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Visual recognition research develops algorithms and sgprations to autonomously recog-
nize visual entities such as objects, actions, and atg#hulhe traditional protocol involves
manually collecting training image examples, annotatimgnt in specific ways, and then
learning models to explain the annotated examples. Howaéveris a rather limited way
to transfer human knowledge to visual recognition systgragijcularly considering the im-

mense number of visual concepts that are to be learned.

| propose new forms of active learning that facilitate lasgale transfer of human knowl-
edge to visual recognition systems in a cost-effective Wéne approach is cost-effective in
the sense that the division of labor between the machinedeand the human annotators
respects any cues regarding which annotations would be (ea$ard) for either party to

provide. The approach is large-scale in that it can deal withrge number of annotation
types, multiple human annotators, and huge pools of urddlgsta. In particular, | consider

three important aspects of the problem:



(1) cost-sensitive multi-level active learning, where ¢éixpected informativeness of any can-
didate image annotation is weighed against the predictstl afoobtaining it in order to
choose the best annotation at every iteration. (2) buddeséch active learning, a novel
active learning setting that perfectly suits automaticriesy from crowd-sourcing services
where there are multiple annotators and each annotatikmtag vary in difficulty. (3) sub-
linear time active learning, where one needs to retrievedlpmints that are most informative
to a classifier in time that is sub-linear in the number of balad examples, i.e., without

having to exhaustively scan the entire collection.

Using the proposed solutions for each aspect, | then demad@stcomplete end-to-end active
learning system for scalable, autonomous, online learofrapject detectors. The approach
provides state-of-the-art recognition and detectionlteswhile using minimal total man-
ual effort. Overall, my work enables recognition systerat ttontinuously improve their

knowledge of the world by learning to ask the right questioiisuman supervisors.
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Chapter 1

Introduction

Computer vision research is aimed at developing algoritant representations that will
enable a computer system to autonomously analyze visuahiation. One of the primary
challenges in this research is the problem of recognizingede object categories. It is
challenging on a number of levels: objects of the same class erhibit wide variability

in appearance, real-world images naturally contain largeumts of irrelevant background
“clutter”, and subtle context cues can in many cases bealrtacproper perception of objects.
Nonetheless, recent advances have shown the feasibilitsild statistical machine learning

techniques to build accurate models for a number of wellreefobject categories.

However, some form of human supervision is required to tsaich models. Figure 1.1(a)
illustrates the traditional protocol for providing supesien for object recognition systems.
Training data containing a large number of examples of tiegaaies to be learned are first
manually collected. Depending on the requirement of theahbeing learned, the collected
examples are annotated in specific ways. This may range fggirtg images with category
labels to outlining object boundaries to marking landmasinfs on objects and cropping,
aligning and normalizing the pose of objects. Unfortunatlle accuracy of most current

approaches relies heavily on the amount of such labeledrigagexamples available for each



Current
—>| category
models

. Category
e —

Issue request:
“Geta full

image #31.”

Unlabeled data Labeled data

Partially and weakly Labeled data
labeled data

Unlabeled data

(a) The current protocol for learning classi- (b) The active learning protocol for learn-
fiers. Training data is manually collected, ing classifiers. Training data is manually or
and annotated to train a classifier. automatically collected, and the system re-
peatedly chooses examples to request anno-
tations from a human annotator.
Figure 1.1: Contrast between the traditional protocol aining classifiers for visual recog-
nition (left) and the proposed active learning frameworgh().
class of interest, which effectively restricts existinguks to relatively few categories of

objects (often on the order of 10s).

Considering that recognition research aims at learningaViepresentations of about 30,000
nouns (objects) notwithstanding the innumerable verbofas) and adjectives (attributes),
the standard protocol of learning models from carefullyhgeéd and annotated images is

unsuitable as a means of transferring human knowledge.rticipiar,

e Collecting such hand-crafted training examples is an esiperendeavor in terms of
manual effort. While recent work in vision has consideredu@ng this reliance on
supervision, there is no direct measure of the amount of alagfort that is being

expended.

¢ Allowing a human to select examples for training a systenhingdvertently introduce

biases in the collected data. In addition, there is an olsviisconnect between what a



human considers as “useful” and what a vision system wilkater as “useful”.

e Data collection is treated as a one-time preprocessing stémwever, realistically any
learning system must be expected to continuously perdsieavironment and identify

concepts that it finds unclear in order to expand its horiZdmowledge.

