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In this thesis, | explore region detection and considemitgact on image matching for
exemplar-based object recognition. Detecting regionsnigortant to provide semantically
meaningful spatial cues in images. Matching establishedasity between visual entities,
which is crucial for recognition. My thesis starts by deitegtregions in both local and object
level. Then, | leverage geometric cues of the detected msdgim improve image matching for
the ultimate goal of object recognition. More specificaltyy thesis considers four key ques-
tions: 1) how can we extract distinctively-shaped locaiorg that also ensure repeatability
for robust matching? 2) how can object-level shape inforftdme-up image segmentation?
3) how should the spatial layout imposed by segmented regidluence image matching for
exemplar-based recognition? and 4) how can we exploit nsgio improve the accuracy and
speed of dense image matching? | propose novel algorithrteckte these issues, address-
ing region-based visual perception from low-level locgiom extraction, to mid-level object

segmentation, to high-level region-based matching anoyraton.

First, | propose a Boundary Preserving Local Region (BPL&gctor to extract local
shapes. My approach defines a novel spanning-tree based refagsentation whose structure
reflects shape cues combined from multiple segmentatidmshwvin turn provide multiple ini-
tial hypotheses of the object boundaries. Unlike tradalidacal region detectors that rely on

local cues like color and texture, BPLRs explicitly exploit thgsentation that encodegtobal



object shape. Thus, they respect object boundaries moustigpland reduce noisy regions that
straddle object boundaries. The resulting detector yialdense set of local regions that are

both distinctive in shape as well as repeatable for robustmay.

Second, building on the strength of the BPLR regions, | dgvah approach for object-
level segmentation. The key insight of the approach is thpgtats shapes are (at least partially)
shared among different object categories—for example pgrddferent animals, among differ-
ent vehicles, or even among seemingly different objectss 3lmape sharingghenomenon al-
lows us to useartial shape matching via BPLR-detected regions to preglatial object shape
of possibly unfamiliar objects in new images. Unlike exigttop-down methods, my approach
requires no category-specific knowledge on the object teemented. In addition, because it
relies on exemplar-based matching to generate shape legasthmy approach overcomes the
viewpoint sensitivity of existing methods by allowing sleagxemplars to span arbitrary poses

and classes.

For the ultimate goal of region-based recognition, not asliy important to detect good
regions, but we must also be able to match them reliably. Achmag) establishes similarity
between visual entities (images, objects or scenes), whicimdamental for visual recognition.
Thus, in the third major component of this thesis, | exploog/ho leverage geometric cues
of the segmented regions for accurate image matching. $cetid, | propose a segmentation-
guided local feature matching strategy, in which segmamntatuggests spatial layout among the
matched local features within each region. To encode suatie$jgtructures, | devise a string
representation whose 1D nature enables efficient compatatienforce geometric constraints.
The method is applied for exemplar-based object classdicéd demonstrate the impact of my

segmentation-driven matching approach.

Finally, building on the idea of regions for geometric reggidation in image matching, |
consider how a hierarchy of nested image regions can be asshstrain dense image feature

matches at multiple scales simultaneously. Moving beyodd/idual regions, the last part of



my thesis studies how to exploit regions’ inherent hiermalhstructure to improve the image
matching. To this end, | propose a deformable spatial pytagnaphical model for image

matching. The proposed model considers multiple spattahes at once—from an entire image
to grid cells to every single pixel. The proposed pyramid piatrikes a balance between
robust regularization by larger spatial supports on thehamel and accurate localization by finer
regions on the other. Further, the pyramid model is suitbiyléast coarse-to-fine hierarchical
optimization. | apply the method to pixel label transfeikar semantic image segmentation,

improving upon the state-of-the-art in both accuracy aredp

Throughout, | provide extensive evaluations on challegdienchmark datasets, validat-
ing the effectiveness of my approach. In contrast to trad#l texture-based object recognition,
my region-based approach enables to use strong geometsasaah as shape and spatial layout
that advance the state-of-the-art of object recognitiolsoAl show that regions’ inherent hi-
erarchical structure allows fast image matching for sdaladcognition. The outcome realizes
the promising potential of region-based visual perceptionaddition, all my codes for local
shape detector, object segmentation, and image matchenguaticly available, which | hope

will serve as useful new additions for vision researchearsltiox.
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Chapter 1

Introduction

Detecting meaningful regions in an image is a long-stand&sgarch topic in computer
vision. Regions of various spatial coverages, ranging foommer or junction points, to local
blobs of salient texture patterns, to segments that covneesbjects, have been considered.
In practice, regions serve as basic building blocks for masipn applications. For example,
a local interest region detector, due to its robustness &g@variations, is crucial for image
matching and object recognition; an object segmentationpsrtant for object localization and

image parsing.

Local features—image regions of locally salient appeagratterns—have made a great
contribution to the success of object recognition and inraggeval tasks. Their locality offers
robustness to occlusions and deformation, and when egttaensely and/or at multiple scales
they capture rich statistics for learning-based recogmniéilgorithms. Local features are mostly
extracted at the locations of salient local texture/intgngatterns, but their shapes are often
fixed like circle, ellipse, or rectangle. Fixing featureBapes reduces the complexity of feature
detection. The lack of shape, however, weakens the repetgeral power of the extracted

features and produces noisy features straddling objectdzuies (see Figure 1.1(a)).

Extracting regions with varying shapes—I will call them gimn“regions” unless confu-
sion occurs—has long been studied in computer vision, masthe field of image segmen-
tation. A region-based approach is appealing since it aintapture shapes of objects’ parts
and whole, which provide semantically meaningful spatigsort for recognition. In practice,
however, the instability of segmentation with respect tagevariations can make the extracted

regions unreliable or sensitive to parameter settingsKggee 1.1(b)). Multiple segmentation
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Figure 1.1: lllustration of region detectiofa) We show local regions widely used in computer
vision—SIFT [64], MSER [68], and dense sampling. They argaeted in fixed shapes—
rectangular patches, ellipses, or circles, and often dleaobject boundaries(b) Segmented
regions capture objects’ shape; but they are unstable umdege variations, making them hard
to match.

strategies, by varying parameters or merging adjacenbmegenlarge the pool of segments to
increase the chance of hitting a true object (e.g., [67,;3%yever, large pools of regions
incur redundancy of noisy segments, and, more importaeigting methods lack a model of
true object shapes. Top-down methods instead use the praovi&dge on the shapes of ob-
jects to extract reliable segments [12, 58, 95, 20, 52]; wewehey require category-specific

knowledge on the object, making them less applicable.

In this thesis, | explore region detection and considerntpact on image matching

for exemplar-based object recognition. | address four kegstions: 1) how can we extract



distinctively-shaped local regions that also ensure rabddy for robust matching? 2) how
can object-level shape inform bottom-up image segmemtats) how should the spatial layout
imposed by segmented regions influence image matching é&npbar-based recognition? and
4) how can we exploit a hierarchical structure of differezudls of local- and object-regions
to improve the accuracy and speed of image matching? | peopogel algorithms to tackle
these issues, addressing region-based visual percepbionldw-level local shape extraction,

to mid-level object segmentation, to high-level regiosdmatching and recognition.

In particular, | first develop approaches to extract regiainoth the local- and object-
level, incorporating shapes in a generic way without reggiany category-specific knowledge.
Those local- and object-level regions are then broughttbegento a novel approach to image
matching for region-based object recognition in a dataeulri exemplar-based manner. To im-
prove the scalability of exemplar-based recognition, tifar explore a fast matching method

that exploits the hierarchical structure of regions acu@s®us spatial extents.

In the following sections, | will overview each of four majoomponents (local shape de-
tection, object segmentation, segmentation-driven ni@gcnd recognition, fast image match-
ing on region hierarchy) of my approach. Chapter 3 throughe® tgive more detail on these

ideas and present my results.

Local Shape Detection Researchers have developed a variety of techniques td tietaktre-
gions, ranging from sophisticated interest point opes®8, 69, 70, 43, 92] to dense sampling
strategies [72]. While by design such methods provide Kigapeatable detections across
images, their low-level local sampling criteria generat@gndescriptors that straddle object
boundaries and lack distinctive shapes. The first compaoofemty work aims to create a de-
tector for features that capture distinctive local shapiisimthe image and are also repeatable

under image variations across images.

To extract local shapes, | propose a Boundary Preservingll®egion (BPLR) detec-



tor [47]. BPLRs are local shape features designed to presdsject boundaries derived from
multiple segmentations. My approach defines a novel spgringe based image representa-
tion whose structure reflects shape cues combined frompteitegmentations, which in turn
provide multiple initial hypotheses of the object boundari Unlike traditional local region
detectors that rely olocal cues such as colors and textures, the BPLR detector ekpkoit
ploits the segmentation that encodgsbal object shape, thereby respecting object boundaries
and capturing local object shapes. At the same time, it igsolo the parameter sensitivity of
typical segmentation as it combines multiple segmentdtygotheses. In addition, BPLRs are
densely extracted from an image, and thus retain rich statisf visual information over the

entire image that are critical for recognition and matching

The resulting detector yields a dense set of local regicsisatte both distinctive in shape
as well as repeatable for robust matching. Extensive etrahson challenging benchmark
datasets (Chapter 3) show the proposed BPLR detector gosignificantly better repeatability

and localization accuracy for matching compared to an afaxisting local feature detectors.

Object Segmentation with Shapes Building on the strength of the BPLR regions, | develop
an approach for object-level segmentation. Typically, #idm-up segmentation that relies on
local cues suffers from over- or under-segmentation foectlevel delineation [22, 28, 3].
Pitfalls include the fact that a single object is often coisgul of heterogeneous textures and
colors (over-segmentation), and objects with similar apaece can appear adjacent to one an-
other (under-segmentation). To delineate an object cilyrage need aop-downshape cue
that can bind together an object’s parts of diverse appearan separate objects of similar
appearance that would not be possible if judging colonie{tontour alone. Top-down seg-
mentation methods [12, 58, 95, 20, 52, 56, 17, 65] elegantigrate top-down familiar shapes
with bottom-up local cues to obtain object-level segmeotatHowever, those top-down seg-
mentation methods work in a category-specific manner: tesyrae to know what objects (or

what category of the objects) are to be segmented.
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| instead propose a new form of shape priors that enatdésgory-independertbject
segmentation [48]. The key insight of the approach is thpgaib' shapes are (at least partially)
shared among different object categories: many objectdbiextartial shape agreement—and

thisshape sharingccurs even across seemingly disparate categories.

We use this intuition to segment objects of possibly unknoategories, proposing a non-
parametric, exemplar-based shape prior. Given a novegumseted image, we first identify any
strong BPLR matches it has with local shapes in a databassgyofented exemplars. Based on
the scale and position of each local shape match, we prdjecagsociated exemplar shapes
into the test image. This effectively maps local supporm igiobbal shape hypotheses without
assuming any category-specific knowledge, since the degaf@ecot contain exemplars of
the same object class(es) as our testimage. The proje@pdstield shape priors; we perform
a series of figure-ground segmentations using graph-aofisragng each of the shape priors in

turn. This finally generates multiple hypotheses of objegnsents.

Experiments on challenging datasets (Chapter 4) show jisfiape sharing improves the
quality of bottom-up segmentation, and 2) my category-iaielent shape prior performs as
well as a parallel category-specific one, demonstratingiipact of the shape sharing. As such,
unlike previous top-down segmentation methods, my apjpreaa enhance the segmentation

of previously unseen objects, making it applicable to a widage of problems.

Segmentation-Driven Image Matching For the ultimate goal of region-based recognition,
not only is it important to detect good regions, but we must dle able to match them reliably
and efficiently. A matching establishes similarity betwegsual entities (images, objects or
scenes), which is fundamental for visual recognition. Thghe third major component of
this thesis, | bring together the above ideas for local- abjgat-level region detection in a

novel approach to region-based image matching.

Due to confusing appearance or background clutter, on@ oftéains noisy correspon-



dences when matching regions individually. To resolve sambiguity, additional geometric
constraints are typically considered for robust match@#g B2, 44, 76, 57, 9]. In a constrained
setting of instance-level matching such as wide-basetares image matching [64, 32, 44, 76],
it is straightforward to address the spatial layout in a $engarametric form. In a generic set-
ting that match images of different scenes or objects of gewategories, on the other hand,
there is no single parametric form to represent the geoon@éfiormations across images, and
thus non-parametric approaches that identify a group ofhesthaving minimal geometric dis-
tortion are preferred [57, 9]. However, existing non-paeéime methods are limited to a uniform
deformation model that is not fitting to matching non-rigigjexts and/or too computationally

costly for matching a large number of features.

To address those challenges, | propose a segmentatiandsal feature matching strat-
egy, in which segmented regions in the image control theiadayout of the matched fea-
tures [46]. | apply my matching method to exemplar-base@ahjecognition using nearest-
neighbor classification. One of the key aspects in my appraat¢hat each segment in an
image is represented by a 1D string that links the local featextracted within the segment.
This string representation enables a dynamic programnangiflation to solve the matching
problem efficiently, while encoding spatial layout amongttees. Another key aspect is that
my method uses segmented regions to allow non-parametimeieic deformations among
the matched features: it imposes different penalties fergdometric distortion for matching
featureswithin a segment and thoserossthe segments. The intuition is that feature corre-
spondences within a segment tend to have more consistdrdldagout than those across the

segments, addressing non-rigid deformations of differegibns across the images.

| apply the proposed method for exemplar-based objectititzgs®n. Experimental re-
sults on standard benchmark datasets (Chapter 5) shovhthptdposed method outperforms
existing matching-based recognition methods by a sigmifisgargin with much less computa-

tion, demonstrating the impact of our segmentation-drivextching strategy coupled with an



efficient 1D string representation.

Fast Image Matching with Region Hierarchy Regions can provide geometric constraints
for image matching as shown in the previous section. Bujdin this idea of using regions for
geometric regularization, the last part of my thesis cagrsichow to exploit regions’ inherent
hierarchical structure (e.g., a region of an entire objext #&s parts) to improve the image
matching. Particularly, | address fast dense pixel magchmethod that builds on a hierarchy of

nested regions for scalable exemplar-based object retmgni

Dense pixel matching aims to find correspondences of “eviegl’between two images.
With the steady advance of dense matching quality, reseeg¢htroduce many interesting ap-
plications of dense pixel matching for vision and graphiesluding semantic image segmen-
tation [62], image completion [6], and video depth estima{45]. As already noted, however,
when matching images, we face two major challenges: imagatican and computational cost.
These challenges become much more severe when we addresspidasl matching, due to 1)
pixel's locality that lacks the discriminating power to obge matching ambiguity in the face
of visual variations, and 2) huge problem size that we mustileaeach of millions of pixels

between images.

To address these challenges, | propose a deformable gpatahid graphical model [49].
Unlike the conventional approach that builds on a flat plgeel matching objective [62, 6, 46,
57, 23], the proposed model considers the match at multgdéiad extents in a hierarchical
way—ranging from an entire image, to coarse grid cells, &rggingle pixel. The proposed
pyramid model strikes a balance between robustness to raatblguities on the one hand, and
accurate localization of pixel correspondences on therptbading to better matching accu-
racy. Larger spatial nodes offer greater regularizatioeamédippearance matches are ambiguous,
while smaller spatial nodes help localize matches with fieiidl Further, the proposed pyra-

mid model is naturally suited for fast coarse-to-fine optation, which substantially improves



the run-time over existing methods, matching hundredsaighnds of pixels between images

within a fraction of second.

| apply the method to exemplar-based semantic image segti@nt Extensive experi-
ments on challenging benchmark datasets show that 1) wasjoatial supports by our spatial
pyramid improve matching quality, striking a balance betwgeometric regularization and
accurate localization, 2) our pyramid structure permifient hierarchical optimization, en-
abling fast dense matching. As such, my approach achielssasial gains in both matching
accuracy and speed over the today’s most popular methodehse matching, SIFT Flow and

PatchMatch [62, 6].

Summary In this thesis, | explore key aspects of region-based abjececognition, start-
ing from region detection at both local and object level andding them together into the
novel framework of region-based image matching for themate goal of object recognition.
Throughout, | provide extensive evaluations on challegdpenchmark datasets, validating the

effectiveness of my approach. Figure 1.2 summarizes thenagtion of the thesis.

Region detection

Local shape detection Object segmentation via local shape match
(Chapter 3) (Chapter 4)

Region-based matching

Segmentation-driven image matching Fast matching with regions’ hierarchy
(Chapter 5) (Chapter 6)

.

Region-based object recognition

Figure 1.2:0Organization of the thesis.

The main contributions of my work are:

e | propose aBoundary Preserving Local Region detector (BPLR)to capture local

8



shapes (Chapter 3). By combining multiple segmentatioothgses via a novel spanning-
tree based geometry representation, the BPLR detectoeatsspbject boundaries, ro-

bustly capturing object local shape under image variations

¢ | introduce acategory-independent shape priorfor object segmentation that exploits
shape sharing between the objects of different categd@ieagter 4). As such, unlike
typical top-down segmentation methods, my approach caarehthe segmentation of

previously unseen objects.

e | propose aegmentation-driven image matchindhat considers the spatial layout among
matched features suggested by segmentation. The propasbddrintroduces a novel
1D image representation that effectively captures eadbm&ggeometric layout with an

efficient dynamic programming solution (Chapter 5).

¢ | propose aleformable spatial pyramid modelthat exploits a hierarchical structure of a
group of regions for a fast dense pixel matching. This impsowpon the state-of-the-art

in both accuracy and speed, enabling scalable exempladivasognition (Chapter 6).

e Putting all these components together, | achi@gon-based object recognition in an
exemplar-basedway. The detected local- and object-level regions are mated into a
matching framework for efficient exemplar-based objecogadtion, demonstrating its
impact on various vision tasks from low-level region datattto mid-level object seg-

mentation, to high-level object classification and sentaintage parsing.

Overall, my thesis realizes the promising potential ofoegbased visual perception. Key
issues of region-based recognition, including regionat&t®e, matching, and their applications
to object recognition, are all addressed in an integrated West the methods on challenging
benchmark datasets, showing the proposed methods imppovethe state-of-the-art. All the

codes are publicly released for future research towar@negased object recognition.



Chapter 2

Related Work and Background

In this chapter, | will review the literature according tackacategory of my work: local
region detection, object segmentation, region-basedemaafching, and fast image matching

for exemplar-based recognition.

2.1 Local Region Detection

Local features—image regions of locally salient appeagatterns—are a basic build-
ing block for image retrieval and recognition tasks. Theegahfeature extraction pipeline
consists of (a) a detection stage, which selects the imége (positions, scales, shapes) where
features will be extracted, and (b) a description stagechvhses the image content at each such
site to form a local descriptor. The proposed Boundary PPvesg Local Region detector and
those that will be reviewed in this section tackle regimtection they use existing descriptors
to capture the detected regions’ shape, and standard m@tiguhniques to demonstrate their
applicability. Thus, work on shape descriptors and contoatching (e.g., [8, 31]) is comple-

mentary but separate from the focus in this section.

Local interest region detection is a long-standing resetopic in computer vision, and
scale or affine-invariant local regions [68, 69, 70, 43] anécally valuable for multi-view
matching problems like wide-baseline stereo or instancegmition. Their invariant properties
under image variations offers repeatability across imége®bust matching of specific object
instances. For generic object categories, on the other, lia@yltend to be too sparse to capture

rich statistics of visual information in an image; densedynpled local patches offer better

10



coverage and are regularly found to outperform interesttpdie.g., see [72]), at the cost of
much greater storage and computation. Recent work on detesest points [92] shows how to
merge advantages of either sampling strategy, balancwveyage with repeatability. In contrast
to our region detection approach, however, prior method®éal region detection are unaware
of object shapes or boundaries and thus often straddletdbjeground and background, rarely

firing on object parts.

Due to steady advances in bottom-up segmentation alga®ifdml], increasingly re-
searchers are considering how to employ segments as basefean place of local patches [38,
89, 75, 80]. Segments are appealing since they capturetatjape and have broader spatial
coverage. However, the instability of segmentation athars with respect to image variations
can make the features’ shapes unreliable or sensitive toner settings. Depending on il-
lumination, viewpoints, or background clutter, segmengy/ ieak into the background or be
fragmented into texture blobs, failing to capture true gsapf the object or its parts. Thus,

existing work often focuses on how to select reliable sedfparts using labeled data [38, 89].

Multiple segmentations (generated by varying the segnientparameters) are often
used to expand the pool of candidates to increase the ch&hitérg the true object (e.qg., [67,
34]). Whereas existing methods typically try to find “goodilfobject segments among this
pool, my goal is to combine all segmentation hypotheses taimliense local regions across
an image. | propose a novel spanning-tree representatiotetgrate shape cues from multiple

segmentation hypotheses.

Much less attention has been given to the interplay betwaerdvel local features and
segmentation. The segmentation-based interest point®ged in [50] consist of ellipses fit to
segment areas and corners computed on segment boundawesved, corners may often miss
shape cues of the regions, and fitting ellipses directly gonemts can be susceptible to segmen-
tation errors. In contrast, my approach captures objeatsilishapes from segmented regions,

while still retaining robustness to segmentation varraiby combining multiple segmentation

11



hypotheses.

2.2 Object Segmentation with Shape Priors

Bottom-up image segmentation methods group low-level éwes color, texture, and
contours to estimate the object boundaries in an image [22128]. Despite significant strides
inrecentyears, itis widely acknowledged that a bottom+ag@ss alone cannot reliably recover
object-level segments—in particular, when objects arepmsad of heterogeneous colors and

colors, or objects of similar appearance appear adjacemtd@nother.

To overcome the pitfalls of bottom-up approaches, reseasciitempt a top-down strat-
egy that uses shape models for the object to be segmented.t&udown methods [12, 58,
95, 20, 52, 56, 17, 65] unify object shape models with bottgneolor/texture cues for object-
level segmentation. Shape-based object detectors [73863Qyse robust contour models to
detect objects in cluttered images. These methods elggatagrate top-down knowledge with
bottom-up evidence, yet they heavily rely on a known (pagated) category-specific model.
Category-specific shape priors in particular make strosgragtions about the viewpoint of

the object to be segmented: for example, a classic test casests of side views of horses.

Considering these limitations, | pursue a rather diffeagroach. The main insight is
that objects across different categories (at least pigtisthare their shapes—and this “shape
sharing” enables us to transfer the shapes of a known classiknown classes. | devise an
exemplar-based partial shape match via BPLRs to transbafjshapes among different ob-
jects. The advantage of my approach is that it avoids regustrong prior knowledge about
the object(s) present; instead, it exploits shapes of cesesdb estimate those of possibly un-
known classes, introducing@tegory-independerghape prior. Further, the exemplar-based
design overcomes the viewpoint sensitivity of existingpEhariors by allowing exemplars to

span arbitrary classes and poses.
The notion of sharing visual properties across object catteg has been pursued in var-

12



ious forms. In object detection, jointly training multiagls object detectors allows the reuse of
common discriminative features [91, 73], and transfemzay promotes sharing by incremen-
tally training new objects [26, 7, 87, 2, 78]. For shapes irtipalar, knowledge about shared
properties is typically expressed in parametric forms,, &gstalt cues like symmetry [59], or
handcrafted geometric primitives [10]. Recent work attesp relax such parametric restric-
tions by discovering prototypical local geometric featuf€9]. In contrast, my approach goes
beyond local sharing to consider global shape projectivtiseaobject level. In addition, my
exemplar-based, non-parametric approach to sharing sl mekative to all of the above, and

offers greater flexibility to the rich variations of objettagpes and poses.

Recent methods generating multiple figure-ground segriensg24, 19] are closely rel-
evant to my approach. Like my method, they also assume atxastatabase of segmented im-
ages, generate category-independent object segmentgpotheses, and offer improvements
over purely bottom-up image segmentation. However, theigus techniques rely on local
bottom-up cues (color, texture, contour strengths). Thaik of shape priors hurts perfor-
mance, particularly for cases where color consistencysigffitient to form a good segment, as

| will show in the results (Chapter 4).

Multiple figure-ground segmentations provide multiple bgeses of object regions that
may possibly overlap one another. To get a more compactgeptation of the image with
object delineation, some work aims to map multiple hypatkes a single segmentation that
provides non-conflicting regions of objects in the imageory this line, there are recent at-
tempts to generate an image segmentation from multiple seghypotheses [42, 16]. They do
S0 by selecting disjoint segments among a pool of multipigore hypotheses that best fit the

bottom-up image evidence, yet lack shape priors.
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2.3 Segmentation-Driven Image Matching

For region-based recognition, not only is it important ttedégood regions, but it is also
crucial to match them reliably and efficiently. A matching@sates visual entities (images,
objects, or scene) via similarity, which is vital for visualkcognition. Due to their robustness
to deformation and occlusion, matching local features bag kerved as a key component on
many computer vision problems, and is especially impor@andday’s object recognition and

image retrieval tasks that use local features for imagessgmtation (e.g., [36, 53, 76, 9]).

