vs. relative Finally, I analyze the consistency in people’s re-
sponses when asked to make absolute judgments about the strength of an
attribute in a single image (on a scale of 1 to 3) as opposed to relative judg-
ments for pairs of images (“more than”, “less than”, or “equal”). In a similar
study as above, for absolute supervision, the majority vote over half the sub-
jects disagreed with the majority vote over the other half 22% of the time.
For relative responses, this disagreement was somewhat lower, at 17%. This

indicates that the labels we obtain by requesting comparisons for relative at-
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tributes are more reliable than the traditional approach of requesting absolute

judgments.

3.6 Conclusions

I proposed an effective new form of feedback for image search using
relative attributes. In contrast to traditional binary relevance feedback which
restricts the user’s input to labeling images as “relevant” or “not relevant”, my
approach allows the user to precisely indicate how the results compare with his
mental model. In-depth experiments with three diverse datasets show relative
attribute feedback’s clear promise, and suggest interesting new directions for

integrating multiple forms of feedback for image search.

Next, I study how to select the reference images used for feedback so

the provided feedback is as informative to the retrieval system as possible.
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Chapter 4

Active WhittleSearch: Attribute Pivots for
Guiding Relevance Feedback in Image Search

In the previous chapter, I described how a user’s search can be made
efficient through relative attribute relevance feedback. Traditionally in rele-
vance feedback, the user is shown a page of results, and has the freedom to
choose which images to mark as relevant/irrelevant. Similarly, the Whittle-
Search approach I described in Chapter 3 employs such a free-form feedback

interaction.

However, in principle, the choice of the image-attribute pairs on which
feedback is provided can be left up to the user or the system. Depending
on the application context, each of these options can be beneficial, as I will
discuss in Section 4.4. In this chapter, I examine how the retrieval system
can actively choose the image-attribute pairs on which it seeks feedback in the

form of an attribute comparison.'

A user initiates a search with a multi-attribute query (e.g., “black high-

!This work was published in the Proceedings of the International Conference on Com-
puter Vision (ICCV) 2013 with the title “Attribute Pivots for Guiding Relevance Feedback
in Image Search” and authors Adriana Kovashka and Kristen Grauman. I wrote the code
and conducted the experiments and data collection, while all authors contributed to devel-
oping the algorithm, devising the experiments, and writing the paper.
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heels”) or a sample image (e.g., a snapshot of a pair of heels she saw). The goal
of the approach presented below is to then refine the results. It interacts with
the user through multiple-choice questions of the form: “Is the image you are
looking for more, less, (or equally) A than image 17", where A is a semantic
attribute and I is an exemplar from the database being searched. Our goal is
to generate the series of such questions that will most efficiently narrow down
the relevant images in the database, so that the user finds his target in few
iterations. To this end, at each iteration we will actively select a comparison
for the user to provide, that is, the (A, I) pair which yields the expected max-
imal information gain. Rather than exhaustively search all database images
as potential exemplars, however, we consider only a small number of pivot
exemplars—the internal nodes of binary search trees constructed for each at-
tribute. The output of the system is the list of database images, sorted by

their predicted relevance.

We again use a learning to rank approach to learn relative attributes,
as in Section 3.2. I next explain how we construct attribute binary search
trees (Section 4.1), and present my model of image relevance that accounts for
the user’s attribute-based feedback (Section 4.2). The latter generalizes the
one presented in Chapter 3 to use probabilities as opposed to strict decisions
about attribute comparisons. Finally, I introduce my active selection approach

to determine which comparison should be requested next (Section 4.3).

Similarly to Chapter 4, let D = {I;,..., Iy} denote the N images in

the database, each of which has a corresponding image descriptor @q,...,xy
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(GIST and color, in our case). We have an attribute vocabulary consisting of
M properties Ay, ..., A, ..., Ay. For example, for a shoe shopping database,
those properties might be “pointiness”, “shininess”, “heel height”, etc. We use
A (I;) to denote the true strength of an attribute m in image I;—that is, as
would be perceived by a human viewer—and a,,(I;) to denote the predicted
attribute strength in image I;—which is the only attribute strength to which

our system has access.

4.1 Attribute Binary Search Trees

For each attribute m = 1,... M, we construct a binary search tree.
The tree recursively partitions all the database images into two balanced sets,
where the key at a given node is the median relative attribute value occurring
within the set of images passed to that node. To build the m-th attribute tree,
we start at the root with all database images, sort them by their attribute
values a,,,(11),...,am(Iy), and identify the median value. Let I, denote the
“pivot” image—the one that has the median attribute strength. Those images
exhibiting the attribute less than I, i.e., all I; such that a,,(;) < an(lp),
are passed to the left child, while those exhibiting the attribute more, i.e.,
am(I;) > am(1p), are passed to the right child. Then the splitting repeats
recursively, each time storing the next pivot image and its relative attribute

value at the appropriate node.