The vision community is well aware of the challenge of redgahe reliance of object recog-
nition methods on well-annotated datasets. Recent methaxts considered reducing the
“level” of supervision by using weakly labeled images whatle easier to obtain [119, 32,
73, 125, 115], re-using knowledge across categories [J4rtDleveraging the free but noisy
tagged images on the Web [31, 70, 106]. In an effort to redbe€‘amount” of supervi-

sion, approaches have been devised for labeling and oglimlabeled examples effectively
through active learning strategies [18, 75, 123, 54, 7752821] or semi-supervised meth-
ods [16, 40, 43, 68]. Working in the other direction, someagsh seeks to ease the “effort”
required to provide supervision by tempting users with gaomrenice datasets [116, 83] or

compensation [96}

While the results are encouraging, existing techniquégdaaddress the following key in-

sights about cost-effective large-scale transfer of hukmanviedge:

e The division of labor between the machine learner and thedmulabelers ought to
respect any cues regarding which annotations would be eas$a(d) for either party

to provide. This means that there should be a definitive naifdoth howinformative

1| will discuss these methods in more detail and provide @stsrwith my approach in Chapter 2.



a particular annotation is to the learner and how meibrt it requires from a human
supervisor. Also, to use a fixed amount of manual effort miisttvely may call for a
combination of annotations at multiple supervision le\elg., a full segmentation on

some images and a present/absent flag on others).

e With the availability of multiple human annotators workisgnultaneously the ma-
chine learner must be able to distribute the labor acrogsrdiit annotators in the most
effective way. This means that the learning system must Il tabgenerate large
batches of annotation queries simultaneously that not mntymize the total annota-

tion cost but also provide as much non-overlapping inforomeds possible.

e Finally, since obtaining annotations from a human is arrative process, any large-
scale learning system must be able to quickly generate anootquestions without
wasting the annotators’ time. Therefore, the learner migstlae able to pinpoint the
most informative label requests among a large pool of umdabexamples without

having to exhaustively scan the entire dataset.

My thesis “Active Visual Category Learning” successfulhcorporates these insights in or-
der to provide a cost-effective approach for learning Misaacepts such as object categories.
Figure 1.1(b) illustrates the proposed active learningqua where the learned model itself
selects the most informative examples to obtain labelsrfionfa human annotator. While
traditional active learning has been shown to reduce tlanoimber of labels to train classi-
fiers, there are several distinct unsolved problems wheasthg informative data to annotate

for visual recognition. Through my thesis work | address#ienportant problems:



e How can a classifier learn from annotations at multiple lewé#lgranularity? (Chap-

ter 3)

e How do we define a principled way to compare every candidat®tation both in
terms of how much effort it might require and how much infotio@ it might provide?

(Chapter 3)

e Can we predict an image’s annotation costs directly frorfeégures so as to compute

its true worth? (Chapter 3)

e How do we utilize multiple annotators at once so that thel tataotation cost is re-

duced? (Chapter 4)

e Can we design active selection methods that do not need tustitely scan all avail-

able annotations in order to pick a question to ask? (Ch&pter

Solutions to these problems fundamentally enhance adaming as a cost-effective large-
scale means for learning various visual concepts. | dematesthis by developing the first
system capable of scalable, automatic online learning jefobbdetectors with crowd-sourced

labels (Chapter 6).

Through extensive experiments on several challengingsdttd demonstrate that my ap-
proach can learn visual classifiers with a lower expendipfirmanual effort when compared
to the state-of-the-art and several relevant baselinentgabs. In particular, | demonstrate a
large-scale system for autonomous online learning thatakgs the state-of-the-art for the
most difficult objects in the PASCAL dataset, a widely acedpthallenging benchmark for
object detection, thus showing that the proposed framevgoaskmore effective protocol for

learning visual models.



1.1 Overview of Thesis

This section previews the main components of my thesis, dvige the reader a compact
summary of the chapters ahead. In the following subsectiopsovide a summary of the
problems | have addressed, expanding the themes introdiimeae with a bit more detail.

The following chapters provide technical ideas and re$aiteach component.

1.1.1 Cost-sensitive Active Learning with Multi-level Queies

Traditional active learning methods design selectioredatfor choosing an unlabeled exam-
ple on which to requestsingletype of label from an oracle (e.g., which category the exampl
belongs to, or whether a particular object exists in the inaxpmple so as to improve the
category model [124, 54, 21, 77, 107]). However, to use a fa@dunt of manual effort
resources most effectively the category learner must bevatl to choose from a mixture of
annotations at different levels of granularity (strongip¢led and weakly labeled) depend-
ing on how confidently the model can explain the example. ®hieecause strongly labeled
examples are less ambiguous but more expensive in termsmiahaffort, while weakly
labeled examples are more ambiguous in their labels bugrgasobtain. Take for example, a
full segmentation on images as opposed to a present/absgnltfinight be easier to provide
a present/absent flag on an image compared to object oythioe®ver, a full segmentation
provides unambiguous information to the classifier. SirtyiJaghe longer the video, the longer
it will take to watch it and annotate its contents; the morghssticated or time-consuming

the image query, the more we may need to pay a human labelesteeait.