However, the locality of such features yields noisy coroggfences when used alone,
and thus adding geometric constraints is crucial to sedigthie matches that have consistent
spatial layout. In a restricted setting like wide-baselstereo, parametric constraints (e.g.,
affine transformation or epipolar geometry) are used toesgnt the deformation of an object
under viewpoint change [64, 32, 44, 76]. For matching olsjeéct generic setting, however, a
single parametric transformation between images is ircseifi since the geometric deformation
is not predictable. Instead, non-parametric approacletsdantify a group of matches having
minimal geometric distortion may be preferable. For exampptimization-based methods [9,

57] attempt to minimize the total pairwise distortion amatigcorresponding features.

Though their pairwise constraints are so powerful as toesflvarious geometric de-
formations, those methods have a significant computationathead to compute geometric
distortions among all pairs of features, which in turn lsrtthe number of features that can be
handled only by tens to a few hundreds, making it hard to fatigvey visual information in
the image. The proposed 1D string representation signtficeeduces the computational com-
plexity by modeling distortions only between nearby feasualong the string, enabling a dense

non-parametric matching with an efficient optimization.

Recent graph-based matching methods [63, 23] represembhagei with a regular grid
graph and match graphs between images. Such graphicaleapes offer leading accuracy

on scene matching [63] and object categorization [23]. H@aredheir graphical model builds
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on loopy graph of 2D image grid that costs expensive itegabptimization for matching. In
addition, they ignore a spatial layout suggested by segatient possibly being vulnerable to

non-rigid deformation among different regions of an image.

Going beyond local features, matching segmented regioasghaed growing inter-
est [38, 89, 90]. Due to the steady advances in segmentagtimoals, segmented regions have
the potential to provide semantically meaningful spatigdmort like an object and its parts for
reliable matching. In practice, successful results on ailg&assification [89] and object de-
tection [38] support the validity of a region-based appla®n the other hand, it is widely
acknowledged that segmented regions are still less stadteldcal features under image vari-
ations. To address this trade-off between local featurdslam segmented regions, instead of
matching the segmented regions directly, | propose to ussegmented regions to guide the
matching of local features. This keeps the robustness af features under image variations

while still enforcing the spatial layout suggested by lagggmented regions.

A related “bundling features” algorithm [96] uses a regisraaunit for which geometric
constraints are independently imposed. Unlike my approhaetvever, that method does not
match local features; instead, it augments the represemtafta region by encoding the spatial
configurations of local features detected within the regidfhereas | use regions for spatial

layout, they use local features for it that lack global sgdatiipport to encode the layout reliably.

2.4 Fast Image Matching with a Region Hierarchy

As shown in the previous section, regions can provide stgaagnetric cues for matching
problem. Pursuing this idea of using regions for geomet@gutarization, the last part of my
thesis explores regions’ inherent hierarchical structerg., an object and its parts) to improve
the matching. Particularly, | focus on how to use such a repierarchy for fast dense pixel

matching.
Fast matching is important for scalable recognition, patérly for exemplar-based ap-
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proaches that need to match a large number of images in thbats. Moreover, fast matching
becomes more critical for the dense pixel matching probleroesit requires finding corre-

spondences for all the millions of pixels between images anffew hundreds or thousands of
sampled local features. These challenges pose importadneh goal: achieve a fast matching

that still provides reliable matches.

Traditional matching approaches aim to estimate very ateupixel correspondences
(e.g., sub-pixel error for stereo matching), given two ieR@f the same scene with slight
viewpoint changes. For such accurate localization, moshaodas define the matching cost
on pixels. In particular, the pixel-level Markov random @igMRF) model, combined with
powerful optimization techniques like graph-cut or bepebpagation, has become tte facto
standard [83, 15]. It casts matching as a graph optimizaroblem, where pixels are nodes,
and edges between neighboring nodes reflect the existespatdl constraints between them.
The objective consists of a data term for each pixel’s matghkbst and a smoothness term for

the neighbors’ locations.

Unlike traditional instance matching, recent work attesrtptdensely match images con-
taining different scenes [62, 45]. In this setting, theantiass variation across images is often
problematic (e.g., imagine computing dense matches betaesdan and a convertible). As
introduced in the previous section, stronger geometrialeggzation is one way to overcome
the matching ambiguity—for example, by enforcing geoncetmoothness on all pairs of pix-
els, not just neighbors [9]. However, the increased numbpaiowise connections makes such
approach too costly for dense pixel-level corresponderares it lacks multi-scale regulariza-

tion.

To address such computational challenges, researchegselkplored various computa-
tionally efficient solutions, including hierarchical opiization [62], randomized search [6],
spectral relaxations [57], and approximate graph matcf#8y Particularly, SIFT Flow [62]

and PatchMatch [6] are today’s most popular and powerfuhou for dense pixel matching.
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The SIFT Flow algorithm pioneered the idea of dense cormsg@aces across different
scenes [62]. For efficiency, it uses a multi-resolution isngagramid together with a hierarchi-
cal optimization technique inspired by classic flow alguns. However, its run-time is not fast
enough for scalable recognition since its pyramid grapiesedn a conventional pixel-based
model that involves a huge number of pixels to optimize evethé coarser resolutions. Also,
SIFT Flow treats graphs from different resolutions indegeeily, which can produce gross
errors once the solution in one resolution goes wrong. ThehR&tch algorithm computes
fast dense correspondences using a randomized searcltexii@]. For efficiency, it aban-
dons the usual global optimization that enforces explicibsthness on neighboring pixels.
Instead, it progressively searches for correspondencesliadble match at one pixel subse-
quently guides the matching locations of its nearby pixiss implicitly enforcing geometric
smoothness. Though improving the run-time substantigflyimplicit geometric smoothness
often produces noisy correspondences, particularly whatctmmg different scenes or objects

with visual changes.

Despite the variations in graph connectivity, computatexhniques, and/or problem do-
mains, all of the above approaches share a common basis;, pifaltlevel objective. The
appearance matching cost is defined at each pixel, and geos@bothness is imposed be-
tween paired pixels. In contrast, the deformable spatiedpyd model | propose in Chapter 6
considers both matching costs and geometric regularizatithin multiple spatial extents. |
show that this substantial structure change has dramagiaahon both speed and accuracy of

dense matching.

Rigid spatial pyramids are well-known in image classifieatiwhere histograms of visual
words are often compared using a series of successivelgarogirid cells at fixed locations in
the images [53, 97]. Aside from my focus on dense matchingréognition), my work differs
substantially from the familiar spatial pyramid, since ibaels geometric distortions between

and across pyramid levels in the matching objective. In semtse, my approach relates to
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deformable part models in object detection [27] and scesssdication [74]. Whereas all these
models use a few tens of patches/parts and target objegmigiom, my model handles millions

of pixels and targets dense pixel matching.

The use of local and global spatial support for image aligmrhas also been explored for
mosaics [85] or layered stereo [5]. For such instance magcproblems, however, it does not
provide a clear win over pixel models in practice [83]. In trast, | show it yields substantial
gains when matching generic images of different scenes,mandegular pyramid structure

enables an efficient solution.
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Chapter 3

Detecting Local Shape Regions

In this chapter, | introduce a Boundary Preserving Locali®@e¢BPLR) detector pub-
lished in [47]} BPLRs are segmentation-driven local shape regions thameapbjects’ local

shapes by respecting object boundaries.

3.1 Motivation: Boundary Preserving Local Regions (BPLRS)

Local features are a basic building block for image retlieval recognition tasks. Their
locality offers robustness to occlusions and deformatumml when extracted densely and/or at
multiple scales they capture rich statistics for recognitalgorithms (e.g., for a bag of words
representation). The general local feature pipeline stsef (a) aletectiorstage, which selects
the image sites (positions, scales, shapes) where featirbs extracted, and (b) description
stage, which uses the image content at each such site to flaraladescriptor. This part of my

work is concerned with the detection stage.

As discussed in Chapter 2, researchers have developedetyvafitechniques to per-
form detection, ranging from sophisticated interest pop#rators [68, 69, 70, 43, 92] to dense
sampling strategies [72]. While by design such methodsigeolighly repeatable detections
across images, their low-level local sampling criteriagyate many descriptors that straddle
object boundaries, and—if they are too local—may also laskirtttiveness (i.e., patches of
texture vs. actual object parts). On the other hand, whidensatation algorithms can produce

boundary-preserving base features and reveal object §BAp&8, 89, 67], they tend to be

1Code and data are available online: http://vision.csageedu/projects/bplr

19



Figure 3.1:The proposed Boundary Preserving Local Regions (BPLRs)m@fpcal object shape with
dense spatial coverage. (We densely extract BPLRs ac@gadge, but for legibility this figure displays
only a few.)

sensitive to global image variations and so lack repeatabil

My goal is to address this current tradeoff, and create acttetdor features that are
both distinctivewithin the image as well as repeatalalerossimages. To this end, | propose
a novel dense local region extraction algorithm driven bynsentation, creating a Boundary
Preserving Local Region (BPLR) detector. Figure 3.1 showesmple detections of BPLRs in

several images.

Because our extracted regions tend to preserve object baesdthey are informative for
object shape. At the same time, because they link sampleteals across multiple segmen-
tations, they are robust to unstable segmentations andépestable across images. Finally,
their dense coverage of the image ensures to retain reliaatare statistics that are critical
for recognition and matching. Figure 3.2 depicts the keytramts between our approach and

existing methods.

3.2 Extracting Boundary Preserving Local Regions

In this section, | will present the technical details to egtrBPLRs. | first describe how to
sample initial elements using the input segmentations. (&&cl). Then | explain how to link
these elements across the image (Sec. 3.2.2). Finallywl Bbw to use the computed structure

to extract dense groups of elements, each of which is a ghr@serving region (Sec. 3.2.3).
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c) Superpixels

Figure 3.2:lllustration of BPLR's key contrasts with representativéséng detectors.(a) The pro-
posed BPLRfeatures are reliably repeated across different objetariegs in spite of large intra-class
variation in pose and appearance. They respect object baesdvhile maintaining good spatial cov-
erage per region. (Note, | display only a sample for diffefemeground object parts; our complete
extraction is dense and covers entire imagé) Regionsfrom a segmentation algorithm (here, ob-
tained with [4], and pruned to only foreground-overlappiagions) typically produce some high quality
segments, but the shape and localization often lacks bt across instances. Further, if a good
segment encompasses the entire object, it won't match otbiemnces with deformatior{c) Superpix-
els (obtained here with Normalized Cuts [80]) are also local dadse, but typically lose informative
shape cues and lack repeatability (compare shapes of sxgderpn the two giraffe instances{d) Lo-

cal interest regions(obtained with MSER [68]) are highly repeatable for mukipliews of the same
instance, but do not respect object boundaries and fire vieyahtly across different instances of the
same object clasge) Densely sampled regionsffer good coverage and “brute force” repeatability, but
many features straddle object boundaries, and shape isymospreserved.
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3.2.1 Sampling Initial Elements

Given an image, we first obtain multiple overlapping segmagons. (Unless mentioned
otherwise, we use the state-of-the-art algorithm develape3] to produce a high quality
hierarchy of segments, though we also test a faster seghioentaethod [28] for comparison.)
These segmentation hypotheses do not serve as detecteds;agither, we use them to guide
the extraction of initial component features that we caléfeents”. Each element is a circle

with a position (its center) and associated scale (its s3diu

The goal of our novel sampling strategy is to balance botlsitieand object boundary
preservation. To that end, we compute a distance transii) ffom the boundary edges of
each segment, and then subdivide the segment into a dedsaf gells (e.g., 6x 6 pixels per
cell). For each cell, we sample an element at the locatioh thié maximal distance trans-
form value within the cell, and set the radius of the elemgntiat maximal distance value.

Figure 3.3(a) shows sampled elements from one segment.

Selecting elements’ scale by the DT prevents them from apprhg the originating seg-
ment’s boundary. At the same time, refining the dense samplisitions by the maximal DT
values pushes sampled locations to the inner part of eachesggkeeping elements originating
from the same segment closer to one another than those fifteredt segments. Due to this
geometric property, when we link elements across all seggmethe next stage (Sec. 3.2.2), we
have a soft preference to join elements originating fronstimae segment. In addition, the local
nature of our sampling approach limits the influence of segrfesrors”; that is, holes or leaks
(relative to the true object boundaries) do not destroy #meping and scale selection. Thus,
we retain a large number of good elements that respect dbpectdaries even with partially

flawed segments.
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A segment Distance transform Dense regular grid Sampling elements

(a) Sampling elements

Minimum
spanning tree

Sampled elements from all Sampled elements’ locations Global linkage structure
segments (Display center points only)

(b) Linking elements across image

Reference element
O Neighbor elements =

Grouped elements =——> OneBPLR =  Descriptor

A single BPLR f ; f | Extracted BPLRs from an image
single or a given reference element (Display only a subset for legibility)

(c) Grouping neighbor elements into BPLRs

Figure 3.3:Main components of the approach. Best viewed in calay.For each initial segment, we
sample local elements densely in a grid according to itsudés transform (left: segment; lower right:
grid; upper right: zoom-in to show sampled elements and #ezles).(b) Elements are linked across
the image, using the overlapping multiple segmentatiomsdate a single structure that reflects the main
shapes and segment layo(d) Using that structure, we extract one BPLR per element. E&itRBis a
group of neighboring elements. Finally, the BPLR is mapesbime descriptor (we use PHOG+gPb).
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3.2.2 Linking Elements Throughout the Image

Next we want to take these elements and define the neighlsidtaacture across the
entire image, which in turn will determine how we extractgpe of neighboring elements to
form BPLRs. A naive linking of the elements based on theitighmage) distance would falil
to capture the image-wide contours and shape revealed byuhigle segmentation hypothe-
ses. Instead, we define a two-step linking procedure thatads for this structure and reduces

cross-object connections.

The first step computes a global linkage graph connectirgjethent locations via a min-
imum spanning tree, where each edge weight is given by thédeaa distance between the
two points it connects. By minimizing the sum of total edgdghs, the resulting spanning
tree removes the longer edges from the graph—most of whm$savbject boundaries due to
the geometric property of the DT-based sampling. As a reswdthave a global link struc-
ture respecting object boundaries, in which every elemastdt least one direct neighbor (see

Figure 3.3(b), rightmost image).

Whereas the above step reduces connectivity for more diskaments, we also want to
reduce connectivity for elements divided by any apparejgatizontours. Thus, in the second
linkage step, we perform a simple post-processing of tharspg tree that removes noisy
tree edges that cross strong intervening contours. We ctantpa contour strength at each
pixel using the “globalized probability of boundary” (gPbgtector [66], and remove links
crossing contours exceeding the average non-zero gPb ivatbe image. Nonetheless, even
an erroneous pruning at this stage has limited impact, givenensity of the elements and the

manner in which we ultimately group them into regions, as w@an in the next section.

3.2.3 Grouping Neighboring Elements into Regions

Finally, we use the elements and the computed graph to ¢d@dense set of boundary-

preserving local regions (BPLRs). For every element (@eery node in the graph), we create
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8 Reference element O Topology neighbors * Euclidean neighbors ® BPLR elements

Figure 3.4:Grouping neighboring elements relative to a reference etenTopology neighbors: up to
N (= 3) hops for the reference; Euclidean neighbors: withitimes the scale of the reference; BPLR
elements: intersection of topology and Euclidean neighbor

one BPLR. Each BPLR consists of that “reference” elements pl group of its neighbors in

the graph (see Figure 3.3(c)).

We define the neighborhood based on two measures: topolastance in the graph
(how many link hops separate the elements), and Euclidestandie in the image§ distance
between the elements’ centers). The neighbors for a referelement are those within the
intersection of regions spanned by either distance. Spaltyfi the topological neighborhood
consists of any elements withis hops along the graph relative to the reference elementewhil
the Euclidean neighborhood consists of any elements wéthadius equal té’ times the refer-
ence element’s scalgsee Figure 3.4). Note that the topological radius is fixesl all elements
in the graph (and all images), while the Euclidean radiusapg@rtional to each element’s scale.

The neighbors of each reference element within this intéeskearea form a BPLR.

Why do we use the two distances? Using the Euclidean dist@ooe would maintain
scale invariance, but is blind to the graph connectivityjoktintentionally accounts for esti-
mated image boundaries. On the other hand, topologicadistaccounts for this connectivity,
and in the face of unstable segmentations, it tends to sedggihbors better than the elements’
noisy scale estimates; but, if used alone, it would not beisbto significant scale changes.

Thus, our design is intended to balance the good parts of both

Since we extract the BPLRs for every densely sampled elerttentesulting detections
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are also dense. The exact number per image depends on thesegmentation and sampling
grid; to give a concrete sense, using the initial multipignsentations we obtain about 150-250

segments, and then our method generaté®00 features per image.

While earlier uses of the distance transform for shape¢beg@esentations require fairly
clean segmentation (e.g., a pure silhouette for medial @xishock graph extraction [84]),
our scheme remains quite robust with challenging naturabms due to its linking procedure
and dense sampling. By definition our approach has some depea on the original set of
multiple segmentations; however, because our linkingseheonnects elementeyondtheir
originating segment, it is fairly robust to segmentationatgons, recovering larger descriptive
regions that partially overlap different segments. In geheve'd prefer the input err towards

finer segments, since we will produce candidate regiongdhathem.

Our approach performs region detection. To use these redmmmatching, we need
to further extract alescriptorfor every region. One could in principle employ any desanipt
with our detector. In our experiments, we use Pyramids ofdgimms of Oriented Gradients
(PHOG) [14] computed over the gPb-edge map (see third inmagrgi 3.3(c)), which is similar
to the descriptor used in [38]. It represents the outlindefdhape as well as (coarsely) its inner
texture, and thus is a good match for BPLR’s strengths. Taekthe PHOG+gPb feature, we
put a bounding box around the BPLR, and nullify gPb valuesidatof the BPLR boundaries,
excluding external edges from the histogram counts. Algoril presents pseudo-codes for the

whole procedure of computing BPLRs.

3.2.4 Elaboration on Key Design Factors

In this section, | point out key technical factors in the BPi€sign and explain how they

overcome the weaknesses of existing methods. | also diatwsd parameter choices.

For sampling elements in Sec. 3.2.1, | apply a distancefoemgo the initial segments.

While earlier uses of the distance transform for shape¢besgesentations require fairly clean
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Algorithm 1: BPLR extraction

Data: Input multiple segmentatiorts
Result BPLRs and their PHOG descriptors

Sampling elements
input : Multiple segmentationS
output: Sampled elements from each segmerf in
foreach segment; in S do
Distance transform on the boundarysgf
Put a bounding bok; on the segmeny;;
Divide theb; into grid cells (e.g.6 x 6 pixels);
foreachgrid cell g; do
Pick a positiorp that has a maximum distance transform value;i(iet
denote the maximum value by );
Sample a circle (i.e., element) whose centerahd radius i3n,;
end
end

Linking elements

input : A set of sampled elemeni from all segment$

output: A graphG that links the sampled elements

Compute Euclidean minimum spanning tree graph for the 2ipos of all sampled
elements in the image;

Remove graph edges that cross the strong contour whoseisahbeve the threshold;

Grouping elements
input : A set of sampled elemeni and a linkage grapt¥
output: Boundary Preserving Local Regions (BPLRS)

foreachelement; in E do
Get Euclidean neighboi¥;: pick elements which are within the times the

radius ofe;;

Get topological neighbol,;: pick elements which are within th& hops from
thee; in the graph;

Compute the intersectiaN; of N; andNy;;

Form one BPLR that covers the area by the elemenié§;jn

end

Descriptor for BPLRs
input : BPLRs and a gradient map of the image
output: PHOG descriptors for BPLRs
foreachBPLRb; do
(Optional) Dilateb; by [ pixels (See Section 3.3);
Put a bounding box oiy;
Nullify the gradient map values outside thean the bounding box;
Compute a PHOG descriptor on the gradient map of the bourimtirg
end
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segmentation (e.g., a pure silhouette for medial axis atlsgoaph extraction [84]), my scheme
remains quite robust with flawed segmentation in challemgiatural images. This is largely
because it combines with a dense local sampling strategytdune locality, errors in a segment
do not destroy the whole procedure; due to the density andasty, intact elements tend

to dominate noisy ones, considering errors in a segmen bi@pen partially. Further, this
combination is key to both BPLR'’s repeatability (via deng&action) and distinctiveness (via

the shape cues from DT).

Multiple segmentation approaches typically aim to find-fbject segments by varying
segmentation parameters [67, 34]. However, such a mulinpetric approach inherently en-
tails noisy segments with redundancy, degrading overatufe quality. My linking scheme
in Sec. 3.2.2 connects elemeisyondtheir originating segment. Thus, we generate larger
descriptive regions that partially overlap different segws, which not only reduces the redun-

dancy of the initial multiple segmentations, but also adisistness to segmentation variations.

The most important parameters in BPLR extractionsitghe number of hops to define
topological neighbor, and’, the scaling factor to define Euclidean neighbor (see Figute
These two parameters define the size of the extracted BPLRhoag values increase, the
BPLR’s size gets larger. We find that too small or too largeiealof N and F' hurt the per-
formance: tiny BPLRs lack distinctive shapes, often coeduisy noisy texture; too big BPLRs
become more sensitive to image variations like shape defitomor background clutter. In the
experiments, | fixV = 50 and F' = 5.0 that it consistently produces robust performance. To
add more robustness to parameter choice, one could extPAd®8using multipleV hops and

I scales.

Another factor that makes an impact on BPLR’s quality is thgnsentation choice. By
definition, my method has some dependency on the originaf setiltiple segmentations; how-
ever, as | will show in Sec. 3.3.3, my method consistentlyrmaps upon the initial segments

of multiple different input segmentation methods.
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3.3 Results

In this section, | compare BPLR to other local features armh thpply it to high-level
vision tasks. The main goals of the experiments are 1) to dstrate the raw quality of my
region detector, 2) to explore the impact of initial segraéioh methods on BPLR’s quality, and
3) to show its effectiveness when used for tasks that regeli@ble feature matching. For the
first aspect, | analyze repeatability and localization a@cyacross object categories (Sec. 3.3.1
and 3.3.2). For the second, | compare BPLR’s quality fromdviferent segmentation methods
in terms of both feature quality and extraction time (Se8.3. For the third, | apply BPLR to

foreground discovery and object classification (Sec. 3a8adt3.3.5).

Evaluation metric: | use three different metrics to evaluate feature qualitest those
metrics on images of different objects and scenes. Hergglgbrief summary of the metrics;

formal definitions will be given in Sec. 3.3.1 and 3.3.2.

For evaluating repeatability—how regularly features atedted across differentimages—
| use theBounding Box Hit Rate - False Positive R4BBHR-FPR) metric defined in [77].
Simply put, it evaluates how well foreground features onlaject match other foreground fea-
tures in the same class. Note, | perform category-leveluaw@n, not an instance-level that

tests repeatability by synthetically generated imagesdogupetric transformations.

For evaluating distinctiveness—how well features are hmadat the correct locations of
object parts—I introduce thBounding Box Overlapping Score - RecdiBOS-Recall) and
Bounding Box Detection Ra{®BDR) metrics. Both metrics are designed to measure how
accurately feature matches can predict objects’ posiaonsscale. However, they are comple-
mentary to each other; the former focuses on recall of mdttdegtures, while the latter focuses

on precision.

Datasets: | use four public datasets: the ETHZ Shape Classes [31], Tite-BJD
set collated by [77], the Caltech-28 set collated by [18]] #me Caltech-101. | choose the
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ETHZ Shape Classes dataset in order to validate BPLR’s salyas on shape-based classes.
ETH-TUD set is chosen for comparing to existing semi-logalet features [77, 54] as they
tested their methods on this dataset. The Caltech-28 seei for foreground segmentation
task, while the Caltech-101 dataset is a popular benchnoarthé object classification task.

Figure 3.5 shows example images from each dataset.

Baselines: | compare to several state-of-the-art results in the liteea([77, 54, 1, 18]

and many Caltech-101 numbers), plus three alternativaeidn methods:

e MSER: MSER is the best local interest region in the evaluaip[70]; | use the VLFeat
open source library [94] to generate 400-500 MSERSs per imagere | vary its control

parameter to obtain extremal regions of different staedit

e DENSE PATCH This method samples rectangular patches at a regulargig 6 pixels
in the image over four different patch sizes. This approadheiquently used in current

methods [53, 11, 93].

e SEGMENT: This method uses the same overlapping segments that sempw to my

algorithm. | test two different segmentation methods [3, 28

Note, the former two baselines are widely used in the redimgriiterature, while the last is used
in the state-of-the-art region-based approach of [38],intathese strong and very informative

baselines.