Note that both the relative attribute ranker training and the search tree

construction are offline procedures; they are performed once, before handling
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any user queries.

Already, one could imagine a search procedure that walks a user through
one such attribute tree, at each successively deeper level requesting a compari-
son to the pivot, and then eliminating the appropriate portion of the database
depending on whether the user says “more” or “less”. However, there are two
problems with such a simple approach. First, we cannot assume that the at-
tribute predictions are identical to the attribute strengths a user will perceive;
thus, a hard pruning of a full sub-tree is error-prone. Second, this approach
fails to account for the variable information gain that could be achieved de-
pending on which attribute is explored at any given round of feedback. There-
fore, I propose a probabilistic representation of whether images satisfy the
comparison constraints (Section 4.2). Further, I use the pivots to limit the
pool of candidate images that are evaluated for their expected information

gain (Section 4.3).

4.2 Predicting the Relevance of an Image

Now I explain how we predict the relevance of a database image, given
the user’s comparative feedback. Let F = {(,,.,7)r}+_, denote the set of
comparative constraints accumulated in the T rounds of feedback so far. The
k-th item in J consists of a pivot image I, , for attribute m, and a user response
r € {“more”, “less”, “equally” }. The final output of our search system will be

a sorting of the database images I; € D according to their probability of

relevance, given the image content and all user feedback.
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Let Gi; € {0,1} be a binary random variable representing whether
image I; satisfies the k-th feedback constraint. For example, if the user’s k-th
comparison yields response r = “more”, then Gy, = 1 if the database image I;
has attribute m more than the corresponding pivot image I,,,. Let y; € {1,0}
denote the binary label for image I;, which reflects whether it is relevant to
the user (matches his target), or not. The probability of relevance is thus the

probability that all T" feedback comparisons in J are satisfied:

T
P(y; = 1|1, F) = [ [ P(Grs = LI, F). (4.1)

k=1

For numerical stability, we use a sum of log probabilities rather than a

product:

T
P(y; = 1|1, F) = Y log P(Gy; = 1|I;, Fy). (4.2)
k=1

Recall Equation 3.7 in Chapter 3, where S7(I;) denotes the relevance
of an image given all feedback received from the user. P(y; = 1|I;,F) serves
an analogous function here, the only difference being that we now have a soft

(as opposed to 1/0) score of whether an image satisfies a constraint.

The probability that the k-th individual constraint is satisfied given
that the user’s response was r for pivot [, is:
P(A,(L;) > A, (I,)) if r = “more”

P(Gri = 11;,Fy) = { P(An(L) < An(1,)) if r = “less” (4.3)
P(A,(L;) = A1) if r = “equally”.



To estimate these probabilities, we map the attribute predictions a,,(-)
to probabilistic outputs, by adapting Platt’s method [111] to the paired clas-
sification problem implicit in the large-margin ranking objective. Specifically,

this yields:

NG

P(An (L) = An(1p))

(4.5)

~—

"1+ exp(Ymlam(L) — (L) + 6m)

where the sigmoid parameters are learned using the sets O,, (in which the
first image in a pair has attribute m than the other) and E,, (in which two
images have a similar strength of attribute m) from Section 3.2. In particular,
to learn «,, and (3,,, we use pairs with “more” judgments from O,, as positive
paired-instances, and “less” judgments as negative instances. For ,, and 9,,,
we use “equally” pairs from F,, as positive labels, and both “more” and “less”
responses from O,, as negative instances. Note that P(A,,([;) < A,.(1,)) =
1 — P(A,(I;) > An(ly)). When estimating the likelihood of each possible
user response (Sec. 4.3.2), we normalize these values so the three probabilities

(“more” /“less” / “equally”) sum to 1.

My probabilistic model of relevance accounts for the fact that predicted
attributes can deviate from true perceived attribute strengths. In Chapter 5 I
will further develop a representation that accounts for differences in the user

perception of attributes.
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4.3 Actively Selecting an Informative Comparison

The proposed binary trees serve to guide the active exemplar selec-
tion and reduce its computational overhead, rather than completely eliminate
images from consideration. Our system maintains a set of M current pivot
images (one per attribute tree) at each iteration, denoted P = {I,,,..., I, }.
The pivots are initially the root pivot images from each tree. During active
selection, our goal is to identify the pivot in this set that, once compared by
the user to his target, will most reduce the entropy of the relevance predictions
on all database images. Note that selecting a pivot corresponds to selecting
both an image as well as an attribute along which we want it to be compared;

I, refers to the pivot for attribute m.

4.3.1 Entropy Reduction Objective

Given the feedback history F, w