The learning algorithm must therefore be able to accomneottiet multiple levels of gran-



Figure 1.2: The problem setting of

our cost-sensitive active learning ap-

............................................................................................ ) proach. Useful image annotations

N m,'fgﬁ"'_'ﬁ. — E){:‘g,,:’,‘:,'{,';,"ﬁg’;;ﬁﬂ can occur at mulltipliellevels. of granu-

loss exponsive more expensive D e e larity, and each individual image ex-

~ ample can require different amounts

of manual effort. The main chal-

lenge is to design an active selec-
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tations based on both how informa-
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effort they require.

Coarser labels,

more expensive less expensive

Finer labels,

ularity that may occur in image annotations, and to computehvitemat which of those
levelsappears to be most fruitful to have labeled next. Additipnathile most approaches
assume that all unlabeled examples require the same aionatast, the actual manual effort
required to provide an annotation varies both accordingeannotation type as well as the
particular image example. Hence, an active learner musomigtincorporate the variable
cost of an annotation into its selection function, but itwkdaalso be able to predict the cost
of an image example even before obtaining it. Finally, mesi-world images consist of
multiple objects, and so should be associated withtiple labels simultaneously. Note that
multi-label is thus more general thamulti-class where usually each example is assumed to
represent an item from a single class. Therefore, ideallgcive learner must be able to
both learn from and assess the value of images containing smknown combination of

categories. Figure 1.2 illustrates the problem setting.

In order to handle these issues, | consider an active leaframework where the expected

informativeness of any candidate image annotation is veglgtgainst the predicted cost of



obtaining it. | devise anultiple-instance, multi-label learning (MIMUprmulation that al-
lows the system itself to choose which annotations to re¢diased on the expected benefit
to its current object models. After learning from a smaltialiset of labeled images, my
method surveys any available unlabeled data to choose tlsé pnomising annotation to
receive next. After re-training, the process repeats,icoally improving the models with

minimal manual intervention.

Critically, our active learner chooses both which imagenapia as well as whatype of
annotation to request: a complete image segmentationnaesggtion of a single object, or
an image-level category label naming one of the objectsiwith Furthermore, since any
request can require a different amount of manual effort tllfuve explicitly balance the
value of a new annotation against the time it might take teixecit. Even for the same
type of annotation, some images are faster to annotate tharsqe.g., a complicated scene
vs. an image with few objects). Humans can easily glance anage and roughly gauge
the difficulty. But can we predict annotation costs diredtlym image features? Learning
with data collected from annotators on the Web, we show tttateaselection gains actually

improve when we account for the task’s variable difficulty.

Our results demonstrate that (1) the active learner obtingrate models with much less
manual effort than typical passive learners, (2) we camyfagliably estimate how much a
putative annotation will cost given the image content aJarel (3) our multi-label, multi-
level strategy outperforms conventional active methods #re restricted to requesting a

single type of annotation.



Figure 1.3: The problem setting for
budgeted batch active selection. With
the availability of multiple simulta-
neous annotators itis often preferable
to farm out a batch of good queries at
once. Since examples have variable
annotation costs, the main challenge
is to select the most useful set of
examples without overspending the
given annotation budget.
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1.1.2 Selection under a Budget for Multiple Simultaneous Anotators

The previous section dealt with choosingiagleannotation from a large pool of multiple
types of annotation queries. Such an approach can be useditelassifiers when a single
human annotator is available to interact with the systemwea¥er, in many applications
multiple annotators are available simultaneously (e.gechnical Turk[96], LabelMe[83]).
An active learning system that needs to repeatedly go ofilimtecompute the next annotation
request cannot take advantage of such resources. Theréfoeey be preferable to farm out
a batchof good queries at once. There are a few recent active leamethods that try to
select afixed batch of examples at each iteration [12, 57, 42]. Howevesh 4achniques
typically assume that all examples require the same amdumtaual effort to label, and
thus aim to minimize the total number of queries made. Inityedhe cost associated with

labeling different examples often varies, sometimes &iantly, discussed above.