Implementation details: | generate multiple overlapping segmentations for eaclyena
using the algorithms of [3] and [28], with the authors’ pebliavailable codes. | vary param-
eters so as to provide 5-200 segments per segmentationalpdloé segments, and use them
as input to our algorithm throughout. The method in [3] pd&& high-quality initial segments,
while the segmentation by [28] runs much faster; in Sec.33.Bcompare their trade-off in
BPLR extraction between run-time and feature quality. ¥sletherwise mentioned, BPLR in

the below refers to the BPLR derived from the segmentatidB]of
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(c) Caltech-101

Figure 3.5: Example images from the datasets used in ouriexpats. For each dataset, we
randomly display one or two images from each object clasb®fdataset. We see that each
dataset shows wide range of image variations in poses, ss&lapes, and background clutter,
posing substantial challenges for visual tasks. We omiieCh}28 set in this illustration as it is
a subset of Caltech-101.
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| extract BPLRs from elements sampled in grid cells ok pixels with ' = 5.0,
N = 50. To link elements in the minimum spanning tree, | use code82y}.[ This setting
generates on average 6,000-8,000 BPLRs in ax4@D0 image, and takes about 3-4 seconds
for BPLR extraction after the initial segmentation on a maehwith a 3.4GHz CPU. The initial

multiple segmentations take 3-4 minutes for [3] and abowgelddnds for [28].

For all features, | use the HOG descriptor withx44 spatial bins and 8 orientation bins,
for a 128-dimensional descriptor. To “match” features,mgly use nearest neighbor (NN)
search with Euclidean distance on the descriptors. For BEERMENT, and MSER, | dilate
the regions by 40% over the original scale when computingrgasrs, which | found provides
better matching accuracy by including informative visuaég across the object boundaries
while still preserving their original shapes. Also, | remacthe tiny regions (less than 400
pixels) that often introduce matching ambiguity, whichtmardary contributes to improving the
MSER’s performance over my previous publication [47]. loatisst the SIFT descriptor on the
DENSE PATCHbaseline and find it provides similar performance to HOG.sThuse HOG for

all the methods for fairness.

3.3.1 Repeatability for Object Categories

When matching images of treamescene or object, one can test repeatability by syn-
thetically warping the images with parametric transforiorat (e.g., see [70]). However, such
measures are not applicable to imageg®@fheric objectswhere the goal is to ensure similar

object parts are detected across instances.

Thus, | quantify repeatability using thBounding Box Hit Rate - False Positive Rate
(BBHR-FPR) metric defined in [77]. To compute the BBHR-FPRe Gelects features in the
cluttered test image that have a match distance below ahivicesiith foreground features in
the training images and declare a “hit” if at least five sucktdees are inside the test image’s

bounding box. FPR counts those selected test featureslelisbounding box. See Figure 3.6.
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True match

False positive

Test image

Train images

Figure 3.6: Illustration of the BBHR-FPR metric. A boundiogx hit is declared when at least
k true matches are found. | set= 5 following the original author’s choice [77]. BBHR-FPR
records the average hit rate and corresponding false y®osdie for all test images.

In my experiment, | compute the match distance of a test fediy theratio of its best HOG
distance with the foreground training features to the bastwith background features, where
features in the training images are labeled as foregroumh\tiey are inside the bounding box
and their best match is inside another training bounding blitxe second condition reduces
the ambiguity of bounding box annotation, e.g., backgrogrags in a giraffe’s bounding box.
Sweeping through all distance thresholds, one recordsatt@sage hit rate and corresponding
FPR for all testimages to form a BBHR-FPR curve. In shortntiegric captures to what extent

the selected features are repeatedly detected on the &dmegtounds.

Figure 3.7 shows the results for the ETHZ Shape Classesatatasng a 50-50 train-
test split. Our BPLR outperforms all the baselines. In patéir, BPLR’s gains become larger
in shape-varying classes like Giraffe and Swan. The BBHRowssked by the density of our
features, and it also maintains a low false positive ratedpuring the distinctive local shapes
that help reliably discern object foreground from backagwbuln addition, we see that dense

features (BPLR and BNSE PATCH offer better repeatability than sparse features (MSER and
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Figure 3.7: Repeatability on ETHZ objects. Plots compareamgroach (BPLR) to three al-
ternative region detectors: MSER, dense sampling, and essigmQuality is measured by the
bounding box hit rate-false positive rate tradeoff (BBHRHj. Curves that are lower on the
y-axis (fewer false positives) and longer along the x-aligl{er hit rate) are better. Maximum
F-numbers in the legend are defined as the maximum harmorao wieBBHR and 1-FPR
along the curves, meaning the best combination of two s@oeg) the curve; higher F values
are better.

SEGMENT), implying the density is beneficial for repeatability.

Figure 3.8 compares to two state-of-the-art semi-localfesextraction methods [77, 54],
using the ETH+TUD data and setup defined in [7Both previous methods build configura-
tions of neighboring visual words, making them relevant foapproach to group element fea-
tures. Our BPLR outperforms both—remarkably, our extoacis generic, bottom-up whereas
the baselines require class-specific supervision. Alsasgan the non-rigid objects again em-

phasize BPLR'’s strength for shape-based objects.

2] exclude the Bike class, since it contains duplicated irsdgethe test and training set, which inflates our
results significantly.
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Figure 3.8: Repeatability on ETH+TUD objects. Plots comnepay approach (BPLR) to two

state-of-the-art semi-local feature methods [77, 54]. &oand longer curves are better. ([54]

does not report results on the Giraffe class.)

\

Training image Test image

Figure 3.9: lllustration of the BBOS and BBDR metrics fordtization accuracy. Given two
matched regions and their relative scales, | project theitigg exemplar's bounding box into
the test image (dotted rectangle). That match’s BBOS isvkedap ratio between the projected
box and the object’s true bounding box. BBDR counts how maajches have more than 0.5
overlap ratio among all matches.

3.3.2 Localization Accuracy

The BBHR-FPR reveals repeatability, but not layout. Ideale detected regions would
also match with spatial consistency; i.e., if a region iedetd on the fender of the car in one
image, we want the fender on a different car in another imagéso be detected, with a similar

shape.

To quantify this, | introduce thBounding Box Overlapping Score - Red&8BOS-Recall)
metric. For each feature in a test image, | match it to thaingifeatures, and use each match’s
position and scale to project the training example’s bomgbox into the testimage. The BBOS
is the ratio between the intersection and union of this ptegbox and the test image’s ground

truth (see Figure 3.9). The recall is the portion of foregubtest features that match a training
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Figure 3.10: Localization accuracy on ETHZ objects. Platsipare my approach (BPLR) to
three alternative region detectors: MSER, dense sam@imd)segments. Quality is measured
by the bounding box overlap score - recall (BBOS-Recall)icwitaptures the layout of the
feature matches. Curves that are higher in the y-axis (betject overlap) and longer along
the x-axis (higher recall) are better. Maximum F-numbershim legend are defined as the
harmonic mean of BBOS and Recall along the curves.

foreground feature; false matches (to background) aféezlF but not BBOS. A BBOS-Recall
curve sweeps through the distance thresholds, and redwa@s¢rage BBOS and recall over all

test images. In short, the metric captures the featureshdisreness and localization accuracy.

Figure 3.10 shows the result for the ETHZ Shape data. In fotinefive classes, my
approach outperforms all the baselines, showing that ite@ary-preserving property enhances
localization. As in BBHR-FPR, it is particularly strong ftrve shape-varying classes, Giraffe
and Swan. In contrast, other local-type features, MSER amadB PATCH are less distinctive,
and fail to localize matches reliably (e.g., a patch coygarsmall textured area on one giraffe’s
body may match anywhere in another giraffe). However, tiEa&i§E PATCHbaseline obtains
better BBOS at lower recall range, e.g., Applelogo or Mugsdss, likely because its rectangular

shape happens to fit well to a regular shape of those classssifee scales. The shape-based
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Feature Mean BBDR
BPLR (Ours) 0.67

Segment 0.56
Dense 0.48
MSER 0.42

Table 3.1: Bounding Box Detection Rate (BBDR) on ETHZ olgecThe score is averaged
over all images. We see that BPLR improves upon its base segraad shows substantial
gains over other local features in localization accuracy.

SEGMENT baseline provides better BBOS-Recall than MSER anNBeE PATCH implying that
distinct shapes improve that feature’s localization powesspite its ability to capture objects’
shapes, however, it loses some points compared to our BPERsgect this is due to two
factors: first, the instability of segmentations acrossanses, and second, the segments that

cover entire objects are not easily matched if there is apogwt change or deformation.

Though the BBOS-Recall metric captures well the local@atpower of the features,
it is evaluated only for the foreground features in the tesige, missing the errors by false
positives from background features. Therefore, to complent, | introduce thdounding Box
Detection Rat¢BBDR) metric. Given a distance threshold, | can obtaindess in a test image
that are matched to the foreground training features. Ttenfeatures whose BBOS is more
than 0.5 are declared as true detections, giving the rateiefdetections over all the features
that fire at the given threshold (see Figure 3.9). Note thatf¢atures include both true and
false positives. Finally, BBDR is defined as thestrate through the thresholds, indicating
the features’ power as a naive object detector. Table 3.Irsrines the BBDR scores among
the features. Our BPLR works best, showing BPLR achievels loatlization accuracy and

discriminating power from noisy backgrounds.

Figure 3.11 illustrates BPLR’s localization power. Forlesest image on the left, | select
the top five non-overlapping regions based on the foregranatthing distance, and display

them on the training images to the right. In addition, | sheame examples of image-to-image
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Figure 3.11: Example matches showing BPLR'’s localizaticcugacy. Colors in the same row
indicate matched regions. Best viewed in color.

BPLR matches in Figure 3.12. In both cases, we see most nsacheonsistently localized in
spite of scale changes, illumination, and backgroundedu@verall, the results in this section
indicate that our features’ distinctiveness permits bddidocalization, a strength for object

detection.

3.3.3 Impact of the Initial Segmentation

For all the previous experiments, | use the Berkeley segatientalgorithm [3] to ob-
tain the initial multiple segmentations. Although it prdes sound seed segments for BPLR
extraction, its run-time is somewhat costly (3-4 minutesaa@00x 300 image on a 3.4GHz

machine), limiting the scalability. Thus, | next test a mefécient segmentation method by
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Figure 3.12: BPLR matches between two images. Given feaiarthe left image, their best

matches are shown in the right image. We can see most matehesreectly established. In the
very thin region like the giraffe leg, we find some error th&RLR leaks into the background

and has a false match (marked by thicker red line). Despik an exceptional case, most of
the extracted BPLRs capture distinctive shapes of objets garoviding matches with accurate
positions and scales.Best viewed in color.

Felzenswalb and Huttenlocher [28}10 seconds for multiple segmentations), in order to ex-
plore BPLR'’s trade-off between run-time and accuracy ddpegnon the initial segmentation
method. Whereas the former [3] generates segments usiriggheajuality gPb gradient map
via a learned contour detector, the latter [28] relies ompgengolor similarity. The computation
bottleneck in [3] actually comes from computing gPb. Thas,descriptors, | compute HOG
using the gPb map for the BPLR from [3]; for the BPLR from [28fuild HOG from the
intensity gradient image. Note that | use different undagygradient maps because each of
maps is the best practical choice for the corresponding mdsthrespectively—one would not
want to use a naive intensity gradient in [3] instead of hggiality gPb, nor would one want to

sacrifice the efficiency of [28] by additionally computingetéxpensive gPb contour.
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Fig. 3.13, Fig. 3.14, and Table 3.2 compare the quality of B®from the two different
segmentations. As expected, BPLR from the superior irsggimentation [3] (BPLR-UCM)
provides better repeatability and localization accurdtgwever, the efficient version (BPLR-
EFF) carries its own value, improving over its initial segreeas well as outperforming local
features such as ENSE PATCHoOr MSER,; further, it runs an order of magnitude faster than

BPLR-UCM.

So far, | used different gradient maps when computing HOG&wh feature; | used gPb
contour map [3] for BPLR-UCM and Seg-UCM, and for all the othé used a simple intensity
gradient. Now | investigate the impact of the underlyingdigat map by fixing the same map
for all the features. To this end, | compare the results fraemdommon intensity gradient
image for all features. Table 3.3 summarizes the results s&¥ethat the use of the intensity
gradient loses some gains over when using gPb. However, BRCR still outperforms all
the baselines, demonstrating its pure improvement upanittal segments and the strengths
over other local features due to its boundary-preservioggnty. Also, we see again that both
BPLR-UCM and BPLR-EFF improves upon their initial segméntas over all the metrics.
Segmented regions (Seg-UCM and Seg-EFF) show some adeantiagalization due to their
distinctive shapes, while losing points in repeatabiliig do unstable segmentation under image
variations; DENSE PATCH(Dense) shows the opposite trend to segmented regionsotit) sie
can rank the feature quality in Table 3.3 as: BPLR-UCMBPLR-EFF> Seg-UCM=~ Seg-
EFF ~ Dense> MSER. This reveals that Seg-UCM'’s gain over BPLR-EFF in &aBR is
attributed to its use of gPb contour map in HOG descriptormatation rather than the regions’

inherent quality.

3.3.4 Foreground Discovery with BPLR

Now | examine BPLR’s effectiveness for higher-level apgaiions. My goal in the next

experiment is to test whether my approach can impfoxeground discoveryby replacing the
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Figure 3.13: BPLR’s quality in terms of BBHR-FPR from twofeifent initial segmentations
(Seg-UCM [3] and Seg-EFF [28]). Plots compare BBHR-FPR agrtbe features. In addition
to BPLRs and their initial seed segments, | show the resutt iense sampling for comparison.
For this BBHR-FPR metric, lower and longer curves are better
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Figure 3.14: BPLR'’s quality in terms of BBOS-Recall from t@ifferent initial segmentations

(Seg-UCM [3] and Seg-EFF [28]). Plots compare BBOS-Recabirg the features. In addition
to BPLRs and their initial seed segments, | put the resulhfd@nse sampling for comparison.
For BBOS-Recall, higher and longer curves are better.
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Feature Mean BBDR
BPLR-UCM 0.67
BPLR-EFF 0.52
Seg-UCM 0.56
Seg-EFF 0.49
Dense 0.48

Table 3.2: Bounding Box Detection Rate (BBDR) from two diffet seed segmentations on
ETHZ objects. We see that both BPLR-UCM and BPLR-EFF proing@ovements over their
base segments (Seg-UCM and Seg-EFF, respectively). WRildRBJCM and Seg-UCM out-
perform BPLR-EFF and Seg-EFF, BPLR-EFF and Seg-EFF runder of magnitude faster.

Feature BBHR-FPR | BBOS-Recall| Mean BBDR
BPLR-UCM 0.87 0.46 0.62
BPLR-EFF 0.82 0.40 0.52
Seg-UCM 0.62 0.45 0.45

Seg-EFF 0.76 0.41 0.49

Dense 0.83 0.31 0.48

MSER 0.68 0.42 0.42

Table 3.3: Quality of features using the same underlyingligra image on ETHZ objects. For
BBHR-FPR and BBOS-Recall, | show the average of maximumiiber across all the ETHZ
object classes.

frequently used “superpixels” with BPLRs as base featulesthe weakly-supervised fore-
ground discovery problem [18, 1], the system is given a setudtered images that all contain

the same object class, and must estimate which pixels aegrfmund.

| design a simple model for this task using BPLRs. It is muéke lihe GrabCut [81]
baseline defined in [1], in that I initialize a foreground @omodel from the central 25% of
the images and a background color model from the rest, amdsblee a standard graph-cut
binary labeling problem. However, | replace the superpiages used in [1] with our BPLRs,
and add an additional term to the node potential based onRié&Bnatches. The new term
reflects that we prefer to label BPLR regions as foregroutitely match well to other BPLRs in
images of the same class (the assumption being that sassebaakgrounds are uncorrelated).
Specifically, letn; denote the distance from a BPLR’s descriptor to its neagghivor among

the same-class images, andiletdenote the distance to its nearest neighbor in the images fro
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Figure 3.15: Impact of BPLR matching on foreground likebdo Red areas indicate where
foreground likelihood exceeds that of background. Theahibreground color model is incor-
rect (2nd img), but BPLR matches to other bonsai images cityrpredict the object location
(3rd img). Combining the color model and BPLR matches (4th)inwe obtain an accurate
foreground estimate (last image).

Approach Accuracy(%)
BPLR GrabCut (Ours) 85.6
Superpixel GrabCut [81] 81.5
Superpixel ClassCut [1] 83.6
Superpixel Spatial Topic Model [18] 67.0

Table 3.4: Foreground discovery results, compared to akgtate-of-the-art methods. Using
BPLR regions with a GrabCut-based solution, | obtain the &esuracy to date on the Caltech-
28 dataset. (See text for details.)

other classes; ify, —m is positive, | use it to adjust the color-based foregroukelinood (see
Fig. 3.15). | average likelihoods wherever BPLRs overlapltain a single value per pixel.
| test with the setup prescribed in previous work [1, 18], evhuses 28 Caltech classes, 30

images each, and measures accuracy by the percentageetftisoctassified pixels.

Table 3.4 shows the results. BPLR yields the best accurboyyigg its strength at cap-
turing class-specific shapes in a highly repeatable mafnerimprovement over the GrabCut
baseline directly isolates the contribution of BPLR match(5% gain). Our improvements
over the more elaborate models of [18, 1] suggest that evdnansimpler labeling objective,
BPLRs are preferable to the less-repeatable superpixel fleasures. Fig. 3.16 shows some

example segmentations computed with my method.
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Figure 3.16: Example foreground discovery results usingB? Two examples per class.
Ground truth is marked in red. BPLR matching cleanly segarabjects from the background
in most cases. In some cases, however, we see small leakshbjear boundaries (e.g., see
the ferry and butterfly), likely due to background regionsittihg object boundaries that are
confused by strong shape contours.

3.3.5 Object Classification with BPLR

Finally, | apply my features to object recognition on thet€eth-101 dataset. | again
employ a relatively simple classification model on top of B#LRs, to help isolate their impact.
Specifically, | use the Naive Bayes Nearest-Neighbor (NBNIE}sifier [11], which sums the
NN feature match distances from a test image to those pootexh@ the training images of
each class, and picks the class that produces the loweshimgiutistance. | follow standard

procedures, using 15 random images per class to train anespectively.

Table 3.5 compares our results to those using NBNN with radttare feature extractors.
With the same HOG descriptor, my method outperforms thelinesgSegment) by a large mar-
gin. Furthermore, | make a 10% improvement over Dense+3He€lprevious strongest feature
choice for this task; while both extract a similar numberedttires, our shape-preserving fea-

tures have a clear advantage over the uniform patch sampling

Table 3.6 compares my results to existing single-featureldbed results reported in
the literature. BPLR offers noticeable gains over aimdssath methods, even some that use
learned metrics [38]. Overall, these results show that naypsetpreserving dense features lead

to more reliable matches than alternative extraction nothand coupled with a very simple
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Feature | Accuracy(%)
BPLR (Ours) 61.1
Dense+SIFT 55.2

Segment 37.6

Table 3.5: Direct comparison of BPLR to other feature detescbn the Caltech-101. My
method provides the most accurate result.

Feature Accuracy (%)
NBNN+BPLR (Ours) 61.1
NBNN+Dense SIFT [11] 65.0
AsymRegionMatch+Geom [46] 61.3
SVM-KNN [99] 59.1
GB+Learned distance [38] 58.4
Segment+Learned distance [38] 55.1

GB+\Vote [8] 52

BergMatching [9] 48.0

Table 3.6: Comparison to existing results on the Caltechth@t use nearest neighbor-based
classifiers. Ours are among the leading results.

model are quite effective for object classification.

3.4 Discussion

In this chapter, | introduced a dense local detector thatyres repeatable shape-preserving
regions via a novel segmentation-driven sampling stratdgyshown through extensive exper-
iments, the key characteristics that distinguish BPLR frexisting detectors are: 1) it can
improve the ultimate descriptors’ distinctiveness, whiiidl retaining thorough coverage of the
image, 2) it exploits segments’ shape cues without relyimthem directly to generate regions,
thereby retaining robustness to segmentation variajalitgt 3) its generic bottom-up extraction
makes it applicable whether or not prior class knowledgeadable. As such, BPLR can serve

as a useful new addition to researchers’ arsenal of wetl-leszal feature techniques.

In future work, a new descriptor for the detected BPLR can X@osed to improve

3The authors of [11] report 65.0% when using dense SIFT witiNNBas shown in Table 3.6); despite substan-
tial effort, my implementation of this baseline yields 0B8.2% (as shown in Table 3.5). | attribute the discrepancy
to some unknown difference in the feature sampling rate pragpmate neighbor search procedure parameters.
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BPLR’s match quality. To represent the detected BPLR reggibrcurrently use the existing
PHOG descriptor computed from gPb contour map. While ites@nts the outline of the shape
as well as (coarsely) its inner texture, it misses some éduaformation from the BPLR ex-
traction procedure such as topological structure of tharsipg tree, and/or scale distribution of
member elements within each BPLR. Alternative descriptadd fully encode the geometric
layout of the extracted regions (e.g., encoding the grapbltgy within the BPLR), as well as

incorporate invariance to rotation or scale.

Learning BPLR to detect important object parts or objedtsiracteristic geometry (e.g.,
symmetry) would also be interesting. New applicationstboil BPLR would be another
promising venue. Some recent works [55, 21] that apply BRLRobust shape matching for

segmentation or to geometric grouping for local featurecimaty suggest such possibility.

So far | have shown how to extract both repeatable as wellsamdiively-shaped local
regions with the proposed BPLR detector. Building on thersith of the BPLRs, in the follow-
ing chapter | will explore an approach for object-level segmation, in which | employ strong

local shape matches via BPLRs to estimate global objecieshap
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Chapter 4

Object Segmentation with Shape Sharing

Building on the strength of the BPLR detector developed eglevious chapter, | next
introduce an approach for object-level segmentation, wisgublished in [48}. For object
segmentation, shape cues are critical to group diversetopgts that would not be merged
if judging color or texture alone. To exploit shapes for segtation, | proposshape shar-
ing. Shape sharing is based on the intuition that object shage&@tleast partially) shared
across categories. Integrating shape sharing with loagesimatching via BPLRs, | devise
an exemplar-based category-independent shape prior gog iaior generating object-level

segmentations.

4.1 Motivation: Shape Sharing for Segmentation

Bottom-up image segmentation methods group low-level ¢was color, texture, and
contours to estimate the boundaries in an image. Despitéisant strides in recent years, it is
widely acknowledged that a bottom-up process alone camfiably recover object-level seg-
ments. Pitfalls include the fact that a single object ismftemprised of heterogenous textures
and colors, objects with similar appearance can appeacadj one another, and occlusions
disrupt local continuity cues—all of which lead to over- aorder-segmented results. This is a

fatal flaw for downstream recognition processes.

As a result, researchers have explored two main strategiesote beyond low-level

cues, as discussed in Chapter 2. The first strategy expaedsutput to producenultiple

1Code and data are available online: http://vision.csagedu/projects/shapesharing
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(a) Semantically close (b) Semantically disparate

Figure 4.1: Intuition for shape sharing. While one may exgbepe sharing between objects of
semantically close categories (a), we observe that evemgusemantically disparate objects,
partial shape sharing occurs (b). This suggests explogargal shape matches aategory-
independenshape priors.

segmentation hypothesegpically by using hierarchical grouping, varying hyparameters,
or merging adjacent regions (e.g., [40, 67, 19, 24]). Emarghe set of segments increases
the chance of “hitting” a true object; however, large podi€andidate regions are costly to
compute and maintain, and, more importantly, existing m@sHack a model of global shapes.
The second strategy introduces top-dasategory-specific priorsunifying bottom-up evidence
with a preference to match a particular object’s layoutpshar appearance (e.g., [12, 58, 95,
20, 52, 17, 98]). Such methods elegantly integrate segrment@nd recognition, yet they rely
heavily on a known (pre-trained) class model. Categorgifipeshape priors in particular make

strong assumptions about the viewpoint of the object to gmsated.

At the surface, the goals of these two existing strategiesige be in conflict: the former
maintains category-independence, while the latter ea®top-down shape knowledge. My
idea is to reconcile these competing goals by developingegosay-independent shape prior
for segmentation. The main insight is that many objectshekpartial shape agreement—and
this “shape sharing” occurs even across seemingly dispagtegories (see Figure 4.1). Thus,
rather than learn a narrow prior good on only the known clasgerest, we aim to derive shape

priors in acategory-independemanner.