Therefore, | formalize the problem of far-sighted activarieng with a budget. Figure 1.3
shows the problem setting of this approach. At each itendhe active learner is allowed to

choose a set of examples to get labeled, provided the tatalo$wwosts associated with the



selected examples is under a given budget. | propose a n@giebohfor optimally selecting a
set of examples for a support vector machine (SVM) classifieler these conditions. Given
a large unlabeled pool of data where each example has aniassiocost, we introduce a
set of instance selection variables. | formulate an opttan problem to learn the maxi-
mum margin hyperplane along with the instance variablesrthaimize the empirical risk
(on both the labeled data and selected unlabeled pointsle sédttisfying the given budget
constraint. We then relax it to a continuous optimizatioobpem that can be decomposed
into two strictly convex optimization problems loosely pbed in the hyperplane parame-
ters and selection variables. We devise a monotonicallyergent alternating minimization

algorithm to compute the solution.

To my knowledge, the proposed approach is the first batcheastlection strategy that is
sensitive to the costs of labeling, and the first method tonaliets of training examples to
be chosen so as to meet a prescribed budget. The efficienbg abtmponent optimization
steps also makes it rather scalable to large unlabeled data. g~urthermore, in contrast to
previous methods, our approach considers how much thefdasbjective changes if we
were to obtain the most probable labels on the candidate @earfor selection. We find that
this aspect is critical to performance, particularly in gractical scenario where one wants

to set a large budget at each iteration.

| validate my method on benchmark datasets for three retiograpplications: object recog-
nition, activity recognition, and content-based imageeeal. | demonstrate the advantages
of our approach compared to passive, myopic greedy, ant batection baselines, and show

its effectiveness across a range of budgets. Our resultsatedhat budgeted batch selection
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is crucial for efficient active learning in practical sceoar clearly outperforming conven-

tional myopic selection techniques.

1.1.3 Sub-linear Time Active Learning for Web-scale Data

So far, | considered actively selecting annotations fronitigie types and for multiple an-
notators, assuming throughout that human effort is moreeesige than machine cycles.
However, when one considers applying active learning oy kagge “unprepared” unlabeled
datasets the expense of selecting the annotation to relgeesines equally important. Gen-
erally methods today are tested in somewhat canned scendr@implementor has a mod-
erately sized labeled dataset, and simply withholds thel¢afbom the learner until a given
point is selected, at which point the “oracle” reveals theelaln reality, one would like to de-
ploy an active learner ontauly massive unlabeled data pool (e.g., all documents on the Web)
and let it crawl for the instances that appear most valuabl¢hie target classification task.
The problem is that a scan of millions of points is rather exgdee to compute exhaustively,

and thus defeats the purpose of improving overall learnifigjency.

Therefore, we consider the problem of performing activeden on large-scale datasets
where the computational cost of selection outweighs otbasiderations as shown in Fig-
ure 1.4. For active selection, we use the “simple margirécen criterion for a linear SVM
classifier. Given a hyperplane classifier and an unlabeletigfosector data, the point that
minimizes the distance to the current decision boundarglecsged for labeling. This is a
widely used margin-based selection criterion [98, 85, 1] & has been shown to substan-

tially reduce total human annotation effort. However, fargke-scale active learning, even
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Figure 1.4: The problem setting for our
sub-linear time active learning approach.
gl i =~/ In order to deploy an active learner on the
% Iutiple simuttaneous Amnotators) - |grge amounts of unlabeled data that are
;'gggf,';';;;fe'wﬁ available through web based resources,
nearscant oy one must be able to select informative
; examples with minimal computational
(= costs. The main challenge is therefore to
design a selection algorithm that requires
sub-linear selection time, i.e., it does not
have to exhaustively scan the entire unla-
beled pool.

with such a simple albeit effective criterion it is impraeti to exhaustively apply the classi-
fier to all unlabeled points at each round of learning. Thareefto exploit massive unlabeled
pools, a fast (sub-linear time) search method to identiéydlosest points to a given hyper-

plane is needed.

To this end, | consider the novel Nearest Neighbor to a Qugpeplane (NNQH) problem
and propose two approximate solutions. For each, | intredarcdomized hash functions that
offer query times sub-linear in the size of the database paodde bounds for the approx-
imation error of the neighbors retrieved. Our first approdehises a two-bit hash function
that is locality-sensitive for the angle between the hylzamg normal and a database point.
Our second approach embeds the inputs such that the Eucliiktance reflects the hyper-
plane distance, thereby making them searchable with egisfpproximate nearest neighbor
algorithms for vector data. While the preprocessing in agt fnethod is more efficient, our

second method has stronger accuracy guarantees.