2In this chapter, we usshapeto refer to the outer contours or boundaries of objects.
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Why should category-independent shape priors be feasiblaitively, we know that
closely related objects often have global shape similagitgh as similarly structured animals
or variants of some vehicle (Figure 4.1(a)). Beyond theg®eted cases, however, we also
observe that shape sharing occarsosscategory divisions, such as a bottle and a standing
person (Figure 4.1(b)). In fact, an initial study of 4,20@eab instances in the PASCAL dataset
reveals that 58% of the time, an object finds its best shapehtatsome class outside of
its own! In some sense, sharing across categories shouloenatsurprise, as we know from
the common Gestalt properties underlying mid-level grogpior classical part-based object

models theorized in psychology [10].

The key, of course, is how to effectively exploit this intait. | propose a non-parametric
shape prior that generates multiple segmentation hypeghfes an input image. Given a novel
unsegmented image, we first identify any strong local shagimas it has with shapes in a
database of segmented exemplars. Based on the scale atidpotieach local match, we
project the associated exemplar shapes into the test imBgs. effectively maps local sup-
port into global shape hypotheses without assuming angestespecific knowledge, since the
database neebt contain exemplars of the same object class(es) as our tageinNext, we
aggregate partially overlapping hypotheses, in orderltawaior partial sharing with multiple
exemplars (e.g., a test object that shares its left sideavitér exemplar, and its right side with
a bus exemplar). Each such aggregated hypothesis yieldspa gmior that suggests regions
that would not be considered if judging color/texture/esiglne. Finally, we perform a series
of figure-ground segmentations using graph cuts, enforeawh of the shape priors in turn.

Figure 4.2 summarizes my approach.

Because our approach is exemplar-based, we capture stepegsh a data-driven man-
ner, avoiding the need to hand-craft the geometric prirgithat objects are expected to share.
Furthermore, the example-based design is central to owengpthe viewpoint sensitivity of

existing shape priors; by allowing our exemplars to spaitrarly object classes and arbitrary
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poses, the method can pick and choose partially sharedsfrapéy.

9

-

Shape prior Color model (c) Segmentation

(b) Shape prior and color model per each group hypotheses

Figure 4.2: Overview of the proposed Shape Sharing segmentation. (@npbars (first row) that
partially share shape with the test image (second row) ajeged in, no matter their category. (b)
Multiple exemplars that partially agree are aggregatedipim a shape prior and color model. (c) The
priors are used to compute a series of graph-cut segmentatfmtheses (only one is shown here).
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4.2 Generating Object Segmentation Hypotheses

In this section, | present my approach to obtain multiplerggground object segmen-
tations using category-independent shape priors deriged §hape sharing. The input to the
method is an unsegmented image containing unknown objéefj@ades, and the output is a
set of region hypotheses (which may overlap). The methoddsessful to the extent that the

hypotheses contain regions that highly overlap with tryeatboundaries.

The proposed approach consists of three main steps: 1)astgqrglobal object shape in
a testimage by projecting exemplars via local shape mat{S8ezs 4.2.1), 2) aggregating sets of
partially aligned projected shapes to form a series of Hyggized shape priors (Sec. 4.2.2), and
3) enforcing the priors within graph-cuts to generate digegment hypotheses (Sec. 4.2.3).

4.2.1 Projecting Global Shapes from Local Matches

Suppose we have a database of manually segmented exenfpdavariety of objects.,
For each exemplar object, we extract a set of distinctivalloegion features. We use the
Boundary-Preserving Local Region (BPLR) to detect thelloagions as described in the pre-

vious chapter.

Given a test image, the goal is to identify with which exempiashares shape. We first
extract BPLRs throughout the test image, generating a destsef local regions~1,000 per
image). Then, we match each BPLR in the test image to the daematabase by finding
its k = 5 nearest neighbor descriptors among all of the exemplar&RBP For each such
local match, we project the associated exemplgttbal outer boundary shape into the test
image based on the similarity transform computed betweemvib matched features (see Fig-
ure 4.2(a)). Due to the density of the BPLR detector, we vgilablish thousands of such initial

global shape projections per test image.

3To be concrete, in our implementation we use the PASCAL Setatien Taster data as the exemplar database,
which contains thousands of object shape annotations ffbdifferent categories.
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Initial proje on Refined shape

Figure 4.3:Shape refinement by jigsaw puzzling the superpixels unideriyne exemplar’s projection.
The projected shape (marked in white) is adapted to fit thimetip contours suggested by underlying
superpixels (marked in blue).

The projected shapes will agree at least locally with theitesge; however, due to shape
deformations and uncertainty in the local match, they nexdbe entirely aligned with the test
image’s contours. Therefore, we next want to snap the pegjeshape to align with bottom-
up evidence of boundaries. To this end, we refine the initi@jggtion boundary to span the
“‘jigsaw” of underlying superpixels that overlap the glolshlape by more than half their total
area. In this way, the exemplar shape is adapted to fit thenmaseontours. Figure 4.3 shows
an example jigsaw puzzling, where we see that initial confoam an exemplar image (i.e.,

bird image) fits the actual object boundary in the test image person image).

Finally, to reduce the total number of projections, we etiate those whose shape changes
substantially after the refinement process. Specificalyrank the projections by the pixel-
level overlap between the original exemplar’s projection ghe jigsaw refined version, and
keep the top-ranked 600 projections. Essentially this weed unreliable projections that lack
bottom-up support in the test image (see Figure 4.4 for amplg). Thus, we go from about

5,000 candidate global projections to about 600.

The novel element important to my approach is the idea of rg¢ing global boundary
hypotheses frontocally shared shapes. The partial shape match via BPLR regionstisipa
larly well-suited for transferring local supports to glbbhape hypotheses. Further, these shape

predictions are made in a category-independent mannaririreg) no prior knowledge of the
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Filtered out
P N

(a) Exemplar shape (b) Projected shape (c) Refined shape

Figure 4.4:Visualization of global shape estimation via local matchEzemplar shapes (a) are pro-
jected into a test image (b) using the scales and positio®PoR matches, and then refined to fit the
image contours (c). Here we see one such match and projecteach row. Top row: the ostrich shares
shape with the man’s upper body. Bottom row: an unreliabdgegtion that is discarded, since the dog’s
shape changes too dramatically during refinement (compéite wutlines in (b) and (c); pixel-level
overlap between the projection (b) and its refinement (cery low)

object present in the test image. In fact, it is irrelevandwo method whether or not the exem-
plar shapes have labels; their value is solely in providingm@-parametric prior on what kinds

of shapes objects take on.

4.2.2 Aggregating Partially Shared Shapes

At this point, we could simply treat each of the global shapmgztions computed above
as an individual shape prior; in fact, we find that alone theyjle a reasonable prior (see
Table 4.1 in results). However, doing so would not accounttie fact that objects in the test
image are likely to share shapes opbrtially with various exemplars—at least when we cannot
assume a very large database of segmented exemplars. dreered next aim to group together
those global shape projections that partially agree on gctbextent in the test image. The
idea is for each projection to contribute a portion of itstoom to an aggregate shape prior (e.g.,
see the matched exemplars in Figure 4.2(a), each of whittalyashares shape with the cat in

the test image).
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To determine which projections to aggregate, we use a sibytleffective heuristic: any
projections whose pixel overlap exceeds 50% are groupeth &tach group is used to construct
one shape prior consisting of two parts: one that prefetsdng those pixels in the test shape
that are shared by the contributing exemplar projectiond,ane that extracts a color model
using their predicted shape. See Figure 4.2(b). Both paftsee the shape prior in a graph-cut

figure-ground segmentation, as we explain next.

4.2.3 Graph-Cut Segmentation with the Shape Prior

The final step is to enforce the non-parametric priors whenpeding the output region
hypotheses. We define an energy function amenable to graglogtimization [15] that reflects
the quality of a given figure-ground segmentation accordings agreement with the shape
prior. We optimize this function independently for eachwgydprior) defined above, yielding

one set of region hypotheses per group.

Treating each pixep; in the image as a node, graph-cut optimizes their labgels
{0 (bg), 1 (fg)} by minimizing an energy function of the form:
E(y) =Y Dily)+ Y Vij(ui,uy), (4.1)
pi€P i,jEN
whereP denotes all pixels\ denotes pairs of adjacent pixel$,; is a smoothness function, and
D; is a data term. Note that this follows the basic graph-cutsggation formulation [81, 15];

what is new is how we encode a non-parametric shape priothetdata term.

Data term Typically, the data ternD; is a function of the likelihood of labeling pixel as
foreground or background. In our formulation, it considtsa parts: a shape-prior likelihood

S; and a color likelihood’;:

Di(y:) = Si(yi) + Ci(ys)- (4.2)

The shape-prior terrfi; defines the likely spatial extent of the foreground and beamligd.

Given one group from Sec. 4.2.2, we first compute the intéiseZ and uniori/ of its com-
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ponent shape projection regions. Then we define the cosbelite a pixel as foreground to

be:
05—~ ifp el
Si(yi=1)=<05+~ ifp ¢l (4.3)
0.5 if p; ¢ Zandp; € U,

wherep; € 7 andp; € U denote a pixel inside the intersection and union of the ptimas,

respectively, andy is a positive constant value used to adjust the impact of tiages prior

(and will be defined below). The cost of assigning the baakgddabel is simply the inverse:
Si(y; = 0) = 1 — S;(y; = 1). Intuitively, this likelihood prefers a pixel inside thetérsection

region to be labeled as foreground, since all of the prajastin the group agree that the pixel
belongs in the shape. In contrast, it prefers a backgroumel far pixels outside the union
region, since none of the projections predict the pixel tomhg to the shape (i.e., no sharing).
Pixels in the union but outside of the intersection are é@ats neutral, with no bias towards
either foreground or background, as reflected by the thieliln Eqn. 6.3. The white and gray
pixels in Figure 4.2(b) depict these foreground biased atah’t care” regions of the shape

prior, respectively.

The color likelihood ternC; also relies on the shape projections, but in a different way.
WhereasS; biases pixel memberships based on the span of the sharesbghiapses the shared
shape to estimate a color distribution for the hypothesugect. Let/; andH;, denote normal-
ized color histograms sampled from the shared shape regidind foreground and background,
respectively. We define the color likelihood cost as:

1
Ci(yi) N 1+ eXp(ﬁwz’(?/i)y (*4)

whereW;(p;) is a function of the color affinity between pixg! and the histograms, antlis

a normalizing constant. Lef(p;) denote the histogram bin index of the RGB color value at
pixel p;. The color affinity rewards assigning the background labgdixels more likely to be

generated by the background color distribution:

Wilyi = 0) = Hy(c(pi)) — H(c(pi)), (4.5)
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(a) Region-based seeds (b) Contour-based seeds

Figure 4.5:The two methods for constructin ; and H, histograms. Yellow: fg seeds, Red: bg seeds.
Best viewed in color.

and vice versalV;(y; = 1) = —W;(y; = 0). The sigmoid in Eqn. 6.4 serves to scale the color

likelihoods between 0 and 1, making them compatible withstinegpe-prior values;.

We devise two complementary ways to sample pixels from tlaeeshshape in order to
form H; and H,: one that usesegion-based seed pixeland one that usentour-based seed
pixels For region-based seed pixel8; is computed using all pixels inside the intersection
7 of the shape projections, arfdl, is computed using pixels falling within a thick rectangular
border surrounding the intersection region. See Figurgt.3-or contour-based seed pixels,
we instead fornt ; using pixels just along the boundarybnd along its primary medial axes
within the shape, and we computg using pixels along the boundary of a dilated version of

the same intersection region. See Figure 4.5(b).

The two seeding methods work in complementary ways. Relgased seeding provides
dense coverage of pixels, and thus reflects the full coldrildigion of the shape prior’s re-
gion. However, when the shape prior is flawed—for examplé|egks into the background, as
shown in Fig. 4.5(a)—then its estimate can be distorted. h@mther hand, contour-based seed-
ing respects the object shapes, and is motivated by how teseftdo manually give seeds for
interactive segmentation [81]. However, being sparsenay lack sufficient statistics to esti-
mate the color distribution. We use each of these seediatggies separately when generating

the pool of segmentations (see below).
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Smoothness term Our smoothness functidr ; follows the conventional form, e.g., [81]: the
cost of assigning different labels to neighboring pixelssrsely proportional to the strength

of the contour at that position.

exp(—omax(g(y:),9(y;)) i yi #yj,
whereo is a normalizing constant, andreturns contour strength by gPb contour detector [4]

0 if y; = y;
Vii(yi,y;) = { ’ (4.6)

at a pixel.

Solving multiple graph-cut problems Having defined the complete energy functiiy),

we can now compute the optimal binary labeling using graptis-c For each group of pro-
jections resulting from Sec. 4.2.2, we solweiltiple instances of the problem by varying the
weighting constants and color histogram seeding stragedibis yields multiple segment hy-

potheses for a given prior

Specifically, we vary (1) the value of in Eqn. 6.3, which adjusts the influence of the
shape prior relative to the color likelihood, (2) whethegiom-based or contour-based seeding
is used, which adjusts the definition 6f in Eqn. 6.4, and (3) the value of a foreground bias
constant\ in the data term. For the latter, we modify the data térpas follows:

Di(y) + X ify, =1

Di(y;)) — X ify; =0. (4.7)

Di(yia)‘) = {

Positive values ok decrease the foreground bias, while negative values iseitba& foreground

bias.

Thus, the total number of hypotheses for the given grougisalues)x 2 x (#\ values);
we use2 and8 values ofy and\ in our experiments, respectively. Note that increasingth
of segments naturally will increase recall of true objecsds, but at the penalty of greater
complexity. Algorithm 2 provides the pseudo-codes thatdbes the whole steps for shape

sharing segmentation.
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Algorithm 2: Shape sharing segmentation

Data: Superpixels by multiple segmentations in a test imége BPLRs extracted
from a test imagd3;; BPLRs extracted from exemplar images in database
Bay; Ground-truth object segment annotations in exemplar @adg;

Result A set of object segment hypotheses in a test infhigg

/= Shape projection */
input : Sgp, By, Bap, andSg

output: A set of initial object shape projectioss,;; in a testimage

foreach bplr b; in B¢ do

[+ Mat chi ng BPLRs * [
Find k nearest BPLR matches;(j = 1,..., k) in Bgy;
[+ Shape projection based on BPLR mat ches */

for j=1tokdo

Retrieve the ground-truth object sha@é; to whichm,; belongs;
Compute a similarity transform betweénandm;

Apply the similarity transform t@-73;

Project the transformed shape into the test image,;

Add the projected shape into the set of initial shape prmesS;,;:;
end

end

[+ Shape refinenment using jigsaw */
input : Sinit
output: A set of refined shape projectioBg.gne
foreach a projected shaperoj; in Sjn;e do
Compute overlap betweemoj; and superpixels i8p;
Pick superpixels that overlapoj; more than 50% of their area;
Merge the picked superpixels to form a refined shape;
Add the refined shape into the set of refined shape projeciQRse.;
end

/* Selecting reliable projections */
iNput : S;efine
output: A prunedS;cfine
foreach a refined shape; in S,c¢fne dO

Compute overlap with its original initial projection By,

if the overlap is less than a threshdlien

| Removes; from Siefine;

end

end
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Algorithm 2: Shape sharing segmentation: continued

[+ Grouping the projections */
input : A prunedS,cfine
output: A set of groups of shape projectio@,,o;
Compute average contour strength along the boundary oegtrapections irS,cne;
Sort the shape projections in a decreasing order of bourtdatpur strength;
Remove projections of weak boundaries and retaingmrojections inS;efine;
Compute overlap between all pairs of projectionSjpgne;
foreach a shapes; in the sortedS,.fne dO
if $; & Srefine then
| continue;
end
Pick a set of projections if,.ane that overlaps; more than a threshold,;
Form a group’; with the selected projections ang
Remove the projections i¥; from S;cfine;
Add G; into Gproj;
end

/= Conput e segnmentations for each group */
input : Gproj aNdS efine
output: Multiple object segment hypothes8s,;
foreach a group of shape projections; in Gp..; do
[+ See 4.2.3 for details * [
Build shape and color model fa¥;;
Solve multi-parametric graph-cuts for the model to obtdijeot segmentations;
Add the obtained segmentations into 8g;;
end

4.3 Results

In this section, | present experimental results of my ShdpiBg object segmentation
method. The main goals of the experiments are 1) to demdestrat shape sharing improves
the quality of the segmentation (Sec. 4.3.1), 2) to analymeuwhat conditions shapes are
useful for segmentation (Sec. 4.3.2), and 3) to validatentipact of our category-independent

shape priors compared to traditional category-dependest (5ec. 4.3.3).

Datasets and implementation details To build the exemplar database, we again use the PAS-

CAL 2010 Segmentation training data, which has pixel-lemshotations for 2,075 objects
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(a) BSD300 (b) PASCAL 2010

Figure 4.6: Example images from the datasets used in theimgmds. For each dataset, we
randomly display one image from each object class of thesdatdhe ground truth consists of
the true object boundary of one or more primary object in thage.

from 20 classes. We extract 1,000-2,000 BPLRs from each gteenand represent them with
pHOG+gPb descriptors, which capture both boundary shageaarse inner texture. To ef-
ficiently identify nearest neighbor matches, we use FLANN|[#or superpixels, we use the

output of gPb-owt-ucm [3].

We test on two datasets: the PASCAL 2010 validation set aadB#rkeley BSD300
dataset. For BSD, we use the ground truth region annotagjives by [24]. Figure 4.6 shows
some example images from each dataset. Note that for botbetisswe use the same PASCAL

exemplars. This allows us to demonstrate cross-datasethgha

Evaluation metrics To evaluate segmentation quality, we use tb&ering metri¢ follow-

ing [3, 19], which is the average best overlapping score éemtnground-truth and generated
segments, weighted by object size. Note that due to the udmest overlap” in the covering
metric, a method that achieves higher covering for fewemseds has better focused its results
on true object regions. We also repetall as a function of overlggollowing [24], to quantify

the percentage of objects recalled at a given covering score
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Approach Covering (%)| Num segments
Exemplar-based merge (Ourg)  77.0 607
Neighbor merge [67] 72.2 5005
Bottom-up segmentation [3] 62.8 1242

Table 4.1:0ur shape-based projection and merging approach outpesfan existing merging strategy
while requiring an order of magnitude fewer segments (sg¢cow). It also substantially improves the
state-of-the-art bottom-up segmentation (third row).

4.3.1 Segmentation Quality

First | investigate how useful shape sharing is to improgerssntation accuracy, by com-

paring our results to those of several state-of-the-ahrtieuies [3, 67, 19, 24].

Shape prediction via local matches First | evaluate the quality of our exemplar-based shape
predictions via local shape matching (i.e., the first stéfgmiomethod defined in Sec. 4.2.1). |
compare against two existing methods on the PASCAL datarmiBrging method that combines
pairs and triples of neighboring superpixels, without ¢desng layout or shape [67], and 2)
the state-of-the-art gPb-owt-ucm segmentation algor[8jniNote that the number of segments
output by each method will vary, and in general, a high coxgescore accompanied by a low

number of segments is ideal.

Table 4.1 shows the results. Our method clearly outperfoneprevious methods, while
also maintaining a much smaller number of segments. Thdtsedemonstrate that merging
bottom-up segments increases the chance of hitting truecofgompare ours and [67] to
the bottom-up method [3]). Further, our shape predictioma@ces the segmentation quality
with a much smaller number of hypotheses, compared to a-bvute merging of nearby seg-

ments [67]; this confirms the ability of shape sharing to miethe objects’ spatial extent.

Shape Sharing with graph-cuts Next we compare our full approach to existing segmentation

methods, including the state-of-the-art category-indepat object segmentation generators of
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Approach Covering (%)| Num segments
Shape Sharing (Ours) 84.3 1448
CPMC [19] 81.6 1759
Object proposals [24 81.7 1540
gPb-owt-ucm [3] 62.8 1242

Table 4.2:Accuracy on the PASCAL 2010 dataset. Ours outperforms thgeting methods that lack
global shape cues; this demonstrates the impact of the gedpmategory-independent shape prior.

Approach Covering (%)| Num segments
Shape Sharing (Ours) 75.6 1449
CPMC [19] 74.1 1677
Object proposals [24 72.3 1275
gPb-owt-ucm [3] 61.6 1483

Table 4.3:Accuracy on the BSD300 dataset. The strength in the BSDe&lathsws our exemplar-based
approach is generalized among various objects of unretatisgjories, since we use exemplars from the
PASCAL dataset that is disjoint from the BSD dataset.

Constrained Parametric Min-Cuts (CPMC) [19] and Objecppsals [24]. We use the code
kindly provided by the authors.To focus on raw segmentation quality, we do not consider
post-processing with a learned region-ranking functianifg19], [24]), which could equally

benefit all methods, in terms of the number of segments.

Tables 4.2 and 4.3 show the results on PASCAL and BSD, rasphict Our approach
outperforms the existing methods overall; it is also moreugate for 18 of the 20 PASCAL
classes for the next best method (see Table 4.4). Sincael grevious methods rely on only
color and/or local appearance and layout cues, this realittates the impact of global shape

priors for segmentation.

The strength of our method on BSD—for which we use PASCAL iesaas exemplars—
is strong evidence that shape sharing is generalized amemngug objects of unrelated cate-

gories. Even the PASCAL test results illustrate categodependence, since the exemplars

“4In order to isolate the impact of a color-based graph-cetiliood, for [19], we select an option in the author’s
code to forgo graph-cut outputs with uniform foregroundsbiahich do not rely on image cues.
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Class | Shape Sharing CPMC [19] | Object proposals [24
bus 87.6 78.4 83.7
cow 90.4 82.0 86.4
car 84.3 77.5 81.5
tv 88.6 82.2 83.4
train 88.3 82.4 88.9
boat 84.2 78.4 79.8
bottle 87.2 81.8 77.9
table 85.0 79.9 83.4
person 83.2 78.1 79.4
chair 83.5 79.1 79.4
motorbike 80.0 75.9 80.7
bird 91.7 87.7 87.5
sheep 90.1 86.7 83.9
dog 88.0 84.5 83.4
horse 83.7 81.0 81.7
sofa 86.7 84.6 84.5
cat 89.3 87.5 87.7
plant 82.4 81.2 81.2
plane 88.3 88.0 87.0
bicycle 68.6 69.3 69.1
mean 85.6 81.3 82.5

Table 4.4:Average covering score per class for the PASCAL 2010 datasetcompare ours to two
state-of-the-art category-independent region generatiethods. Our method outperforms the others for
17 of the 20 classes (For legibility, we sort the classeseérotider of our gains over the CPMC method).
We can see that classes with regular shapes (e.g., busy,cagint) obtain the largest gains over the
existing methods, as do classes that share shapes (etle,dmt person, different animal classes). In
contrast, classes with very unusual shapes (e.g., potet) plr with thin-structured details (e.g., bicycle)
yield the smallest gains.

matched to test images can and often do come from differéegjoaes. Figure 4.7 shows the
sharing strength between the PASCAL object classes. Wehaésliape sharing often occurs
among semantically close categories (e.g., among animakshicles). However, sharing also
happens between semantically disparate classes (e.tie @t person). In Sec. 4.3.3 below

we further explicitly isolate the category-independerdraplar matches.
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Exemplar Test ime
Vehicles

Exemplars Test images

Figure 4.7:Shape sharing matrix for the 20 classes in PASCAL. We comihtestrength of sharing

by counting how many times shape exemplars from one classsarkto generate the best segmentation

hypotheses for another class. Brighter color denotes ggrosharing between categories. As one can

expect, shape sharing often occurs among semantically classes (e.g., animals or vehicles). However,

sharing also happens between semantically disparateslassh as bottle and person. On the other hand,
some classes (e.g., person and airplane) have very clasgisghapes, and so exhibit sharing to a lesser
extent.

4.3.2 Impact of Shapes

The total gain in covering score in the previous section vimsie2-3 points over the next
best method, which may seem modest at a glance. Howevee irscthe average over all
test cases and all classes, it does not fully reveal the ingfeghape sharing. Therefore, we
now examine in detail under what conditions our shape preoefits segmentation. We expect
shape to serve a complementary role to color, and to be megildsr objects that consist of
multiple parts of diverse colors, and for objects that analarly colored to nearby objects and

the background.

To validate this hypothesis, we introduce a measureotdr easinesssuch that we can
rank all testimages by their expected amenability to cblsed segmentation. We define color
easiness by building foreground and background color piatas using pixels from inside and

outside the ground truth object boundaries, respectialg, then count how many pixels in
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Figure 4.8: Impact of Shape Sharing as a function of “color easiness”.eftolor alone is most
confusing (lower easiness), Shape Sharing shows the gre@ii@s in segmentation accuracy.

the object’s bounding box would be correctly labeled if gsonly their distance to the two

histograms. The more correctly labeled pixels, the higheicblor easiness for that test image.

Figure 4.8 plots Shape Sharing’s accuracy gain over thdibasgas a function of color
easiness (x-axis) and object size (multiple curves pej.plée see clearly that the most impres-
sive gains—up to about 15 points in raw covering score—idadmeur when color easiness is
lowest, for both datasets. The trend with color easinessps@ally pronounced in the com-
parison to [19] (see (a) and (b)), which makes sense bectaiseds are strictly color-based.
In contrast, compared to [24] the trend is a bit flatter, siheg method uses not only color but

also alocal layout cue (see (c) and (d)). Still, our gainssatestantial over both methods.

Figure 4.8 also reveals that Shape Sharing most benefitegmentation of larger ob-
jects. We attribute this to a couple factors. First, shapeEoime more evident in the image
as object size increases, since there is sufficient resalaiong the boundary. Second, since
larger objects tend to have various parts with diverse sqlag., a close-up of a person wearing
differently colored pants and shirt), shape becomes mdreatito combine the disparate parts.
On the other hand, Shape Sharing has little impact (and cantewt accuracy) for the smallest
objects that occupy less than 1% of the image. This is bedaoakmatches are missed on the

tiny objects, or the scale change computed from the locatimatcomes unreliable.

Figure 4.9 plots Shape Sharing’s gain in recall as a funafaverlap score, where recall

records what percentage of objects have a best overlap seerdhe given threshold. Ours
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Figure 4.9: Shape Sharing’s gain in recall as a function of overlap. Quitperforms the existing
methods in both datasets. In particular, it provides thgelsirgains in the overlap scores of 0.6-0.9, in
which a range of qualitative differences among segmemtatiethods is evidently perceived. Also, as in
the color easiness test, the impact of the shapes beconasrgae the object size grows.

8278
illt..
s

Figure 4.10:Example segmentations (yellow) alongside the ground {hitre contours), for different
degrees of overlap scores. Red box denotes the 0.6-0.@pvarige, where usually perceptual quality
differences are most evident. For overlaps beyond 0.9, reagynentations are so easy as to provide
“equally good” results among methods. On the other handpfoverlaps less than 0.5, segmentations
are all poor, similarly making it hard to perceive the diffiece. However, in the range of about 0.6 to
0.9, segmentation quality is reasonable while images gostzbstantial challenges for segmentation,
making the qualitative comparison among methods much mesningful.

outperforms the baselines. In particular, our method plewithe greatest gains in what is ar-
guably a critical operating range for segmentation: opsrflaom about 0.6-0.9. Why is this a
critical range? For overlaps beyond 0.9, many segmenttom SO easy as to make the per-
ceived “winner” a toss-up. On the other hand, for low oveslkgss than 0.5, segmentations are
all poor, similarly making it hard to perceive the differené¢iowever, in the range of about 0.6
to 0.9, segmentation quality is reasonable while imagetagosubstantial challenges for seg-
mentation, making the qualitative differences among nathouch more evident. Figure 4.10

illustrates example segmentations over different ovestages.
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Figure 4.11 shows example results from our method and thedoespeting method,
CPMC [19]. As shown in the examples, our shape priors can enebject parts of diverse
appearance or separate objects of similar appearance thédl wot be possible if judging

color/texture/contour alone.

CPMC

(a) Objects with diverse colors (b) Objects similarly colored as sur- (c) Failure cases
roundings

Figure 4.11:(a-c): results from Shape Sharing (left) and CPMC [19] (igiihese contrasts illustrate
when the shape prior is most beneficial, since CPMC uses onlgr (a) Shapes pull together diversely-
colored parts of an object. (b) Shapes help delineate arwtdipgen surroundings of similar colors: e.g.,
nearby objects from the same class (rows 1, 2, 3), or corgusatkgrounds (rows 4, 5, 6). (c) Shapes
do not help segment tiny objects (rows 1, 2, 3), nor objeakifg shape, e.g., the truncated sofa (4th
row), or thin structured objects like the bicycle and ainggrows 5, 6).
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Approach Covering (%)
Category-specific 84.7
Category-independent (Defaulf) 84.3
Strictly category-independent 83.9
CPMC [19] 81.6
Object proposals [24] 81.7

Table 4.5:Comparison of category-independent and category-speeifiants of our approach on PAS-
CAL data. Our category-independent shape prior perforngedisas a parallel category-dependent one.

4.3.3 Category-Independent vs. Category-Specific Priors

Finally, I directly study the extent to which our method'ssess is based on its category-
independence. We compare Shape Sharing to two baselinesfirgtis acategory-specific
approach that operates just as our metlexdeptthat only exemplars of the same class as the
test instance may be used (which, of course, uses informtat would not be available in most
realistic scenarios). The second istactly category-independerariant, where we require that
the exemplar matched to a test imagastbe from another class; this too is not enforceable
in realistic settings, but it verifies our gains arat due to having segmented exemplars of the

same object class available.

Table 4.5 shows the results, with the previous baseline eusniepeated for reference
in the bottom two rows. As expected, the category-specifi@aaperforms best, and strictly-
independent performs worst. However, the accuracy of edktis quite close. In addition, even
our strictly independent variant outperforms the previbaselines that lack shape priors. This
result demonstrates that shapes are truly shared amomrgediffcategories, and one can use
the proposed shape priors in a category-independent mamaed-crafted exemplars for the

object(s) in the test image are not needed in order to ses ffamm Shape Sharing.
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4.4 Discussion

In this chapter, | introduced a category-independent spape for image segmentation.
The main insight of my approach is that shapes are often dlim®veen objects of different
categories. To exploit this “shape sharing” phenomenomeyebbp a non-parametric prior that
transfers object shapes from an exemplar database to entgt based on local shape matching
via BPLRs. Though not discussed in this chapter, | have @sently explored the power of
shape priors initiated by local BPLR matches for video abjegmentation [55]. Those results

show the impact of the proposed shape priors for object setaten in video.

Through extensive evaluations, | showed 1) shape sharipgpwves the quality of bottom-
up segmentation, while requiring no prior knowledge of thgeot, and 2) the proposed category-
independent prior performs as well as a parallel categpegific one, demonstrating that shapes
are truly shared across categories. As such, unlike prevmardown segmentation methods,

my approach can enhance the segmentation of previouslgnmdgects.

In this work, | used shape priors to generate multiple segatiems that may overlap
each other. Those multiple object hypotheses provide atselsubset of reliable regions that
higher-level tasks such as object recognition should facusBy constraining the attention to
the reliable candidates of object regions, this not onlyesaomputation time for higher-level
tasks but also enhances the robustness to noise. Howevgplenoverlapping segments cannot
provide a coherent representation of the image, causingqhoaiht hypotheses that may conflict

with each other.

In this sense, it would be interesting future direction talfansingle segmentation that
provides non-conflicting regions of objects in the image.fifid such a single segmentation,
one could still leverage shape sharing to exploit categaigpendent shape priors. Unlike the
multiple segmentation method that uses shape priors imdigpély, however, one could explore
a new method that considers all the priors at once to reshveanflicts among overlapping

ones. Priors that are more consistent with the bottom-ugéevidence as well as less con-
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flicting with other priors will be preferable to label pixdts segmentation.

Not only is it important to build a solid technique to find thawgion, it is also crucial
to evaluate the solution with a reasonable metric. Depgndmwhich evaluation metric is
used, the quality of the methods can be rated very diffeyerfitbr segmentation, pixelwise
metrics—such as pixel overlap with ground truth segmemja@l distances to the ground truth
contours—are commonly used to evaluate segmentationtygjualinough they provide an ob-
jective measure for evaluation, it is not clear if those mstare entirely consistent with human
perception of quality. For example, it is acknowledged that pixel overlap metric tends to
assign higher scores to larger segments than smaller onagfeen object, preferring “blown-
up” segments. In addition, the current metrics do not refleeimportance of the objects in an
image; yet errors in the salient objects will be more crittcahuman observers. In this light,
another interesting future direction would investigate/ito evaluate the segmentation quality

such that it is more consistent with human perception, ealyefocusing on segments’ shapes

and importance.

Thus far, | have addressed region detection—Ilocal shagetimt (Chapter 3) and ob-
ject segmentation (this chapter). In the next chapter, lllwihg together the above ideas for
local- and object-level region detection in a novel apphaacefficient image matching, for the

ultimate goal of region-based object recognition.

70



Chapter 5

Segmentation-Driven Matching for Object Recognition

Having established local- and object-level region detectn the previous chapters, |
bring together those detected regions into a novel imagehimat strategy for object recog-
nition. To this end, in this chapter | introduce a segmeatadriven local feature matching
approach that uses segmented regions to guide local featatehing between images for
exemplar-based object category recognition, which isiphbtl in [46]' The spatial layout
among local features is represented by a 1D string that albowefficient dynamic program-

ming solution of matching features.

5.1 Motivation: Segmentation-Driven Local Feature Matching

Finding corresponding local features between images isig-standing research prob-
lem in computer vision, and it is especially important toagd object recognition and image
retrieval methods that use local feature representatibngs far | have considered the match-
ing of individual local features using a simple nearest hieay search (e.qg., feature repeatability

and localization tests in Sec. 3.3.1 and 3.3.2, and naive®8alject classification in Sec. 3.3.5).

However, the locality of such appearance-based featurehmstyields some noisy cor-
respondences when used alone, and so additional spatmltlaynong features is typically
considered to select the geometrically consistent magchoints among the initial pool of
(confusing) appearance-based matches. Parameterizetety@oconstraints (e.g., an affine

transformation between local regions) can be used for nedi@bie object instance matching

1Code and data are available online: http://vision.csagesdu/projects/asymmetricmatch
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and image retrieval [64, 32, 44, 76]. Fgenericcategories, however, geometric consistency is
less exact and the correct transformations are non-glotzdding the parametric constraints less
amenable to category-level object matching (e.g., matchitages of articulated giraffes, or
different models of boats). Instead, non-parametric agghies that identify a group of matches
having minimal geometric distortion may be preferable idesrto establish correspondences
at the category-level [57, 9]. In addition to measuring allamage similarity, the resulting

correspondences are useful to localize the object witlarnwio views.

However, there are two key limitations to current techngjuEirst, pre-computing the
distortion for all tentative matching pairs is computattiyp expensive, making very densely
sampled feature points off-limits in practice. As a resoigst methods restrict to a sparsely
sampled set of features (such as local maxima in scale-spdge points, etc.). While gener-
ally effective for matching object instances, sparselyganhinterest points provide a weaker
representation for category-level matching; much evidesugggests that a dense coverage of
features is preferable. For example, observations in [i@ysdense features outperform sparse
ones for object classification tasks. Similarly, in Chaf8drshowed the density of BPLRs

contributes to better repeatability of features.

A second limitation is that non-parametric methods typycalentify a single group of
corresponding points that undergo a common (low-distoytteansformation. Yet in typical
real images, each part of a non-rigid object—or each instahmultiple objects in the image—
can undergo a different transformation, suggesting thashesild identify multiple groups of

corresponding points, each with a different geometric gométion.

| propose a dense feature matching algorithm that explbgsgrouping provided by
bottom-up segmentation to compare generic objects withgasametric geometric constraints.
Our method takes two images as input and returns a scoredordimilarity. One input is
left unsegmented, while the other is automatically segeterithe matching process begins by

finding correspondences between points within each reditimeosegmented image and some
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subset of those within the unsegmented image. In each oéthen-to-image match groups, the
spatial layout among local features within each region pgasented by a 1D string that links
nearby features, which allows us to formulate an objectweable with dynamic programming.

The union of these correspondence groups are then furtheraged for their mutual geomet-
ric consistency, at which point we favor low distortion nfaswithin each segmented region,

while allowing larger deformationsetweerthe segmented regions of the original image.

The key technical aspects that address the current liomstre 1) 1D string represen-
tation and 2) per-region matching scheme. Our 1D representanables an efficient dynamic
programming solution, allowing denser correspondencescoi®l, our per-region matching
scheme allows different regions to move in different waysisTprovides greater flexibility

when matching deformable objects.

| call the proposed image matching “asymmetric” becausg omé of the input images is
segmented into regions, and its groups of points can mattinsény (consistent) portion of the
other image. We find this deliberate imbalance to be an adganvhen matching: we get the
grouping power of low-level segmentation to assemble @atdiregions of points, but without
suffering in the inevitable event where the bottom-up cueslypce incompatible regions for

two images of the same object (see Figure 5.1).

5.2 Asymmetric Region-to-Image Matching

In this section, | present my approach for matching locatuesss with segmented re-
gions. Our method takes two images as input and returns a gmotheir similarity, as well as

correspondences explicitly indicating their matchinguees.

5.2.1 Region-to-Image Point Matching

We first decompose one of the two input images into regionmgusottom-up segmenta-

tion. Each region is mapped to a set of local SIFT descrigétsdensely sampled at multiple
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(b) Region-to-region matching

Figure 5.1:(a) The proposed asymmetric region-to-image matching methiod(b) the key contrast
with region-to-region matching. In @gion-to-imagematch, we use regions from the segmentation of
one image (top row, left) to group points for which to seekehes in the second unsegmented image
(bottom row, left). In our asymmetric strategy, we explbi¢ fact that a group of feature points (small
squares, e.g., denoting dense SIFT) within the same segftentbelong to the same object subpart,
giving us an automatic way to generate groups which whenhedtto the second image, should have
low total geometric distortion. For example, here, the ebknis, body, and grass are well-matched
(center, larger images) even though the parts separatébrgm different deformations to fit to a different
category instance in the second image. In contrasian-to-regionmatch that seeks correspondences
between pairs of regions frobmothimages’ segmentations (two rows on right side), cannotagixtiie
bottom-up grouping as well, since it can be misled whendwverbttom-up segmentations for the two
images lack agreement.
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scales on a regular gridWe denote each grid location as a “point”. Then, we represaci
region by strings of its constituent points. To more robustipresent the 2D layout using a
1D string, we extract two strings per region: a column-wismg and row-wise string. In the
column-wise linkage of a string, we start from the top-ledir in the region, and link nearest
points along a column. When we arrive at the end of a coluneetid-point is linked to the
closest point in the next column. We repeat this proces$watreach the end-point of the last

column. Similarly, row-wise linkage links nearest poinlisray a row.

Our string representation mechanically links neighbonfmin a grid, and thus it is fast
to build. In addition, it is robust to image variations assitconstructed from regularly sam-
pled dense features whose locations are not affected byaeppee changes. However, a more
sophisticated representation such as tree that reflectaybat among features can be also

considered.

When matching a region to the unsegmented image, for each ipdhe string, we first
find a set of candidate matching points in the unsegmenteddnes determined by the SIFT
descriptor distances across multiple scales. Note thatnleextract strings from one of the
input images; the candidate matches may come from anywheteisecond (unsegmented)
image. Given these candidate matches, we compute the égimaspondence by using dy-
namic programming (DP) to minimize a cost function that acds for both appearance and
geometric consistency (to be defined below). We obtain theatisa for both the row-wise
linked string and the column-wise linked string, and talkeuhion of the correspondence pairs

to be the region-to-image matches for that particular reg8ee Figure 5.2 for an overview.

In the following, | define the cost function, and then expllagw the resulting correspon-

dences are scored to produce a single similarity value lsztwes two images.

2At the time of this work, we did not have the BPLR detector, aadve chose the popular SIFT feature to test
the matching method.
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A segmented region
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Figure 5.2: lllustration of an asymmetric string matclfa) A segmented region in the left image is
represented by a column-wise string. For each point in thiegstwe identify candidate matches in
the (unsegmented) right image by SIFT matchifig. We use dynamic programming (DP) to solve for
the assignment between the string and the candidates thehirgs the total geometry and appearance
costs. Short arrows and stars denote the optimal matchesestwvith DP. (Note, this example does not
include any null matches.) Best viewed in color.

5.2.2 Match assignment cost function

The segmented image produces a string for every region. fegabn’s string consists of
a set of pointsP; = {p; ..., p, }, wherel; denotes the length of theth region’s string, eachy,
records the image coordinates for that point, and @Ryp1) denotes a pair of neighboring
points on the string. We normalize the image coordinateshbyléngth of the longer side of
the image, making the range of coordinate values betweer @ ahetC} denote the set of
candidate matching points for a point; each point inCj, is a feature in the unsegmented
image whose SIFT descriptor is close to the one associatagwie.g.,C is the first column
of patches in Figure 5.2(b)). Among the candidate $€ts. .., )], we want to solve for
the optimal matching/* = {m,,...,m;,}, where eachn, € C}, such that the assignment

minimizes the following cost function:
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The cost function has two pairwise ternig;-) andO(-), and two unary terms4(-) and
D(-). Each term has an associated weigh, (w,, w,, andw,) that scales their relative impact.
The inputP is fixed; we optimize over the selections . We now define each component

term.

Thegeometric distortiorterm,

G(pk,pk“, mg, mk;+1) = H(pk: - pk+1) - (mk - mk+1)“2,

measures the pairwise geometric deformation betweengfasresponding points. This gives

preference to neighboring match pairs that have similaorisn.

The ordering constraintterm, O(-), penalizes the pairs of correspondences when they
violate the geometric ordering. Its valuelid the ordering ofp, andpy., is different from that
of m;, andmy (in either the horizontal or vertical direction), afdtherwise. This means,
for example, that if poinp,, is located left of the poinp,. 1, its matching pointn; should be

located left ofrmy 1.

Theappearance similarityerm penalizes dissimilarity between the SIFT descriptars
tracted at the two points, and is defined as:
1
1+ exp <—7’a <u—1a|]fpk — [ ll2 — 1)) 7

where f,, and f,,,, denote the SIFT descriptors gt andmy,, respectively, and| f,, — f, |2

A(pr, my,) = (5.2)

is determined by the minimum distance among the descriptalt scales extracted at the two
points. The positive constants andr, simply adjust the shape of sigmoid function to make the

values compatible with the other cost terms. Larger SIFfadises induce larger cost values.
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Finally, the displacement constrairterm D(px, m;) penalizes large displacement be-
tween the locations of corresponding points, thereby gigame preference for objects that
occur within similar scene layouts:

Ik — mull2, i [[pr — mgll2 > ¢
D(pr, i) = . 5.3
(P, ) {0, otherwise (-3)

wheret is a displacement threshold.

Our description thus far assumes that every point in thegstras a corresponding point
in the second image. However, some points may not have dleehaatching point. To handle
this, we insert a “null match” candidate into each candidat& ;.. If a null match is selected
when optimizingC (P, M), it means that the associated point does not have a reasporrding
point. For every term where eithet; or my. is a null match, the cost value in each sum of
Eqn. 6.1 is set to a constant valyeWe set the constantto be larger than the typical matching

costs for reliable correspondences.

For each regiorP; in the segmented image, we use dynamic programming to nmgeimi
Eqgn. 6.1 over the candidate selections dr producing a set of corresponding points for each
region. The union of those correspondences across all setipmented image’s regions is then
the final set of matches between the two images {let, m,), ..., (p,, m,)} denote this final

set ofn total corresponding points.

5.2.3 Scoring the resulting correspondences

Given these correspondences, we want to assign a singlé matce between the two
original images. Note that while each individual region’atoh is scored by (P, M), the
final match score is based on the union of the regions’ mateimesmust both summarize their
appearance similarity as well as incorporate the geonagfarmationdetweerthe component

region matches. For two imagésand/,, we define this score as a summation of match scores
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between all their corresponding points:

S(Il,lg) -

1 n
VNI N, Zwi Sa(pis Mi) S¢(pi M), (5.4)
i=1

where N; and N, are the total number of points in each image, respectivglys a weight
assessing the importance of thth matching pair (and will be defined below), and theand
s, functions score each point match’s appearance and gecrsgtlarity, respectively. High

values ofS(I;, I,) mean the two images are very similar.

The appearance similarity score is determined by the SIBladce:s,(p;, m;) = 1 —

A(p;, m;), where we are simply mapping the cost from Eqgn. 6.2 to a siityilealue.

The inter-point geometric consistency sceyép;, m;) measures the average pairwise de-

formation between a matching p&jr;, m;) and all other matching pairs in the final set:

1 1
n—1 % 14+ exp <Tg <G(pivpk:miymk) _ 1)) ’

ik

Sg(pi7 mz) —

whereG(-) is as defined above, artde {1,...,n}\i. This entire term gives lower similarity
values to larger total distortions. The constgnadjusts the shape of the sigmoid function, and
a;, weights the pairwise deformation differently accordingvicether the two points are in the
same region. Specifically, jf; andp; are in the same region,;, = «; otherwise ;. = 2a,
wherea is a positive constant. This doubling of the penalty for withegion matches enforces
stronger consistency for pairs within the same region, evailowing more distortions for the

matching pairs across different regions.

Finally, the weightv; in Eqn. 5.4 emphasizes the similarity of those correspotelpairs
for which the pointp;, has fewer initial candidates in the unsegmented image;nttoéion is
that those matches will be more discriminating. For examplpoint in a textureless region
will have a large number of SIFT candidate matches in thersooage, but many will be less
distinctive. Thus, we set; = (1 + exp(m(% — 1))7%, where|C;| denotes the number of

initial matching candidate points for poipt found in the unsegmented image, akgdenotes
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the total number of points in the second (unsegmented) imBEgEremaining constants simply
serve to adjust the shape of the sigmoid, and provide a weajbhéw; € [0.5, 1]. Algorithm 3

summarizes the whole steps for our matching method in pseades.

Algorithm 3: Asymmetric string match
Data: One segmented imade and another unsegmented image
Result A set of matched points (2D locations) between two imagessamatching
score

[+ Extract features (e.g., SIFTs) on a regular grid over
different sizes of patches */
input : 7; and/,
output: F; andF 5, each of which is a set of features extracted frgrand /.
fori=1to2do
Divide a[; into regular grid (e.g.6 x 6 pixels);
foreachgrid location/; in I; do
fork=1tosdo/* different patch sizes * [
Extract a featurg/;;, from a patctyp, atl;;
Add f; and its locatiori; into Fj;
end
end
end

/* Findi ng mat chi ng candi dat es */
input : F; andF,
output: Matching candidate€; ., found fromF, w.r.t. features irf';
foreach grid location/; in I; do
for j=1tosdo/* different patch sizes */
Get a featuref;; from Fy;
Find K nearest neighbors gf; from F5;
Add the K nearest neighbors and their matching distanceshto
end
/* Pruning by matching distance * [
foreachfeaturef in C; do
if f’s matching distance> thresholdthen
| Removef from C;;
end
end
/= Pruning by ranking */
Sort matching distances {d; and keep topV nearest neighbors;
Add C; into C;_,2;
end
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Algorithm 3: Asymmetric string match: continued

/* Regi on-to-i mage mat chi ng */
input : Cy_.»

output: Optimal matchingVI; _,» between features of two images
foreachregionr; in the segmented imade do

/* Col utmm-wi se string match */
Build a column-wise string that links grid locationssin

Build a matching cost table as seen in Figure 5.2 along thegatisingC, . 5;
Obtain optimal matcheb1, via dynamic programming for the objective defined
in Egn. 6.1;

/* Rowwi se string match */
Build a row-wise string;

Do the same steps as above and obtain optimal maldhes

[+ Union of the matches * [
Compute the union dvI, andM, and add the union intd1; ,5;
end
[+ Conmpute a match score between two i nmages */
input : M .,

output: A match scores
Compute a match scoregivenM; 5 using Eqn. 5.4;

return M;_,» andsS

5.3 Results

| apply our matching algorithm to exemplar-based objecegatty recognition on the
Caltech-256 and 101 datasets. Both are among the largeshrbarks available for object
category recognition (see Figure 5.3 for example imagefeéndatasets). The main goals
of the experiments are 1) to demonstrate the impact of thpgsexd matching method for
exemplar-based object recognition (Sec. 5.3.1) and 2)dtyae computation cost for practical

use (Sec. 5.3.2).

Implementation details For both datasets, we resize the images such that theirrcigge
is 320 pixels, and then densely sample SIFT descriptorseay @ight pixels over four scales,

generating about 1200 points per scale for the typical insgme (320 x 240). The descriptors
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Figure 5.3: Example images from 256 object categories iteClal256 dataset. Caltech-101 is
a subset of Caltech-256.

are sampled in square patches of sizes 16, 24, 32, and 4@.pix&Ve use the segmentation
method of [4], and the authors’ code. We use approximateeseaeighbor search to quickly

find close SIFT descriptors, with code by [71].