Our two NNQH solutions supply exactly the hash functionsdeekto rapidly identify the
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most uncertain examples for a linear SVM classifier accgrdanthe “simple margin” se-
lection criterion. Therefore, our algorithms make it pbssito benefit fromboth massive
unlabeled collections as well as actively chosen labelestsu | demonstrate our algorithms’
significant practical impact for large-scale active leagwith SVM classifiers. Our results
show that our method helps scale-up active learning forsteaproblems with massive un-

labeled pools on the order of millions of examples.

1.1.4 A Large-scale System for Autonomous Online Visual Leaaing

My goal in defining and solving the problems described in tfeijous sections is to enable
large-scale transfer of human knowledge for learning Visoacepts such as objects and
activities. In order to demonstrate the effectiveness ofsmlution as a viable protocol for
learning visual models, as the final component of this thésigilt the first complete end-to-

end system for scalable, autonomous online learning otbdgtectors.

| chose object detection as a suitable setting to demoasisgtects of our solution because
(1) object detection typically requires identifying a degight-fitting window among thou-
sands of windows within an image, an ideal setting for ougdascale selection approach; (2)
state-of-the-art methods for detection typically requiénge numbers of training examples
annotated using bounding boxes, an expensive process \gkpease, we believe, can be
significantly reduced using our active approach; (3) it isatremely challenging problem

where any progress is diligently recorded and encouradg&d[2 103, 62, 29].

| present an approach fbve learningof object detectors, in which the system autonomously

refines its models while iteratively feeding annotationuests to crowd-sourced human la-
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belers. Rather than fill the data pool with some canned datds®e system itself gathers
possibly relevant images via keyword search. It repeatsdlyeys the data to identify un-
labeled sub-windows that are most uncertain accordingdéatinrent model, and generates
tasks on Mechanical Turk to get the corresponding boundimgannotations. After an an-
notation budget is spent, we obtain a category model whiohbeaused to detect instances
of the category on novel test images. Notably, throughaaiptiocedureve do not intervene
with what goes into the system’s data pool, nor the annatagiaality from the hundreds of

online annotators.

In order to handle the technical challenges such a large-syatem entails, | propose a
novel part-based detector amenable to linear classifiacsshow how to identify its most
uncertain instances in sub-linear time with our hashingebasolution. Our detector strikes a
good balance between speed and accuracy, with results titwgoeith and even exceeding
the state-of-the-art on the PASCAL VOC. Most importantlghbw successful live learning
in an uncontrolled setting. The system learns accurateesawith much less human effort

than strong baselines that rely on human-verified keywoadcberesults.

1.2 Main Contributions

My thesis makes several important contributions for vigeabgnition and active learning.
| provide a method to actively learn categories from a mixtaf weakly and strongly la-

beled examples. We are the first to identify and address titdgan of active visual category
learning with multi-level annotations. My approach ackiexiges the variable manual effort

costs of different images and provides a unified frameworlpfedicting both the informa-
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tion content and the cost of different types of image anmmatfor the multi-label learning
setting. | also define a novel active learning problem, btettybatch active learning, where
there are multiple annotators and each example requireffeaedit annotation cost depend-
ing on its difficulty, and propose an efficient solution foloosing a set of examples that fit
under an annotation budget. | demonstrate the applicafioaraapproach for learning three
different tasks: object recognition, activity recognitji@nd content-based image retrieval. |
then provide two hashing-based solutions for the novel@pprate nearest neighbor to a hy-
perplane query problem which enables large-scale po@ebastive learning. | empirically
demonstrate that our solutions make it practical to perfactive selection with millions of
unlabeled points. Tying all these together, | develop tret iomplete end-to-end solution
for scalable, automatic online learning of object detexiormhich the system autonomously
refines its models by actively requesting crowd-sourceatations on images crawled from

the Web.

1.3 Road Map

In the following chapter | discuss some background matenal related work to the thesis.
In Chapter 3 | consider the problem of learning effectivalyni annotations occurring at
multiple levels of granularity. In Chapter 4, | consider gh@blem of selecting a batch of
examples that provide the most improvement in a classifigrctibe without overspending
a given annotation budget. In Chapter 5, | consider the prolif retrieving the examples
that are most informative to a hyperplane classifier with@wing to exhaustively scan the

entire database. In Chapter 6, | explain our approachiverlearning of object detectors
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by autonomously querying annotations on select examptes firowd-sourcing services.

Finally, Chapter 7 discusses the main contributions of negith
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Chapter 2

Related Work

In this chapter | review work related to the research preskmtthis thesis. The fundamental
aim of this thesis is to provide a systematic way of introdgcsupervision while learning

object models. Given the expense of labeled image dateandsss have explored various
ways to reduce supervision requirements. The relevantquswork aimed at reducing su-
pervision requirements can be broadly grouped into thriferdnt threads. The first thread
aims at reducing the “level” of supervision, coarsely csp@nding to the difficulty of pro-

viding a particular type of annotation. The second line aeagch tackles the “amount” of
supervision in terms of the number of training examples tie&td to be annotated. A third

line of research tackles the “effort” involved in providiagnotations.

| describe each strategy in turn, and conclude the subsesatiith a brief overview of impor-

tant relationships and contrasts with my work.

2.1 Reducing the Level of Supervision

Most approaches to object recognition require some formuafdn supervision. This may
range from identifying parts of objects [128, 22] to cropgpand aligning images of objects to

be learned [114, 100], to providing complete image segntiena[67] and bounding boxes
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(a) Individual object parts (eyes) (b) Landmark points are marked (c) Images are cropped, aligned
are outlined in training images of  on training objects (resistor). and normalized for training a face
faces. detector.

aetoplanedidsFaceRight

Face

(d) All objects in the image are (e) A bounding box is provided (f) Image level tag specifying the
outlined and labeled. around the object of interest. type of object present.

Figure 2.1: Figure illustrating the different kinds of smygsion that can be provided onimage
data.
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[28] to weak image level tags [14] and auxiliary data indiogian object’s identity [94, 40]
as shown in Figure 2.1 (approximately ordered in decredswels of supervision). In the

following we review some of these approaches.

2.1.1 Weakly Supervised Recognition

Some of the earliest work in object recognition and detectaquire considerable human
effort in collecting training examples for learning cldisis. Features of faces are detected
and described using deformable templates in [128] usingl{caafted parts based on the
knowledge of the object category being modeled (e.g. eyeses) ears, etc for describing
faces). Active shape models are learned for different ¢djesing hand-labeled landmark
points on different views of training objects in [22]. In |]] a state-of-the-art face detector
is built using training data that consists of cropped, fabnhormalized images of a large

number of faces.

Given the expense of collecting such hand-labeled exanfptegeneric objects, computer
vision research has since explored the paradigiwedkly supervisedecognition. These
approaches assume that each image contains a single objetrest, and the only super-
vision required is an image level label saying whether ittaors the object of interest or
not. Robust models are then built using these “weak” labl®elsategorize and localize ob-
jects in novel images. Using weakly labeled images to leategories was first proposed
in [119, 32]. Similarly, in [5], a joint distribution of imagregions and words is learned using
only tags on images. These approaches learn to associatepbiasize features on certain

image regions based on their repeated occurrence in a largber of training images. In
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contrast, “stronger” labels such as bounding boxes reaqunoee manual effort, but directly

provide these regions of interest to the classifier.

Several researchers have since shown that multiple irstaaming (MIL) can accommodate
the weak or noisy supervision often available for image &, 73, 125, 115]. Multiple-
instance learning considers a particular form of weak sugien where the learner is given
a set ofpositive bagswhich are sets of instances containing at least one pesitstance
and negative bagswhich are sets of instances none of which are positive. Goetpto
traditional supervised learning, the labels availabléeMIL setting are ambiguous or weak
as they do not specify which among the instances in a positigeare positive. The multiple-
instance learning setting was first identified in [25], whpresented ambiguously labeled
examples using axis-parallel hyper-rectangles and detmrated applications for drug activity
prediction. More recently MIL has received various treatisevithin the machine learning
community [132, 2, 37, 79, 13]. In [13] for example, a largargin MIL formulation that
addresses the possibility of very sparse positive bagoisased, and it is demonstrated on

several machine learning datasets.

There are several instances of MIL in vision targeting défe tasks using a similar setting.
In this setting, an image consisting of a set of regions/camept blobs/segments is a positive
bag, and only a subset of the component blobs are true positamples (i.e., correspond to
foreground). Labels are available only at the image levetgping if the image contains at
least one component blob that belongs to a particular dia$g3], for example, MIL is used
in this setting to classify natural scenes using very lowlgsn images. Content-based im-

age retrieval is solved using an MIL based approach in [128]. MWeakly supervised object
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localization is performed using an MIL approach in [36] wderultiple stable segmentations

represent the set of instances in a bag.