We set the weight parameters in the cost function by visualpecting the matches
for ten same-class image pairs, mainly to understand te-# between the geometric and
appearance terms. All were fixed after this initial inspattiwe did not attempt to validate them

with recognition accuracy. We lock the values for all expemnts and alk-15,000 images.

We use a simple near-neighbor classifier to perform exentyalaed category recognition
with our matching. To avoid exhaustively matching agairetheof the exemplars, for each

query, we first prune the pool of classes according to SIFErgesr distances (we use the top

3The initial candidate matching points are those with a SIE3cdiptor distance withi.25., for each scale,
among all scales.
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Method Accuracy (%)

SPM [37] 42.1+0.81

GBDist [93] 45.2+ 0.96
BergMatching [9] 48.0
GB\Vote [8] 52.0
Ours 61.3

Table 5.1:Comparison of our method to other image matching algoritoms¢he Caltech-101, for 15
training images per category. All methods listed here useast-neighbor classification based on an
image matching score. Ours outperform all of the most refemaarest neighbor matching methods by
10-20% gains, demonstrating the impact of the proposedmmatstrategy.

25 and 30 classes for the 256 and 101, respectively). Theapply our matching method to
search for the top matched exemplars in only those classesat€gorize a query image, we
take the sum of our method’s matching scores forktbh@p-scoring exemplars in each category;

the top-scoring category is the predicted label. All of tagults usé = 2, which produced the

best performance (fdr = 1, 2, 3, accuracy varies only by.5-1%).

5.3.1 Object Category Recognition

In this section, | apply our matching method to exemplarebagbject recognition, and

compare its results to existing techniques.

Caltech-101 Dataset We randomly pick 15 exemplar and test images per categobje tal
compares our algorithm to other image matching algorithfese we focus on those methods
that are most closely related: all results listed use a seasighbor scheme based on image-to-
image matching scores. Our method clearly outperformstiséiieg methods by a large margin.
In particular, it gives far stronger recognition accurabgrt the method of [9], though both
algorithms include related pairwise geometric constgaifthis suggests that our asymmetric
region-to-image matching is more effective for imposingmetric constraints than an image-
to-image matching approach when dealing with intra-clasgtions, and also supports using

more densely sampled descriptors (which is more efficieddlye in our method).
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Feature Method Accuracy (%)
PMK+SVM [36] 50.0
SVM+KNN [99] 59.1+ 0.6
. SPM+SVM [37] 59.3
Single .
GBDist+SVM [93] 59.3+ 1.0
NBNN (1 desc.) [11]| 65.0+1.14
Ours 61.3
SKM [51] 57.3
KTA [60] 59.8
. LearnDist [33] 63.2
Multiple MKL [35] 70.0
BoschTree [13] 70.4+ 0.7
NBNN (5 desc.) [11]| 72.8+ 0.39

Table 5.2:Comparison of our method to best existing recognition algmrs on the Caltech-101, for 15
exemplar images per class. The table divides the methoal$vitat groups, depending on whether they
use asingle descriptor type or combinmultiple. Our result competes strong learning-based methods,
demonstrating our raw matching accuracy is quite strong.

Table 5.2 compares existing state-of-the-art algoritheingded into two groups based
on whether single (top) or multiple (bottom) descriptordgpre used. When comparing to
methods using a single local feature type as we do, our mdathbétter than all previous
methods, except for the method of [11], which measures agenta-class distance without
explicitly computing individual image-to-image distascdn contrast, our method computes
both the similarity between images as well as the matchiagufe assignment. This can be
seen as an advantage, since the localization functionsitgtentially useful for both detection
in new images as well as for feature selection among traiexggnplars. Interestingly, the

authors report that their accuracy decreases by 17% whgrattempt an explicit image-to-

image matching using the same protocol as the one used inrttege-to-class matching [11].

When compared to the methods using multiple types of loeafes (Table 5.2, bottom),
our accuracy using only a single feature is a bit behind tagesif-the-art, which is perhaps
expected given the known value of complementary featuresty\t the same time, however,
we do outperform some multi-feature learning methods [B],,&d have comparable numbers

to the method of [33], which includes a sophisticated |leggratage to identify discriminative
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Method Accuracy (%)
Todorovic-GenLearn [88] 54.0
Todorovic-DiscLearn [89] 72.0

Gu et al. [38] 65.0
Ours 61.3

Table 5.3:Comparison of our method to region-to-region matching m@shon the Caltech-101, for
15 training images per class. Ours outperforms regioegion matching method [88], showing the
effectiveness of our asymmetric region-to-image matclingtegy. Compared to learning-based meth-
ods [89, 38], our method is behind by 4-10 points, but we ghowglte that our result comes from raw
matching scores; in fact, the best result [89] is obtainedaddging a learning component to the raw
matching result of [88].

features. Thus, overall, these results demonstrate thaaewunatching accuracy is quite strong.

Table 5.3 compares our method to those based on regiomimarenatching. Numbers
reported for other algorithms in Table 5.3 do not give theaw” region-to-region matching
accuracy, since all incorporate learning algorithms ondbthe matching. Without learning,
our algorithm outperforms that of [88], suggesting thatithage-to-region match can indeed
be more robust when matching with imperfect bottom-up segatiens. We obtain close accu-
racy to [38], though in our case without any discriminatiggion selection. Compared to [89],
our algorithm is about 10 points less accurate. One iniage#ting here is that both [88] and
[89] rely on the same region-to-region matching algoritiwor, the more recent [89] improves
over [88] by about 20 points, apparently due to the switcimfigenerative to discriminative
learning. Since the matching algorithm is the same in boslegathis suggests that the sig-

nificant jump may be largely attributable to the powerfukteag algorithm, not the matching

itself.

Caltech-256 Dataset For the Caltech-256, we randomly pick 30 exemplar imageartdst
images per category. Table 5.4 compares our algorithm stiegimethods. To our knowledge,
we are the first to attempt to use raw image matching to perfeamgnition on this challenging

dataset.
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Method Accuracy (%)

Todorovic-GenlLearn [88] 315

SPM+SVM [37] 34.1

NBNN (1 desc.) [11] 37.0
NBNN (5 desc.) [11] 42

BoschTree (No ROI) [13] 38.7+1.3
BoschTree (ROI) [13] 435+ 1.1

MKL [35] 45.8
Torodivic-DiscLearn [89] 49.5
Ours 36.3

Table 5.4:Comparison of our method to existing results on the Cal@&sfh-for 30 training images per
category. Ours provides comparable results to the statieeeéirt learning-based methods. We should
note that ours is the first image matching method tested ote@aPk56 that achieves a raw matching
accuracy comparable to some classifier-based algorithms.

Compared to methods using a single type of local feature nearest-neighbor accu-
racy improves over the SVM-based method used in [37], anesgrery similar results to that
of [11]. Compared to region-to-region matching-based wdsh we achieve better accuracy
than the method of [88], which learns generative modelsdcheategory based on the match-
ing. Compared to methods using multiple feature types [2B,d&ir method lags by only about
2.4-9.5%. Given that our recognition accuracy is based solely on raage matching with a

single feature type, these are very encouraging results.

Qualitative Results For qualitative evaluation | show the nearest neighborsémne image

queries (see Figure 5.4 and 5.5). We selected query imag@ssome of the hard categories
for which previous recognition methods produce below ayer@ccuracy [37]. Our algorithm

shows powerful matching results for those difficult objestegories under notable intra-class
variations or background clutter. Further, even for théufai cases (as judged by the true
category label of the nearest exemplar), we find that the tajzined images often show very
similar geometric configurations and appearance, meahmgnistakes made are somewhat

intuitive (see last two rows in Figure 5.4 and the last rowiguife 5.5).

In addition, | demonstrate example matches that reveal sotaeeesting aspects of my
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Figure 5.4:Examples of matching results on the Caltech-256. Leftmuagie in each row is a query,
following six are nearest exemplars found by our method av@80 total images. Last two rows show
gueries whose nearest exemplar has the wrong label, andgrmtte be fairly intuitive errors.
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Figure 5.5: Examples of matching results with correspoggimints visualized. For each query
image (repeated six times in the top row of each group), we/ $iscsix nearest neighbor exem-
plars (the six images in the bottom row of each group), aloitig @orresponding points between
them. The small cyan squares denote the subset of densqiyeshBIF T points that formed the
final correspondence between the query and matched imagedag to our algorithm. Note
that different points are marked on each instance of theygsgrce different points contribute
to each of the six individual matches. An exemplar imagecsurded by a red square denotes
that it belongs to the same category of the query. Last exastpbw a query whose nearest
exemplar has the wrong label, and yet seems to be intuitive.
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Figure 5.6:Example many-to-one and many-to-many matches. In both ghesthe left image is seg-
mented, and the right remains unsegmented. Points areamded according to their correspondence.
(a) Different parts of an object (Mandolin’s neck and base) aatcimed to a single instance of the object
in the second imagdb) Multiple instances of the same category (dice) are matched.

method. Figure 5.6 shows examples of many-to-one or mamyaioy object matching with
my method, which illustrates how my asymmetric approach siastessfully match images
that lack a strict global geometric consistency. This fléiybis useful for matching object

categories whose instances have noticeable geometratioari

A possible concern might be that because of the asymmetrynatching results may
vary depending on which image’s segmentation is used focmrad. | find in practice it typ-
ically produces similar final matching scores, which makesss given that we only use a
segment as a bounding area for imposing geometric contstraiat as a matching primitive.
Figure 5.7 shows two examples illustrating this point. Thetehing points are not identical
when we swap which image is segmented, yet we see that thiyqoflathe assignments is

quite similar.

5.3.2 Computational Cost

Using the dense sampling described above, we get about 48@rés per image. It
takes about 5-15 seconds to match two such images using olit MB\implementation on
a 2.5GHz CPU. Computation time varies depending on how maitiglimatching candidates

are obtained via SIFT search. Segmentation using [4] reduabout 3-5 minutes per image,
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Figure 5.7:Examples showing robustness to the choice of which imagegimented. First columns in
(a) and (b) show the segmentation of each image, and themamaiwo columns show matched points
(black dots) when we swap the segmentation used.

though the authors report that much faster parallel impteat@ns are possible-2 s). When
using our matching to compare to exemplars for recognitioie that the segmentation cost is
a one-time thing; due to the asymmetry, we only need to haymested exemplars, and can

leave all novel queries unsegmented.

To compare the cost of our method to other matching algosthme tested the computa-
tion time of the spectral matching algorithm [57], which reokvn as the most efficient matching
algorithm among ones using a pairwise geometric constriamur MATLAB implementation,
it takes more than 10 minutes to match images of 320 by 24Q0spiith dense features. Most of
that time was consumed by the pairwise distortion computatbnce those are computed, the
spectral matching itself runs fast. Another popular andative matching algorithm ([9]) has
been reported in [57] to be limited in practice to runninghainder 50-100 features, due to the
expense of the linear programming step. Thus, the existiost melated matching algorithms

that enforce geometric constraints do not seem amenabtkeifse point matching.

90



5.4 Discussion

The proposed matching method in this chapter showed thahsedeature matching
provides much better discriminating power for recognizanigrge number of different object
categories. Also, it is critical to consider spatial layaatong features for reliable matching.
Our 1D string representation and segmentation-drivenmajacost are combined to provide

an efficient solution for matching features with geometaoostraints enforced.

| would like to stress two important aspects of my approadbstFather than consider
only region-to-region matches between the two images’ segations, we take the feature
grouping given by each region in one image to find a geomdliricansistent match irany
part of the second image. This way, we can find the best matchehahet not the region in

the second image would have happened to appear in a segime((sae Figure 5.1).

Second, this very idea is what lets us efficiently solve fotamiag regions using dynamic
programming (DP), without being susceptible to traditistang matching’s sensitivity. Our
matches are not string-to-string. Rather, we match a stiramg one region to a set of candidate
points identified by local appearance similarity (see Fegbr2). This means we avoid the
pitfalls of traditional DP-based matching, namely, sewisytto the strings’ start and end points,
and overly strict geometric consistency requirements. Up&hot, as | demonstrated in the
experiments of the previous section, is that ours is theifitfage matching method to realize
a dense matching with non-parametric geometric consgatbth aspects vital to matching

images with generic object categories.

Compared to existing approaches that compute pairwisgéaeéaamong all points, my
approach substantially reduces the computational contplekenforcing pairwise geometric
constraints on the candidate match pairs. This complexitpartage does come at the price of
considering geometric relations only between adjacemttpan the string when solving for the
optimal match. Nonetheless, we purposely mitigate the anpthis simplification by both 1)

using two strings per region (column- and row-wise linked)yell as 2) using densely sampled
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local features and cross-scale matches.

One promising extension would be to add scale and/or rotatiariance on the method.
My current implementation is not fully scale or rotationamant. While we do employ multiple
scales of SIFT descriptors for matching, we sample featanetpon a single grid. One could
easily achieve scale invariance by matching across an imnyagenid, or adding a multi-scale
grid. We retain orientation information (which can be us$éfu object matching) since the
geometric distortion term is computed with respect to 2Drdates. When using our measure
for example-based recognition, we assume a class’s poscaltelvariation will be represented
via the exemplars. In Chapter 6, | will explore a multi-scadatching that exploits regions’

hierarchical structure.

In this chapter, | leverage the spatial grouping cue suggddsy each individual segment
to enforce geometric consistency on the matched localfestbuch a geometric constraint is
treated independently for each region in the matching dilbgavhich allows greater flexibility
when matching deformable regions. In next chapter, | cansahother spatial cue derived
from regions, “region hierarchy”. In contrast to the graupcue suggested by each individual
region, region hierarchy comes when we consider regionsvasode. This region hierarchy
links different regions to be matched simultaneously. Ta@&xthe region hierarchy, | introduce

a novel graphical model, particularly focusing on fast imagatching.
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Chapter 6

Fast Image Matching with a Region Hierarchy

In the previous chapter, | introduced a segmentation-diiveal feature matching, where
each segmented region provides a geometric constrainetitaturages a group of local fea-
tures within it to find their matches with stricter spatiahscstency. In this chapter, | consider
another strong geometric cue derived from regions, “regierarchy”, to improve the match-
ing. Whereas the grouping cue used in the previous chapterggested by eadnhdividual
region, a hierarchical structure comes when consideriagetliegions as whole all the re-
gions cover various spatial extents from an entire imagtstoljects to their parts. Particularly,
| focus on fast image matching that exploits such a regiorahedy. To this end, | introduce
a deformable spatial pyramid (DSP) matching for fast demsel porrespondences, which is
published in [49] The resulting DSP method can match hundreds of thousandsed$ jn a

faction of a second and is applied for exemplar-based sécriardge segmentation.

6.1 Motivation: Region Hierarchies For Fast Pixel Matching

Thus far, | addressed matching problem that considers ub@0 (sampled) local fea-
tures to be matched. As already seeb000 features are dense enough for object classification
task, where the segmentation-driven matching approadiegitly recognizes hundreds of ob-
ject categories with challenging intra-class variatioBsdpter 5). More recently, however,
researchers have pushed the boundaries of dense matclesigmate correspondencesnoil-
lions of pixelsbetween images of different scenes or objects. This leadsatoy interesting

new applications, such as semantic image segmentationifg@ye completion [6], and video

1Code and data are available online: http://vision.csagesdu/projects/dsp
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depth estimation [45].

There are two major challenges when matching pixels betwyeearric images: compu-
tational cost and image variation. Different scenes anéatbjundergo severe variations in
appearance, shape, and background clutter. These vasatm easily confuse low-level pixel
matching functions. At the same time, the search space i rtauger, since generic image
matching permits no clean geometric constraints. Withayt@ior knowledge on the images’

spatial layout, in principle we must search every pixel td time correct match.

To address these challenges, as discussed in Chapter @ngxmsethods have largely
focused on imposing geometric regularization on the matciproblem. Typically, this en-
tails a smoothness constraint preferring that nearby pixebne image get matched to nearby
locations in the second image; such constraints help resatbiguities that are common if
matching with pixel appearance alone. If enforced in a na@g however, they become overly
costly to compute. Thus, researchers have explored vacmuagputationally efficient solutions,
including hierarchical optimization [62], randomized s#8[6], 1D approximations of 2D lay-

out [46], spectral relaxations [57], and approximate gnagatiching [23].

Despite the variety in the details of prior dense matchinthogs, their underlying mod-
els are surprisingly similar: minimize the appearance matecost of individual pixels while
imposing geometric smoothness between paired pixels. i§hakisting matching objectives
center aroungbixels While sufficient for instances (e.g., MRF stereo matchB®]), the local-
ity of pixels is problematic for generic image matching;gdsxsimply lack the discriminating
power to resolve matching ambiguity in the face of visualataons. Further, the computational

cost for dense pixels still remains a bottleneck for scétgbi

To address these limitations, | introduceleformable spatial pyramiDSP) model for
fast dense matching. Rather than reason with pixels albegroposed model exploit regions’
hierarchy so that it regularizes match consistency at plalgpatial extents—ranging from an

entire image, to coarse grid cells, to every single pixel. & ldea behind my approach is to
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strike a balance between robustness to image variationseoarte hand, and accurate local-
ization of pixel correspondences on the other. | achieveliblance through a pyramid graph:
larger spatial nodes offer greater regularization whereapgnce matches are ambiguous, while
smaller spatial nodes help localize matches with fine defdithe same time, the DSP model
naturally leads to a fast hierarchical optimization pragegproducing noticeably faster match-

ing than today’s popular matching methods.

Figure 6.1 contrasts our DSP model with existing ones. Itiqdar, | would like to point
out the difference between the proposed DSP model (Figuréaj) and SIFT Flow model
(Figure 6.1 (b)), since SIFT Flow also takes a hierarchicatleh for matching. Key contrast
is that our model is based on multi-level regions of variquegtial extents across the hierarchy,
whereas SIFT Flow relies on only pixels that repeats thetidainpixel-grid graph structure
across the image pyramid. In the results (Sec. 6.3), | wibmslour region-based approach

makes substantial gains over such pixel-based models feedaatching.

6.2 Deformable Spatial Pyramid Matching

In this section, | present my approach for fast dense pixeespondences. My method
takes two images as input and matckesrypixel between them. | first define my deformable
spatial pyramid (DSP) graph for dense pixel matching (S&t1% Then, | define the match-
ing objective | will optimize on that pyramid (Sec. 6.2.2)in&lly, | discuss technical issues,

focusing on efficient computation (Sec. 6.2.3).

6.2.1 Pyramid Graph Model

To build the spatial pyramid, we start from the entire imagd divide it into different
sub-regions and keep dividing until we reach the predefinedber of pyramid levels. In my
implementation, | explore both grid-based and region-tdserarchies. For grid-based one, |

use four rectangular grid cells to divide a region at eachll@wse 3 levels). For region-based
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Figure 6.1: Graph representations of different matching models. Aleidenotes a graph node and
its size represents its spatial extent. Edges denote gdordistortion terms.(a) Deformable spatial
pyramid (proposed): uses spatial support at various exte(t$.Hierarchical pixel model62]: the
matching result from a lower resolution image guides thechiag in the next resolution.(c) Full
pairwise mode[9, 57]: every pair of nodes is linked for strong geometrigularization (though limited
to sparse nodesjd) Pixel model with implicit smoothne§8]: geometric smoothness is enforced in an
indirect manner via a spatially-constrained correspoodeearch (dotted lines denote no explicit links).
Aside from the proposed model (a), all graphs are defined axehgrid.

one, | use bottom-up segments from a hierarchical segmemtatethod [3] as region input.
The grid pyramid has the advantage of efficient computatigntd its regular structure, while
the region pyramid can explicitly consider the visual cueisnages when building the graphical
model. In Sec. 6.3.4, | compare two models in terms of bothprgational cost and matching
accuracy. In addition to those hierarchical pyramids ad gells or segmented regions, | further

add one more layer, a pixel-level layer, such that the finelig are one pixel in width.

Then, | represent the pyramid with a graph. See Figures pan(h6.2. Each grid cell (or
segmented regions) and pixel is a node, and edges link glhbering nodes within the same
level, as well as parent-child nodes across adjacent leivetghe pixel level, however, | do not
link neighboring pixels; each pixel is linked only to its pat node. This saves us a lot of edge

connections that would otherwise dominate run-time duoipigmization.
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(a) DSP with regular grid regions

Segmented regions (Fast and robust) Pixels (Accurate)

(b) DSP with segmented regions

Figure 6.2:Sketch of the proposed DSP matching method. | show two mo@gI®SP with regular grid
cells (default implementation), and (b) DSP with genergraiichical segmentation. | focus most results
on a DSP model with regular grid regions since | can explsitrégularity for efficient computation.
However, the DSP model can take any hierarchical regionsmad,ias shown in (b). In both (a) and
(b), first row shows image 1’s pyramid graph; second row shib@snatch solution on image 2. Single-
sided arrow in a node denotes its flow vectgr double-sided arrows between pyramid levels imply
parent-child connections between them (intra-level edgesalso used but not displayed). We solve
the matching problem at different sizes of spatial nodesvimlayers. Cells in the grid-layer (left three
images) provide reliable (yet fast) initial correspondeEnthat are robust to image variations due to their
larger spatial support. Guided by the grid-layer initialusion, we efficiently find accurate pixel-level
correspondences (rightmost image). Best viewed in color.
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6.2.2 Matching Objective

Now, | define my matching objective for the proposed pyrammapy. | start with a
basic formulation for matching images at a single fixed saaid then extend it to multi-scale

matching.

Fixed-Scale Matching Objective Letp, = (x;,y;) denote the location of noden the pyra-
mid graph, which is given by the node’s center coordinated.tLe- (u;, v;) be the translation
of node: from the first to the second image. We want to find the optinaldlations of each

node in the first image to match it to the second image, by mang the energy function:

E(t) =) Di(t) +a Y Vit t)), (6.1)

i,jEN
whereD; is a data termV;; is a smoothness termy,is a constant weight, an” denotes pairs

of nodes linked by graph edges. Recall that edges span aon@ssid levels, as well as within

pyramid levels.

The data ternD; measures the appearance matching cost of hatlranslatiort,;. It is
defined as the average distance between local descriptgrsS(€T) within node in the first
image to those located within a region of the same scale is¢hend image after shifting by
t;:

1
Dy(t;) = ;;min(”dl(q) —da(q +t3)[[1, ), (6.2)
whereq denotes pixel coordinates within a nadieom which local descriptors were extracted,
z is the total number of descriptors, add andd, are descriptors extracted at the locations
q andq + t; in the first and second image, respectively. For robustressitiers, we use a
truncated L1 norm for descriptor distance with a thresholNote that: = 1 at the pixel layer,

whereq contains a single point.

The smoothness terij; regularizes the solution by penalizing large discrepanici¢he

98



matching locations of neighboring nodés; = min(||t; — t;||1,y). | again use a truncated L1

norm with a threshold.

How does this objective differ from the conventional pixgse model? There are three
main factors. First of all, graph nodes in my model are defibgaells of varying spatial
extents, whereas in prior models they are restricted tolgix&his allows us to overcome
appearance match ambiguities without committing to a sisghtial scale. Second, the data
term aggregates many local SIFT matches within each nodgEssed to using a single match
at each individual pixel. This greatly enhances robustteeissage variations. Third, | explicitly
link the nodes of different spatial extents to impose smoess, striking a balance between

strong regularization by the larger nodes and accuratéizatian by the finer nodes.

To minimize the main objective function (Eq. 6.1), we useppdelief propagation to
find the optimal correspondence of each node (see Sec. 6r218thils). Note that the resulting
matching is asymmetric, mapping all of the nodes in the firgige to some (possibly subset
of) positions in the second image. Furthermore, while myhoeteturns matches for all nodes
in all levels of the pyramid, we are generally interestechia final dense matches at the pixel
level. As mentioned in the previous section (Sec. 6.1),dltEnse pixel matches have many
new applications for vision and graphics. In this work, | de@se pixel matches for predicting

class label of every pixel for semantic image segmentagec.(6.3).

Multi-Scale Extension Thus far, | assume the matching is done at a fixed scale: eath gr
cell is matched to another region of the same size. Now, Inektiee objective to allow nodes

to be matched across different scales:

E(t,s) =Y Di(tis) +a Y Vit t;) +8 Y Wilsi,s;). (6.3)

i,jEN i,jeEN
Eq. 6.3 is a multi-scale extension of Eq. 6.1. We add a scaiahlas; for each node and

introduce a scale smoothness tdiiffy = ||s; — s;||; with an associated weight constahtThe
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(a) Fixed-scale match (b) Multi-scale match

Figure 6.3: Comparing my fixed- and multi-scale matches.vi®bility, | show matches only
at a single level in the pyramid. In (a), the match for a nodthefirst image remains at the
same fixed scale in the second image. In (b), the multi-sdgkxbve allows the size of each
node to optimally adjust when matched.

scale variable is allowed to take discrete values from aiBpécange of scale variations (to be

defined below). The data term is also transformed into a maliate function defined as:
tZ,S Zmln |d1 dg(si(q—l—ti))Hl,)\), (64)

where we see the corresponding location of descrigdor a descriptor/; is now determined

by a translatiort; followed by a scalings;.