Multi-label variants of MIL, Multiple-Instance Multi-Ladd Learning (MIML), are proposed
in [133, 129], where instances within a bag can belong to amyber of classes (as opposed
to {+1,-1} for MIL), but in a similar spirit to MIL only image level labslare available
to the classifier. Hence, an image can be associated with @amper of classes, which is
the case for truly unprepared images. In [133], the MIML peob is transformed into a
traditional supervised task by clustering instances witléigs and computingl@ag of words
representation of the instances. More recently, the asithioj129, 131] model the relation
between instances and labels more explicitly using hid@eiables or class-specific feature
representations, with the goal of exploiting category coumrence cues. In [77], the authors
introduce an active approach to select sample-label pagsdon the idea that for multi-label
data, only a part of labels need to be annotated while otharse inferred by exploring

correlations between labels.
Discussion.

While it is commendable that a lot of research in computepwuiss concentrated on low su-
pervision recognition, we must exercise some caution befompletely discarding stronger
annotations such as bounding boxes or segmentations. reaah of [114] is still the
state-of-the-art face detection method even though izaslistronger supervision. Therefore,
it may be that a single strong annotation could be worth tteevaf a very large number of
weak annotations in some cases. To further reinforce tesghthe current best approaches

on the PASCAL VOC dataset utilize the bounding box informatprovided around the ob-
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jects in training images. Though on fairly regular datasetsh as Caltech101 weak supervi-
sion (image tags) may provide more than sufficient infororato learn accurate models, on

harder datasets such as the PASCAL VOC stronger informatéems essential.

Therefore, instead of completely ignoring stronger antimrta, what we need is a principled
way of comparing annotations at different levels both im®iof how much manual effort
they consume and how much information they provide to thesdi@r to best utilize the
manual effort resources that are available to us. This isadrtee major problems that |

tackle in this thesis.

In particular, MIL provides a way of learning simultaneguBiom strongly and weakly la-
beled examples, which | show in later chapters to be a cr@wnationality for minimizing
supervision requirements. As part of this thesis, | alsppse a kernel-based approach for
solving the MIML problem that produces state-of-the-agulés in order to tackle object
recognition in the multi-label setting. Further, | idegtdn additional setting where a weak
form of supervision is available in object recognition atbw how MIL can be used in
conjunction with keyword based search results to obtain thogeto learn object categories

without any human supervision.

2.1.2 Unsupervised Recognition

Apart from utilizing weak forms of supervision, recent matls have also shown the possibil-
ity of learning visual patterns from unlabeled image cdltats [78, 94, 40, 66]. In this group
of methods the only supervision the user is required to pimis to identify a single object’s

or a cluster’s identity once the images have been autontigtmganized. Several of these
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approaches are based on image clustering techniques tomhamdate local image feature
representations. A number of authors have studied prabbilustering methods originally
used for text—such as probabilistic Latent Semantic Ansl SA), Latent Dirichlet Anal-
ysis, and Hierarchical Dirichlet Processes—to discoverttillden mixture of visual themes
(“topics”) in a collection of unorganized [94, 82] or semiganized [31, 70] image data.
Alternatively, several approaches have considered clogtalgorithms such as normalized
cuts and affinity propagation [40, 66, 26, 56]. Given an uelad collection of images these
approaches typically organize the images into differeatigs that have a semantic meaning
with respect to an underlying similarity matrix. These noeth demonstrate excellent results

on datasets such as Caltech101 where the images belongirggategory are highly regular.

However, clustering methods are most appropriate for rgiimrage data, but not necessarily
for learning categories: they may sometimes elicit thenss®@ated with semantic cate-
gories, but there is no way to guarantee it. A common flaw ohsuethods, frequently

referred to, is that they are themselves not equipped tageonodels to classify novel ex-

amples. For example, pLSA requires some way to select whigic to use for each class
model, and must resort to a “folding-in” heuristic. Many bétclustering approaches require
a large number of constantly repeating patterns to prodfieetie clusters, and therefore

may not be appropriate when such data is scarce.

2.1.3 Alternative Sources of Training Data

In addition to reducing the level of supervision, visiongaschers have also identified in-

novative ways to take advantage of data sources where taxialig accompanies images.
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These methods exploit the weak connection between the eesdusding images and the
semantic meaning of the image to essentially obtain “fresafitng data with which they can
learn classifiers. For example, in [8], news captions oaegalongside photographs are used
to cluster faces occurring in the pictures. Annotated sfukto libraries have been used by
a number of approaches such as [27] to automatically areotatel examples. Several au-
thors use the information present in generic web pages & &ltd mine useful images for

categories [127, 9, 86].