Note that this formulation allows each node to take its owtineg@ scale, rather than
determine the best global scale between two images. Thenigfizial when an image includes
both foreground and background objects of different scalesvhen individual objects have

different sizes. See Figure 6.3.

Dense correspondence for generic image matching is otatetl at a fixed scale, though
there are some multi-scale implementations in related wBdtichMatch has a multi-scale ex-
tension that expands the correspondence search rangeliagctwr the scale of the previously
found match [6]. As in the fixed-scale case, my method has dwardage of modeling geo-
metric distortion and match consistency across multiplgiapextents. While | handle scale
adaptation through the matching objective, one can altieeta consider representing each
pixel with a set of SIFTs at multiple scales [39]; that feataould potentially be plugged into

any matching method, including ours, though its extradtiime is far higher than typical fixed-
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scale features. The proposed multi-scale matching is@fi@nd works even with fixed-scale

features.

6.2.3 Efficient Computation

For dense matching, computation time is naturally a big eamnéor scalability. Here |
explain how | maintain efficiency both through the problemsige and some technical imple-

mentation details.

There are two major components that take most of the timecdfputing descriptor
distances at every possible translation and (2) optinuratia belief propagation (BP). For the
descriptor distances, the complexityQ$mlk), wherem is the number of descriptors extracted
in the first image]/ is the number of possible translations, ant the descriptor dimension.
For BP, we use a generalized distance transform techniduehweduces the cost of message
passing between nodes fran/?) to O(1) [29]. Even so, BP’s overall run-time 3(nl), where
n is the number of nodes in the graph. Thus, the total cost of ethad isO(mlk + nl) time.
Note thatn, m, andi are all on the order of the number of pixels (i.10° — 10°); if solving

the problem at once, it is far from efficient.

Therefore, | use a hierarchical approach to improve effeyielVe initialize the solution
by running BP for a graph built on all the nodes except thelgesesl ones (which | will call
first-layer), and then refine it at the pixel nodes (which llwéll second-layer). In Figure 6.2,
the first three images on the left comprise the first layerthadourth depicts the second (pixel)

layer.

Compared to SIFT Flow’s hierarchical variant [62], oursgan order of magnitude faster,
as | will show in the results. The key reason is the two methdiffering matching objectives:
ours is on a pyramid, theirs is a pixel model. Hierarchic&TSFlow solves BP on theixel
gridsin the image pyramid; starting from a downsampled imageogpessively narrows down

the possible solution space as it moves to the finer imagdscirey the number of possible
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translationd. However,n andm are still on the order of the number of pixels. In contrast, th
number of nodes in my first-layer BP is just tens. Moreovethdayve that sparse descriptor
sampling is enough for the first-layer BP: as long as a gritliceludes~100s of local de-

scriptors within it, its average descriptor distance fa data term (Eq. 6.2) provides a reliable
matching cost. Thus, | do not need dense descriptors in stddiyer BP, substantially reducing

m.

In addition, my decision not to link edges between pixels.(ino loopy graph at the
pixel layer) means the second-layer solution can be corduesy efficiently in a non-iterative
manner. Once | run the first-layer BP, the optimal transhatjaat a pixel-level node is simply
determined byt; = argtmin(Di(t) +aV;(t,t;)), where anodg is a parent grid cell of a pixel

nodez, andt; is a fixed value obtained from the first-layer BP.

The proposed multi-scale extension incurs additionaldoestto the scale smoothness and
multi-variate data terms. The former affects message pgisthe latter affects the descriptor
distance computation. In a naive implementation, bothalityeincrease the cost in terms of the
number of the scales considered. For the data term, howegeran avoid repeating computa-
tion per scale. Once we obtain;(t;,s; = 1.0) by computing the pairwise descriptor distance
ats; = 1.0, it can be re-used for all other scales; the data télft;, s;) at scales; maps to
D;((s; — 1)q + s;t;,8; = 1.0) of the reference scale (see the next paragraph for det@tés.
significantly reduces computation time, in that SIFT disesdominate the BP optimization

sincem is much higher than the number of nodes in the first-layer BP.

Mapping data terms across different scales: To re-use descriptor distances for the multi-
scale matching, | define a mapping between data terms acifts®iot scales: the data term
D;(t;,s;) at scales; maps toD;((s; — 1)q + s;t;,s; = 1.0) of the reference scale. | derive it as

follows.

The data termD;(t;, s;) computes a descriptor distance betwegfy) at a pointq of
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the first image and(s;(q + t;)) in the second image (see Eq. 4 in the main paper). Here,
the corresponding location of descriptirfor a descriptorl; is determined by a translatian

followed by a scaling; on the poinig.

However, if we suppose those two corresponding locatioasasociated by a common
reference scales( = 1.0), their translation can be represented by a simple coalditierence
between thems;(q + t;) — q = (s; — 1)q + s;t;. That is, a translation; at a scales; is
equivalent to the translatiofs; — 1)q + s;t; at the reference scale. As a result, once we have
computed the data term at the reference scale, we can magghieioscales without repeating the
computation per scale. Algorithm 4 depicts the implemeotadf our DSP matching method

in pseudo-code.

Algorithm 4: DSP match
Data: Two images/; and/,
Result Dense pixel correspondences betwéegand/,

[+ Extract features (e.g., SIFTs) for every pixel */
input : 7; and/,
output: F; andF,, each of which is a set of dense features extracted froamd /,
respectively.
fori=1to2do
foreach pixelp; in I; do
Extract a featuref; with a fixed size patch (e.glp x 16 pixels) ati;;
Add f; and its locatiori; into F;;
end
end

/+ Build pyram d graph */
Divide I, into four sub-rectangles and repeat dividing up. tevels;

Build a pyramid graph in grid-layer: Link neighboring gridits within the level and
parent-child cells across the adjacent levels;

Add a pixel-layer: Attach pixels to their parent cell;
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Algorithm 4: DSP match: continued

Data: Two images/; and/,
Result Dense pixel correspondences betwéegand/,

[+ Grid-layer optimzation */
input : Fq, Fa, and a set of pre-defined translatichand scale$
output: Matched cells’ translations and scales fréjo /I,

foreachtranslationt; in Tdo/* fixed-scale, i.e., scale=1 * [
Compute an integral image for feature distances betwgesndF, at translation
Li;

foreachgrid cell g in the pyramid grapldo
| Compute data-termd(¢;) of g using the integral image;
end
end
if multi-scalethen/* Multi-scal e ext ension * [
foreachscales; in S do

foreachtranslationt; in t do
Mapping the feature distances from the original scale, @ale = 1) to

those at scalg; (see Sec. 6.2.3);

Compute an integral image at scaleand translation;;

foreach grid cell g in the pyramid grapldo

\ Compute data-term)(t;, s;) of g using the integral image;

end

end

end

end

Run belief propagation to solve the objective in Eq. 6.3,chtprovides optimal

translationsI', and scale$, of matched grid cells frond; to /5;

[+ Pixel-layer optimzation */

input : T,

output: A set of match pixels’ translatioriB, from I, to I,

foreach pixel p; in I; do
Compute an optimal match translatigrby a closed-form solution in Sec. 6.2.3;
Add¢; into Tp;

end

return T,
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6.3 Results

The main goals of the experiments are 1) to evaluate raw nmgtcfuality (Sec. 6.3.1),
2) to validate my method applied to exemplar-based semegmentation (Sec. 6.3.2), 3) to
verify the impact of my multi-scale extension (Sec. 6.343}o compare grid-based and region-
based hierarchies in both run-time and matching accuraey. (&3.4), and 5) to show how
various spatial supports from my pyramid model achieve arzs between robust matching

and accurate localization (Sec. 6.3.5).

| compare my deformable spatial pyramid (DSP) approachetie sif-the-art dense pixel
matching methods, SIFT Flow [625F) and PatchMatch [6]KM), using the authors’ publicly
available code. SIFT Flow adopts a hierarchical optimaafis ours, but its graphical model
builds on a flat pixel grid at every level of image pyramid. §bontrasts to our model built on
multi-resolution region hierarchy. PatchMatch avoids mplieit optimization; instead it relies
on a randomized search, focusing on fast computation. klwdlv DSP’s speed advantage over
PatchMatch. Unless mentioned otherwise, | use the resaolisthe grid-based pyramid model

when comparing to the baselines.

| use two datasets: the Caltech-101 and LabelMe Outdoor (L.MQ. Figure 6.4 shows

some example images from each dataset.

Implementation details: | fix the parameters of my method for all experimenis= 0.005

in Eq. 6.1,y = 0.25, and\ = 500. For multi-scale, | setv = 0.005 and = 0.005 in Eq. 6.3.

| extract SIFT descriptors of 16x16 patch size at every pirsahg VLFeat [94]. | apply PCA
to the extracted SIFT descriptors, reducing the dimensdOt This reduction saves about 1
second per image match without losing matching accutdey. multi-scale match, | use seven

scales between 0.5 and 2.0—I choose the search scale asmem(pfz%, wherei =1, ..., 7.

2| use the same PCA-SIFT for ours and PatchMatch. For SIFT ,Fowever, | use the authors’ custom code
to extract SIFT; | do so because | observed SIFT Flow losesracg when using PCA-SIFT.
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(a) Caltech-101 (b) LabelMe Outdoor

Figure 6.4. Example images from the datasets used in ouriexpats. For each dataset, we

randomly display one or two images from each object clasketiataset. Caltech-101 dataset
is for object matching under intra-class variations. LdMeOutdoor dataset includes various

outdoor images for scene matching.

Evaluation metrics: To measure image matching quality, | use label transferracguLT-
ACC) between pixel correspondences [61]. Given a test arekeamplar image, | transfer the
annotated class labels of the exemplar pixels to the tes wviaepixel correspondences, and

count how many pixels in the test image are correctly labeled

For object matching in Caltech-101 dataset, | also use tieesection over union (IOU)
metric [25]. Compared to LT-ACC, this metric allows us tol&ée the matching quality for the

foreground object, separate from the irrelevant backgiquixels.

| also evaluate the localization error (LOC-ERR) of cor@sging pixel positions. Since
there are no available ground-truth pixel matching posgibetween images, | obtain pixel
locations using an object bounding box: pixel locationsgwven by the normalized coordinates

with respect to the box’s position and size.

Formally, | define the localization error as follows. | firgggignate each image’s pixel
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Approach LT-ACC | IOU | LOC-ERR| Time (s)

DSP (Ours) 0.732 | 0.482 0.115 0.65
SIFT Flow [62] | 0.680 | 0.450 0.162 12.8
PatchMatch [6]| 0.646 | 0.375 0.238 1.03

Table 6.1: Object matching on the Caltech-101. DSP outpeddhe state-of-the-art methods
in both matching accuracy and speed.

coordinate using its ground-truth object bounding box: phel coordinate of an object in
each image is set such that the top-left of the bounding bawrbes the origin and x-and
y-coordinate are normalized by width and height of the bepeetively. Then, | define the
localization error of two matched pixels as:= 0.5(|z1 — x2| + |y1 — y2|), where(zy, y1) is
the pixel coordinate of the first image afd,, y-) is its corresponding location in the second
image. We apply this metric to Caltech-101 dataset as itigesvoounding box annotations for
the foreground objects. Note that LOC-ERR metric is evad&or the foreground pixels only,

as we define bounding box coordinates only for the pixelslethe box.

6.3.1 Raw Image Matching Accuracy

In this section, | evaluate raw pixel matching quality in tdifferent tasks: object match-

ing and scene matching.

Object matching under intra-class variations:  For this experiment, | randomly pick 15
pairs of images for each object class in the Caltech-104al(ig615 pairs of images). Each
image has ground-truth pixel labels for the foreground cbj€able 6.1 shows the result. DSP
outperforms SIFT Flow by 5 points in label transfer accurgey is about 25 times faster. DSP
achieves a 9 point gain over PatchMatch, in about half themen Its localization error and

IOU scores are also better.

Figure 6.5 shows example matches by the different methods.s&¥ that DSP works
robustly under image variations like appearance changdackiground clutter. On the other

hand, the two existing methods—both of which rely on onlyalogixel-level appearance—
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Figure 6.5: Example object matches per method. In each neatmple, the left image shows

the result of warping the second image to the first via pixelespondences, and the right one
shows the transferred pixel labels for the first image (whibeeground, black: background).

We see DSP works robustly under image variations like baxkut clutter (1st and 2nd exam-

ples in the first row), appearance change (4th and 5th oné®isdcond row). Further, even
when objects lack texture (3rd example in the first row), diunds reliable correspondences,
exploiting global object structure. However, the singtels version of DSP fails when objects
undergo substantial scale variation (6th example in therseoow). Best viewed in color.
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get lost under the substantial image variations. This shmwsthe proposed spatial pyramid
graph successfully imposes geometric regularization fuamous spatial extents, overcom-
ing the matching ambiguity that can arise if consideringalquxels alone. We also can see
some differences between the two existing models. Patdtiviettandons explicit geometric
smoothness for speed. However, this tends to hurt matchiabtgr—the matching positions of
even nearby pixels are quite dithered, making the resulsyn®n the other hand, SIFT Flow
imposes stronger smoothness by MRF connections betweebyngiaels, providing visually
more pleasing results. In effect, DSP combines the stremgjitine other two. Like PatchMatch,

| remove neighbor links in the pixel-level optimization fefficiency. However, | can do this
without hurting accuracy since larger spatial nodes in mylehenforce a proper smoothness

on pixels.

Scene matching: Whereas the object matching task is concerned with foregitaackground
matches, in the scene matching task each pixel in an exem@lanotated with one of multiple
class labels. Here | use the LMO dataset, which annotatetspas one of 33 class labels (e.qg.,
river, car, grass, building). | randomly split the test ardraplar images in half (1,344 images
each). For each test image, we first find the exemplar imagéstha nearest neighbor in GIST
space. Then, we match pixels between the test image andldoteseexemplar. When mea-
suring label transfer accuracy, | only consider the matighplxels that belong to the classes

common to both images. This setting is similar to the one 1.[6

Table 6.2 shows the resuftsAgain, DSP outperforms the current methods. Figure 6.6
compares some example scene matches. We see that DSP testézves the scene structure;
for example, the horizons (1st, 3rd, and 6th examples) agtingls (2nd, 4th, and 5th) are

robustly estimated.

3The 10U and LOC-ACC metrics assume a figure-ground setting heence are not applicable here.
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Approach LT-ACC | Time (s)

DSP (Ours) 0.706 0.360
SIFT Flow [62] | 0.672 11.52
PatchMatch [6]| 0.607 0.877

Table 6.2: Scene matching on the LMO dataset. DSP outpesfdrencurrent methods in both
accuracy and speed.

Figure 6.6: Example scene matches per method. Displayedg.i6.5, except here the scenes
have multiple labels (not just fg/bg). Pixel labels are negrky colors, denoting one of the 33
classes in the LMO dataset. Best viewed in color.
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6.3.2 Semantic Segmentation by Matching Pixels

Next, | apply the DSP method to a semantic segmentation ta&wing the protocol
in [61]. To explain briefly, we use DSP to match a test image tdtiple exemplar images,
where pixels in the exemplars are annotated by ground-ttafs labels. Then, the best match-
ing scores (SIFT descriptor distances) between each testgnd its corresponding exemplar
pixels define the class label likelihood of the test pixelindghis label likelihood, | use a stan-
dard MRF to assign a class label to each pixel. See [61] faildeBuilding on this common

framework, | test how the different matching methods infeeesegmentation quality.

Category-specific figure-ground segmentation: First, we perform binary figure-ground seg-
mentation on Caltech. | randomly select 15/15 test/exemplages from each class. | match a
test image to exemplars from the same class, and perfornefgnound segmentation with an
MREF as described above. Table 6.3 shows the result. My DSfedotms the current methods
substantially. Figure 6.7 shows example segmentatioritsesie see that DSP successfully

delineates foreground objects from confusing backgrounds

Approach LT-ACC | IOU

DSP (Ours) 0.868 | 0.694
SIFT Flow [62] | 0.820 | 0.641
PatchMatch [6]| 0.816 | 0.604

Table 6.3: Figure-ground segmentation results in Caltgth-

Figure 6.7: Example figure-ground segmentations on Calt@dh
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Multi-class pixel labeling: Next, | perform semantic segmentation on the LMO datasat. Fo
each test image, | first retrieve an initial exemplar “shsitl following [61]. The test image

is matched against only the shortlist exemplars to estitteelass likelihood$. | test three
different ways to define the shortlist: (1) using the groumtht (GT), (2) using GIST neighbors
(GIST), and (3) using an SVM to classify the images into onthef8 LMO scene categories,

and then retrieving GIST neighbors among only exemplars fittat scene label (SVM).

Table 6.4 shows the results. The segmentation accuracyndepa the shortlist mecha-
nism, for all methods. When using ground-truth annotattorchoose the shortlist, my method
clearly outperforms the others. On the other hand, whemgusitomatic methods to gener-
ate the shortlist (GIST and SVM), my gain becomes smallers Ehbecause (1) the shortlist
misses reasonable exemplar images that share class labelh&/test image and (2) SIFT
features may not be strong enough to discriminate confudagses in a noisy shortlist—some
classes (e.g., grass, field, and tree) are too similar to si;nguished by SIFT match scores
alone. Again, my method is more efficient; 15-20 times faften SIFT Flow, and about twice

as fast as Patch Match. Figure 6.8 shows example segmentasialts.

Approach | LT-ACC (GT) | LT-ACC (GIST) | LT-ACC (SVM)

DSP (Ours) 0.868 0.745 0.761
SIFT Flow [62] 0.834 0.759 0.753
PatchMatch [6]]  0.761 0.704 0.701

Table 6.4: Semantic segmentation results on the LMO dataset

“My test/exemplar split, shortlist, and MRF are all identitwathose in [61], except | do not exploit any prior
knowledge (e.g., likelihood of possible locations of ealdss in the image) to augment the cost function of the
MRF. Instead, | only use match scores in order to most directnpare the impact of the three matching methods.
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Figure 6.8: Example semantic segmentations on the LMO eatddy DSP and SIFT Flow
(SF) both work reasonably on this dataset, though my segtientis more consistent to the
image’s scene layout (e.g., the first and the third row). Gnadther hand, PatchMatch (PM)
results are quite noisy. The last row shows the failure cakere I fail to segment small objects
(cars).

6.3.3 Multi-Scale Matching

In this section, | show the results of my multi-scale forntiaia. For this experiment, |
test using the same image pairs from Caltech as used in Set. 6compare my multi-scale
method to various baselines, including all the fixed-scad¢hmds in the previous section and

PatchMatch with its multi-scale option on.

Figure 6.9 plots the matching accuracy as a function of seali@tion. The scale varia-
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Figure 6.9: Matching accuracy as a function of scale vanati MS and SS denote multi-scale
and single-scale, respectively.

tion between two objects is defined bﬁ%, whereO, and O, are the size of matched
objects in the first and the second image respectively. Wehsgehe curves from multi-scale
methods (DSP-MS and PM-MS) are flatter than the single-swads, verifying their relative

scale tolerance. In addition, my multi-scale method (DSE)Mutperforms multi-scale Patch-
Match (PM-MS) by a substantial margin. However, we also sgecarve is not perfectly flat

across the scale changes. This is because scale is not yhiachol that affects the matching.
In fact, as scale variation increases, | observe that abjeudergo more variations in viewpoint

or shapes as well, making the matching more challenging.

Figure 6.10 shows some matching examples by my multi-scateod, compared to my
single-scale counterpart. The examples show that my racdtie matching is flexible to scale

variations.

6.3.4 Use of Hierarchical Segmentation

So far | used regular grid cells for building DSP graph. Hoere®®SP model actually

has no restrictions on the types of input regions. In thisieecl test DSP method that builds
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Multi-scale Fixed-scale

Figure 6.10: Example matching results by my multi-scaleamayg. For comparison, | also
show results from my fixed-scale version. My multi-scale moetsuccessfully finds the correct
scale between objects, providing accurate matching. Orotther hand, a single-scale one
prefers the fixed size between objects, causing gross eeays in the 3rd example, Snoopy
matches to a globe since they have similar size.

on segmented regions obtained by state-of-the-art hi@aicsegmentation [3], which was
already used in Chapter 5 for segmentation-driven matchifig get hierarchical regions, |

generate three levels of segments using three differeashioid values in [3]. Note that hier-
archical segmentation inherently provides nested maéilesregions. Also, these regions form
adaptively to the visual cues in an image, which differs friwa regular grid pyramid that has

fixed structure.

Table 6.5 and Table 6.6 compare segmentation-based DS@ aoidfinal implementation.
We see that DSP from segmented regions provides slightterbatcuracy than the default
implementation that is based on regular grid regions. Tlag be because segmented regions

can help separate noisy background pixels from foregroumes evhen computing matching
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Approach LT-ACC | Time (s)
DSP (Grid Cells) 0.732 0.65
DSP (Segmented Regiong) 0.742 2.57

Table 6.5: Comparison of grid cells and segmented regiansd@ct matching on the Caltech-
101. DSP from segmented regions slightly outperforms theefoom regular grid cells, at the
cost of run-time.

Approach LT-ACC | Time (s)
DSP (Grid Cells) 0.706 0.36
DSP (Segmented Regiong) 0.709 2.36

Table 6.6: Comparison of grid cells and segmented regionsdene matching on the LMO
dataset.

cost. However, run-time becomes higher because we can gerlerploit the regularity of grid
cells for speed-up: non-regular regions allow neithergraeimage technique for efficiently

computing regions’ matching cost, nor fixed graph dataestine that is fast to build.

6.3.5 Balance across Different Levels of Pyramid

Finally, I show how various spatial supports from our pyrdmmodel achieve a balance
between robustness to image variations and accuratedatah with fine detail. To this end,
| compare matching accuracy from different spatial extegtsarying the number of pyramid

levels.

Table 6.7 summarizes the results. Each row in the table adother finer level to the
pyramid. The accuracy is then evaluated using the matchirenat the finest level in that
pyramid, as | did in the previous sections. We see that lapetial nodes from lower pyramid
levels provide better LT-ACC, whereas smaller nodes froghéi levels offer better IOU. Given
that LT-ACC takes all the pixels for evaluation whereas IQtd¢aunts for foreground pixels
only, these results point out (1) larger spatial nodes segad the matching ambiguity from
noisy background pixels, reducing the error at the backgip(?) smaller nodes enhance the

matching quality on the foreground pixels with fine details.
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Pyramid levels LT-ACC | IOU

level 1 0.745 | 0.442
level 1 + 2 0.745 | 0.462
level1+2+3 0.736 | 0.477

level 1 +2 + 3 + pixels| 0.732 | 0.482

Table 6.7: Matching accuracy in Caltech 101 in terms of thelmer of pyramid levels. The
first three results come from grid-layer pyramid, in whichigoyid level increases from 1 to 2
to 3, respectively. The last row denotes the result of ougial implementation in the main
paper, adding a pixel-level layer on top of three levels af-ggyer pyramid.
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Figure 6.11: Matching accuracy near the object boundary. eWuate matching accuracy
among different pyramid levels as a function of pixel disg@from the object boundary (up
to 30 pixels). A pyramid with finer spatial nodes (e.g., Pixahieves better accuracy for the
pixels near the object boundaries.

Figure 6.11 supports our point further, where | evaluatentaching accuracy for the
pixels near the object boundaries. We see that as the leysiramid gets higher, it achieves
a larger gain near the object boundaries, demonstratingesnspatial nodes (e.g., pixels) do

better at localizing the finer object structures such asobljyeundaries.

6.4 Discussion

In this chapter, | introduced a deformable spatial pyrarBi8R) model that exploits re-

gions’ hierarchical structure for fast dense correspooégmcross different objects or scenes.
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For fast computation, | developed a coarse-to-fine optitiwranethod on the pyramid graph.
Through extensive evaluations, | showed that 1) variousiapsupports by our spatial pyra-
mid improve matching quality, striking a balance betweeongetric regularization and accu-
rate localization, 2) the proposed pyramid structure pergfficient hierarchical optimization,
enabling fast dense matching, and 3) the proposed modeleaxtbnded into a multi-scale
setting, working flexibly under scale variations. As sudmeared to the existing methods that
rely on a flat pixel-based model, DSP achieves substaniias gaboth matching accuracy and

runtime for exemplar-based semantic segmentation tasks.

The immediate impact of DSP may arise from its fast run-tikkementioned, researchers
are exploring many new vision and graphics applicationsrtead dense pixel correspondences,
such as semantic image segmentation [62], image/video letiop [6], and non-parametric
video depth estimation [45]. These applications are aletam the “pixel transfer” idea—
transferring the information (e.g., class label, colomptti® of a pixel into its corresponding
pixel in a data-driven, exemplar-based way. Fast DSP magatan significantly enhance the

scalability of these exemplar-based applications.

Through the last two chapters, | introduced two differegioa-based matching methods,
segmentation-driven matching (SDM) in Chapter 5 and DSPisa¢hapter. Here, | contrast
trade-offs between two approaches in order to provide sosighits on when SDM will be

useful and when DSP is so.

SDM exploits a grouping cue of each region to impose a geocreinstraint for match-
ing features. The grouping cue is considered independémtigach region, which permits
each region to move flexibly when matched. This allows a greatlvantage when match-
ing deformable objects or objects with different spatigiolat. In Sec. 5.3.1, | showed SDM
can address many-to-many and many-to-one matches whe@®hbpve varying spatial layout
between images. On the other hand, DSP aims to impose strgagemetric regularization

by considering the connection across the different regiamegiions are encouraged to move
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together when matched. This helps disambiguate confugpipgaaance, improving the robust-
ness to appearance variations and background clutterisisehse, DSP is particularly useful
when matching images that share similar geometric layouéxhibit confusing appearances,

like scene images as shown in Sec. 6.3.

Regarding computational cost, DSP is noticeably fastertljmbgcause it discards con-
nections between nearby pixels in its graphical model, fwdnich we can obtain a fast closed-
form solution for matching. However, lack of neighbor coctiens sometimes leads to losing
geometric consistency of pixel-level matches—some pixetgt mix up when matched (e.g.,
losing their original spatial ordering in the matching Iboas). For label transfer task intro-
duced in this chapter, this phenomenon would not matter msicice it focuses on finding
matches in terms of class labels, while caring less aboytascurate geometric consistency.
However, for some graphics applications that require VWigisnooth and consistent results,
SDM would be more desirable since it maintains neighboradge via its string representa-

tion.
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Chapter 7

Conclusion

In this thesis, | explored shape-based visual perceptiom flow-level local shape de-
tection, to mid-level object segmentation, to high-lewjion-based matching. Not only does
each component itself forms a basic building block for visiesearch, but | also developed
an exemplar-based approach to integrate all those comimfogrihe ultimate goal of region-
based object recognition. Extensive evaluations on amgilttigy benchmark datasets validate the

effectiveness of my approach.

Toward region-based visual recognition, | first addresgegibn detection in both local-
and object-level. To capture objects’ local shapes, | psed@a Boundary Preserving Local Re-
gion (BPLR) detector that integrates multiple segmentetigpotheses to respect object bound-
aries. By combining shape cues from multiple segmentatigootheses, the BPLR detector

respects object boundaries, robustly capturing objeet kitape under image variations.

Building on the strength of BPLR detectors, | developed apragch for object-level
segmentation. The key insight of my approach is that shapesfi®n shared between objects of
different categories. This shape sharing phenomenon niigkessible to transfer object shapes
of one class to those of possibly unknown classes, provichtegory-independent shape priors.
| devised a partial shape match method via BPLRs to retriewset shape priors. As such,
unlike previous top-down segmentation methods, my apjpreao enhance the segmentation

of previously unseen objects.

Having established shape-based region detections, | mowdd region matching, in

which | bring together the above ideas for local- and objeet! region detection in a novel
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approach to efficient image matching. To this end, | prop@ssegmentation-driven local fea-
ture matching strategy, in which segmented regions in ttegercontrol spatial layout of the
matched features. To encode such spatial structures,detbai1D image representation whose
1D nature enables efficient computation for matching. Rgtboth region detection and match-

ing together, | achieved an exemplar-based region matehethod for object recognition.

To achieve scalable exemplar-based recognition, | explariast image matching. The
key idea is to exploit regions’ hierarchical structure,nfravhich | built a deformable spatial
pyramid graphical model that considers various spatiarestfor matching—from an entire
image, to grid cells, to every single pixel. My pyramid moelvell-suited for fast hierarchical
optimization. At the same time, various spatial supportsryyspatial pyramid improve the
matching quality, striking a balance between geometrialeggzation and accurate localization.
As a result, compared to today’s most popular and powerfuthinag methods, my approach

obtained substantial gains in both matching speed andawcur

Throughout, | addressed key issues of region-based racmgnirom region detection
to region-based matching to their applications for viseabgnition. Extensive evaluations on
challenging benchmark datasets validate the effectivenigbe proposed methods. Various ap-
plications demonstrates the promising potential of regiased visual recognition. To facilitate

the future research, I publicly release all my codes for thek&/in my thesis.
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Chapter 8

Future Work

For future work, | suggest some long-term research goaleefgion-based visual recog-
nition.

First, it would be very promising to find new problem domaihattour region-based
methods can effectively work. One interesting directioruldidoe to infer geometric relations
across different objects from their segmented shapes dsawglixel correspondences. The
goal is to leverage these low-level geometric informatimibuild a high-level object recogni-
tion system that is robust to geometric variations. In @sitto existing applications that rely
on ad-hoc methods to achieve geometric invariance like d@i+wielv component model, the
idea would be to estimate general patterns of geometriquhefitons from the shape and pixel
correspondences: e.g., we can learn a parametric moded$erand viewpoint variations of an

object class from seeing how a shape and its inner pixelsarobject move into another object.

Second, it is interesting to integrate both image segmentand dense pixel matching
in a unified framework. My current region-based approacts inra feed-forward way, where
segmented regions are first detected and they subsequerdly the matching. In contrast, |
wonder if we could combine both in a single objective functsn as for both segmentation
and matching to intertwine to improve each other. At a glamoesegmentation approaches
seem somewhat relevant in that they also segment multiglgesitogether. To my best knowl-
edge, however, dense correspondences have not been takeedount for co-segmentation.
Dense correspondences will add richer information for sagation: for example, pixel corre-
spondences can help compute multi-level segmentationslaiimg different levels of regions

between images. Thus, we can detect not only foregroundisigs in co-segmentation but also
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corresponding object parts across different images. Thiddvbe very useful for discovering

representative object parts that are common across the clas

Third, one could extend my approaches into video. For exaymy shape sharing idea
can be generalized into “space-time” sharing. By space-shape sharing, | mean objects will
not only share their shapes in a static form, but also exkihiilar types of shape deforma-
tions along the time sequence (e.g., animals run or walk im#ss fashion; people’s action
categories share many element motions). Based on thisiantuone would build a method to
detect object-like space-time volumes in videos. This iolespace-time shape sharing would
expand our previous object discovery work in [55], in thatatild be applied to both object and

action categories.

Fourth, I am interested in expanding the toolkits for theaegased recognition. Ef-
fective descriptors for representing BPLR and object serysn@re one very useful extension.
Particularly, a compact representation that encodes legibm’s appearance and shape would
be promising. The other useful extension would be a learbaged region detection that picks
the very object-like segments, while discarding noisyaagi We can train such a detector on

the regions introduced in the thesis—BPLR and shape sharing

Last but not least, it is of practical importance to develomputationally efficient meth-
ods for region detection and object segmentation. For elgngate-of-the-art bottom-up
and/or object-level segmentation methods take severaltesrfor segmenting images, which
is a bottleneck for scalable recognition. Particularlyyliaterested in efficient segmentation in
video, where one could exploit motion cue to prune out mamegassary regions (e.g., areas
without motion) for object hypotheses that otherwise waelguire expensive computation to

process.

123



[1]

Bibliography

B. Alexe, T. Deselaers, and V. Ferrari. Classcut for Lpewised Class Segmentation. In

European Conference on Computer Vision (ECQ0)L0.

[2] Y. Amit, M. Fink, N. Srebro, and S. Ullman. Uncovering 3&d Structures in Multiclass

[3]

[4]

Classification. Irinternational Conference on Machine Learning (ICMRPO7.

P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. ContougtBction and Hierarchical
Image SegmentationEEE Trans. on Pattern Analysis and Machine Intelliger®®(5),
2011.

P. Arbelaez, M. Marie, C. Fowlkes, and J. Malik. From Gaunts to Regions: An Empiri-

cal Evaluation. InfComputer Vision and Pattern Recognition (CVPR)09.

[5] S. Baker, R. Szeliski, and P. Anandan. A Layered Apprdachtereo Reconstruction. In

Computer Vision and Pattern Recognition (CVPE98.

[6] C. Barnes, E. Shechtman, D. Goldman, and A. Finkelstélme Generalized PatchMatch

[7]

Correspondence Algorithm. Buropean Conference on Computer Vision (ECC1L0.

E. Bart and S. Ullman. Cross-Generalization: Learningv&l Classes from a Single
Example by Feature Replacement.Gamputer Vision and Pattern Recognition (CVPR)

2005.

[8] A. Berg. Shape Matching and Object RecognitioRhD thesis, Compute Science Divi-

sion, Berkeley, 2005.

[9] A. Berg, T. Berg, and J. Malik. Shape Matching and Objeet&ynition Low Distortion

Correspondences. omputer Vision and Pattern Recognition (CVPE)05.

124



[10] I. Biederman. Recognition-by-Components: A TheorHofman Image Understanding.
Psychological Reviey4(2):115-147, 1987.

[11] O. Boiman, E. Shechtman, and M. Irani. In Defense of saNeighbor Based Image

Classification. InfComputer Vision and Pattern Recognition (CVPE)08.

[12] E. Borenstein and S. Ullman. Class-Specific, Top-Dowgr8entation. IrEuropean
Conference on Computer Vision (ECC¥D02.

[13] A. Bosch, A. Zisserman, and X. Munoz. Image Classifmatising Random Forests and

Ferns. Ininternational Conference on Computer Vision (ICC2007.

[14] A. Bosch, A. Zisserman, and X.Munoz. Representing $hafih a Spatial Pyramid
Kernel. InContent based Image and Video Retriev2007.

[15] Y. Boykov, O. Veksler, and R. Zabih. Fast ApproximatesEgy Minimization via Graph
Cuts. IEEE Trans. on Pattern Analysis and Machine Intelligerz#(11), 2001.

[16] W. Brendel and S. Todorovic. Segmentation as Maximumgitendependent Set. In

Neural Information Processing Systems (NIPZ)10.

[17] T.Brox, L. Bourdev, S. Maji, and J. Malik. Object Segnteion by Alignment of Poselet
Activations to Image Contours. l8omputer Vision and Pattern Recognition (CVPR)

2011.

[18] L. Cao and L. Fei-Fei. Spatially Coherent Latent Topiodél for Concurrent Segmenta-
tion and Classification of Objects and Sceneslnternational Conference on Computer

Vision (ICCV) 2007.

[19] J. Carreira and C. Sminchisescu. Constrained Paraméitn-Cuts for Automatic Object

Segmentation. IComputer Vision and Pattern Recognition (CVPR)10.

125



[20] T. Chan and W. Zhu. Level Set Based Shape Prior Segmemtatn Computer Vision
and Pattern Recognition (CVPRJ005.

[21] H. Chen, Y. Lin, and B. Chen. Robust Feature MatchinghwAlternate Hough and

Inverted Hough Transforms. l@omputer Vision and Pattern Recognition (CVPR)13.

[22] D. Comaniciu and P. Meer. Mean Shift: A Robust Approadward Feature Space
Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligen24(5):603-619,
2002.

[23] O. Duchenne, A. Joulin, and J. Ponce. A Graph-matchiegqil for Object Categoriza-

tion. InInternational Conference on Computer Vision (ICC2011.

[24] I. Endres and D. Hoiem. Category Independent Objecp&sals. InEuropean Confer-
ence on Computer Vision (ECC\2010.

[25] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A.s&erman. The Pascal Visual
Object Classes (VOC) Challengmternational Journal of Computer Visio88(2), 2010.

[26] L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian AppgrdaadJnsupervised One-Shot
Learning of Object Categories. International Conference on Computer Vision (ICCV)

2003.

[27] P. Felzenswalb, D. McAllester, and D. Ramanan. A Dmeanatively Trained Multiscale

Deformable Part Model. I€omputer Vision and Pattern Recognition (CVPR)08.

[28] P. Felzenszwalb and D. Huttenlocher. Efficient Gra@s®&l Image Segmentatioimter-
national Journal of Computer Vision9(2), 2004.

[29] P. Felzenszwalb and D. Huttenlocher. Efficient Belisfgagation for Early Vision.In-
ternational Journal of Computer Visioid0(1), 2006.

126



[30] V. Ferrari, F. Jurie, and C. Schmid. From Images to Shdpdels for Object Detection.
International Journal of Computer VisioB87(3), 2010.

[31] V. Ferrari, T. Tuytelaars, and L. Gool. Object Detentiny Contour Segment Networks.

In European Conference on Computer Vision (ECQ006.

[32] V. Ferrari, T. Tuytelaars, and L. Gool. Simultaneoug&abRecognition and Segmen-
tation from Single or Multiple Model ViewsInternational Journal of Computer Vision

67(2):159-188, Apr. 2006,

[33] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning Glb&onsistent Local Distance
Functions for Shape-Based Image Retrieval and Classditaitn International Confer-

ence on Computer Vision (ICC\VJ007.

[34] C. Galleguillos, B. Babenko, A. Rabinovich, and S. Bejee. Weakly Supervised Object
Localization with Stable Segmentations. HEoaropean Conference on Computer Vision

(ECCV) 2008.

[35] P. Gehler and S. Nowozin. On Feature Combination fortMialss Object Classification.

In International Conference on Computer Vision (ICC2009.

[36] K. Grauman and T. Darrell. The Pyramid Match Kernel: @isiinative Classification
with Sets of Image Features. International Conference on Computer Vision (ICCV)

2005.

[37] G. Griffin, A. Holub, and P. Perona. Caltech-256 Objeet&gory Dataset. Technical
report, CalTech, 2007.

[38] C.Gu, J.Lim, P. Arbelaez, and J. Malik. RecognitiontdsRegions. IrlComputer Vision
and Pattern Recognition (CVPRJ009.

127



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

T. Hassner, V. Mayzels, and L. Zelnik-Manor. On SIFTgl dineir Scales. IlComputer
Vision and Pattern Recognition (CVPRD12.

D. Hoiem, A. Efros, and M. Hebert. Geometric contexinfra single image. linterna-

tional Conference on Computer Vision (ICCZPO05.

D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recoveringolision Boundaries from a

Single Image. Irinternational Conference on Computer Vision (ICC2)07.

A. lon, J. Carreira, and C. Sminchisescu. Image Segatientby Figure-Ground Com-
position into Maximal Cliques. Iinternational Conference on Computer Vision (ICCV)

2011.

F. Jurie and C. Schmid. Scale-Invariant Shape Featard2ecognition of Object Cate-

gories. InComputer Vision and Pattern Recognition (CVPER)04.

J. Kannala, E. Rahtu, B. Brandt, and J. Heikkila. ObRetognition and Segmentation by
Non-Rigid Quasi-Dense Matching. omputer Vision and Pattern Recognition (CVPR)
2008.

K. Karsch, C. Liu, and S. Kang. Depth Extraction from ¥aUsing Non-parametric

Sampling. InEuropean Conference on Computer Vision (ECQ@)112.

J. Kim and K. Grauman. Asymmetric Region-to-Image Niag for Comparing Images
with Generic Object Categories. Domputer Vision and Pattern Recognition (CVPR)
2010.

J. Kim and K. Grauman. Boundary Preserving Dense Loegiiéhs. InComputer Vision

and Pattern Recognition (CVPR)011.

J. Kim and K. Grauman. Shape Sharing for Object Segntienta In European Confer-

ence on Computer Vision (ECCG\2012.

128



[49] J. Kim, C. Liu, F. Sha, and K. Grauman. Deformable Sp&tiaamid Matching for Fast

Dense Correspondences. @omputer Vision and Pattern Recognition (CVPE)13.

[50] P. Koniusz and K. Mikolajczyk. Segmentation Based fies¢ Points and Evaluation
of Unsupervised Image Segmentation Methods. Biitish Machine Vision Conference

(BMVC), 2009,

[51] A. Kumar and C. Sminchisescu. Support Kernel Machirmesdbject Recognition. In

International Conference on Computer Vision (ICC2007.

[52] M. Kumar, P. Torr, and A. Zisserman. OBJ CUT. @omputer Vision and Pattern
Recognition (CVPRR005.

[53] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags otifesait Spatial Pyramid Match-
ing for Recognizing Natural Scene CategoriesCbmputer Vision and Pattern Recogni-

tion (CVPR) 2006.

[54] Y. Lee and K. Grauman. Foreground Focus: Unsupervisearing from Partially
Matching Imagesinternational Journal of Computer Visio85(2), May 2009.

[55] Y. Lee, J. Kim, and K. Grauman. Key-Segments for VidegedbSegmentation. In

International Conference on Computer Vision (ICCR011.

[56] V. Lempitsky, A. Blake, and C. Rother. Image Segmentatly Branch-and-Mincut. In

European Conference on Computer Vision (ECCQA008.

[57] M. Leordeanu and M. Hebert. A Spectral Technique forr€gpondence Problems using

Pairwise Constraints. Imternational Conference on Computer Vision (ICC2005.

[58] A. Levin and Y. Weiss. Learning to Combine Bottom-Up anap-Down Segmentation.

In European Conference on Computer Vision (ECQ006.

129



[59] A. Levinshtein, C. Sminchisescu, and S. Dickinson. tidghle Symmetric Part Detection

and Grouping. Irinternational Conference on Computer Vision (ICC2009.

[60] Y. Lin, T. Liu, and C. Fuh. Local Ensemble Kernel Leamifor Object Category Recog-
nition. In Computer Vision and Pattern Recognition (CVPR)07.

[61] C. Liu, J. Yuen, and A. Torralba. Nonparametric Scenesifg via Label TransferlEEE
Trans. on Pattern Analysis and Machine Intelligen88(12), 2011.

[62] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Cop@sdence across Different
Scenes and Its Application$EEE Trans. on Pattern Analysis and Machine Intelligence

33(5), 2011.

[63] C. Liu, J.Yuen, A. Torralba, J. Sivic, and W. Freemanft Biow: Dense Correspondences

across Different Scenes. European Conference on Computer Vision (ECQ00S.

[64] D. Lowe. Distinctive Image Features from Scale-Ingati Keypoints. International

Journal of Computer Visigr60(2), 2004.

[65] J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. PonBescriminative Sparse Im-
age Models for Class-Specific Edge Detection and Imagegrgttion. InEuropean

Conference on Computer Vision (ECCYZDO08.

[66] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. UsingnBaurs to Detect and Localize

Junctions in Natural Images. @omputer Vision and Pattern Recognition (CVPR)08.

[67] T. Malisiewicz and A. Efros. Improving Spatial Suppéot Objects via Multiple Seg-
mentations. IrBritish Machine Vision Conference (BMV,Q007.

[68] J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust WidesBas Stereo from Maximally
Stable Extremal Regions. British Machine Vision Conference (BMV,GZ002.

130



[69] K. Mikolajczyk and C. Schmid. Scale and Affine Invaridnterest Point DetectorsIn-
ternational Journal of Computer Visioi(60):63—86, October 2004.

[70] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. ZissermdnMatas, F. Schaffalitzky, T. Kadir,
and L. V. Gool. A Comparison of Affine Region Detectordnternational Journal of

Computer Vision65:43-72, 2005.

[71] M. Muja and D. Lowe. Fast Approximate Nearest Neighbaith Automatic Algorithm
Configuration. Innternational Conference on Computer Vision Theory andlidppons

20009.

[72] E. Nowak, F. Jurie, and B. Triggs. Sampling Strategeefag-of-Features Image Clas-

sification. InEuropean Conference on Computer Vision (ECQ0)06.

[73] A. Opelt, A. Pinz, and A. Zisserman. Incremental Leaghof Object Detectors Using a

Visual Shape Alphabet. IGomputer Vision and Pattern Recognition (CVPR)06.

[74] M. Pandey and S. Lazebnik. Scene Recognition and Wealkpervised Object Local-
ization with Deformable Part-Based Models. Ifriernational Conference on Computer

Vision (ICCV) 2011.

[75] C. Pantofaru, G. Dorko, C. Schmid, and M. Hebert. ConmgrRegions and Patches
for Object Class Localization. IBeyond Patches, Workshop in conjunction with CYPR

2006.

[76] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserm&ost in Quantization: Improv-
ing Particular Object Retrieval in Large Scale Image Databa InComputer Vision and

Pattern Recognition (CVPR2008.

[77] T. Quack, V. Ferrari, B. Leibe, and L. Gool. Efficient Mg of Frequent and Distinctive

Feature Configurations. International Conference on Computer Vision (ICCX0)07.

131



[78] A. Quattoni, M. Collins, and T. Darrell. Transfer Learg for Image Classification with
Sparse Prototype RepresentationsCbmputer Vision and Pattern Recognition (CVPR)
2008.

[79] X. Ren, C. Fowlkes, and J. Malik. Figure/Ground Assigamhin Natural Images. In

European Conference on Computer Vision (ECCAD06.

[80] X. Ren and J. Malik. Learning a Classification Model f@agientation. Innternational
Conference on Computer Vision (ICC\2D03.

[81] C. Rother, V. Komogorov, and A. Blake. Grabcut: Inténae Foreground Extraction

Using Iterated Graph Cuts. BIGGRAPH 2004.

[82] M. Sabuncu and P. Ramadge. Using Spanning Graphs faidfffiimage Registration.
IEEE Trans. on Image Processinty/, 2008.

[83] D. Scharstein and R. Szeliski. A Taxonomy and EvaluatbDense Two-frame Stereo

Correspondence Algorithménternational Journal of Computer Visioa7, 2002.

[84] T. Sebastian, P. Klein, and B. Kimia. Recognition of Sés by Editing their Shock
Graphs.IEEE Trans. on Pattern Analysis and Machine Intelliger@&551-571, 2004.

[85] H. Shum and R. Szeliksi. Construction and Refinement arfdPamic Mosaics with
Global and Local Alignment. Ihnternational Conference on Computer Vision (ICCV)

1998.

[86] P. Srinivasan, Q. Zhu, and J. Shi. Many-to-one Contoatdding for Describing and
Discriminating Object Shape. @omputer Vision and Pattern Recognition (CVPE)10.

[87] M. Stark, M. Goesele, and B. Schiele. A Shape-Based@@gjiss Model for Knowledge

Transfer. Ininternational Conference on Computer Vision (ICC2009.

132



[88] S. Todorovic and N. Ahuja. Extracting Subimages of arkbwn Category from a Set
of Images. InComputer Vision and Pattern Recognition (CVPE)06.

[89] S. Todorovic and N. Ahuja. Learning Subcategory Ratees for Category Recognition.
In Computer Vision and Pattern Recognition (CVPE)08.

[90] S. Todorovic and N. Ahuja. Region-Based Hierarchicahge Matching.International
Journal of Computer Visiqry8(1):47-66, Jan. 2008.

[91] A. Torralba, K. Murphy, and W. Freeman. Sharing Visuabkures for Multiclass and
Multiview Object Detection.IEEE Trans. on Pattern Analysis and Machine Intelligence

29(5), 2007.

[92] T. Tuytelaars. Dense Interest Points. @omputer Vision and Pattern Recognition

(CVPR) 2010.

[93] M. Varma and D. Ray. Learning the Discriminative Powmrariance Trade-Off. In

International Conference on Computer Vision (ICC2007.
[94] VLFeat Open Source Libranhttp://www.vlfeat.org/

[95] N. Vu and B. Manjunath. Shape Prior Segmentation of MildtObjects with Graph Cuts.
In Computer Vision and Pattern Recognition (CVPE)08.

[96] Z. Wu, Q. Ke, M. Isard, and J. Sun. Bundling Features farge Scale Partial-Duplicate
Web Image Search. I@omputer Vision and Pattern Recognition (CVPER)09.

[97] D. Xu, T. Cham, S. Yan, and S. Chang. Near Duplicate Inidgetification with Spatially
Aligned Pyramid Matching. 'Computer Vision and Pattern Recognition (CVPR)08.

[98] Y. Yang, S. Hallman, D. Ramanan, and C. Fowlkes. Lay&égect Models for Image
SegmentationlEEE Trans. on Pattern Analysis and Machine Intelliger2@01.

133



[99] H. Zhang, A. Berg, M. Marie, and J. Malik. SVM-KNN: Didaninative Nearest Neighbor
Classfication for Visual Category Recognition. @omputer Vision and Pattern Recogni-

tion (CVPR) 2006.

134