In particular, several methods try to download images otegmy through keyword searches
and learn visual category models straight from the autarallyicollected image data. Such
approaches attempt to deal with the images’ lack of homatemelirectly, either by using
clustering techniques to establish a mixture of possibéeiali themes [94, 31, 70], or by
applying models known to work well with correctly labeledal#o see how well they stretch
to accommodate “noisily” labeled data [33, 86]. Unfortuelgtthe variable quality of the
search returns and the difficulty in automatically estimgithe appropriate number of theme

modes make such indirect strategies somewhat incompatitiie¢he task.

Discussion. With the advent of more search functionalities through ssvenline portals
such as Flickr which provide high quality image data, utiig such “free” data becomes
imperative if the goal is to minimize supervision requirense As part of the thesis, | out-
line a method that exploits text-based indexing to gathagienexamples, however thereafter
it learns categories from the image content alone. In centmaprevious approaches, this
allows categories of interest to be directly specified, armlpces a large-margin classifier

to recognize novel instances. In later chapters, | alsoldp\eelarge-scale system that au-
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tonomously learns category models by collecting image gkasrithrough keyword searches

and obtains annotations using crowd-sourcing services.

2.2 Reducing the Amount of Supervision

A parallel line of research aimed at reducing the superisgguirements looks at minimiz-
ing the number of labeled examples. Semi-supervised legumiethods accomplish this by
supplementing the limited amount of labeled data with adargmber of easily available
unlabeled data. Active learning approaches, on the othat,lraduce the number of labels
required to learn a classifier by allowing the classifier terguabels on only the most in-
formative examples. Notably, prior to the research in mgithehere is little work in visual

recognition exploiting active learning strategies.

2.2.1 Semi-supervised Visual Learning

Semi-supervised learning approaches build classifierssmgla large amount of unlabeled
data, together with a small amount of labeled data. Theesanvork in semi-supervised
learning utilize unlabeled data based on the “cluster” mgdion that points of a class tend to
form clusters. Based on this assumption, unlabeled datthearbe used as an aid in finding
the boundary of each cluster, following which the labeleth{socan be used to assign a class
to each cluster [97]. Because semi-supervised learningregless human effort and gives
higher accuracy, several researchers have consideregrapplich techniques for problems

in recognition.
In [16, 40] the possibility of learning visual patterns frgrartially labeled image collections
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is explored in a semi-supervised setting for image clasgifin. Using partially annotated
data, the authors augment the model with constraints tol@arehk supervision and achieve

performance comparable to the fully supervised setting.

In [70], a form of semi-supervised learning, self-trainirgused to learn from a combination
of labeled seed examples and unlabeled images downloamtadte web. In self-training the

classifier is first trained using the small amount of labela dvailable. The most confident
unlabeled points, together with their predicted labels,then added to the training set and
the classifier is re-trained. Co-training, another formaerhgsupervised learning where two
or more independent classifiers train each other by clasgifyisjoint sets of unlabeled data,

is explored for action recognition in [43] and for objectelgion in [68].

One known difficulty with semi-supervised learning is thatlbmatching of problem struc-
ture with the semi-supervised model assumption could leategradation in classifier per-
formance [134]. For example, many semi-supervised appesaassume that the density of
points near the decision boundary is low. When data is sairipéen two overlapping Gaus-
sian distributions, such an assumption becomes invalidmtould lead to poor performance.
Therefore, detecting the problem structure in advance pplyiag the right semi-supervised

technique is important in such cases.

2.2.2 Active Learning

In contrast, active learning strategies use unlabeledi@tininstead select informative ex-
amples on which labels are obtained from a human oracle (geeeR2.2). Therefore, active

learning directly targets the number of labeled examplatribed to be provided to the clas-
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@ Positive
O Negative
@® Unlabeled

Figure 2.2: In active learning the classifier is initiallgitned on a small set of examples, and
the classifier chooses informative examples from an unéabgbol of data to request labels.
In the figure points in black are unlabeled data points, aedcthssifier is most uncertain
about the examples that fall between the positive and negplanes. Therefore, requesting
labels on these examples would provide the most benefit teldssifier. Note that this
figure shows one particular form of active learning based argin-based selection [98] as
an intuitive example.

sifier to learn a good model. There are several active legrsirategies introduced in the
machine learning literature for choosing the right exantplguery. See [87] for a detailed

survey of active learning approaches.

Uncertainty sampling is a popular method that selects tlaengkes over which the current
classifier is least confident on a label assignment. A sttimghard uncertainty sampling
approach for probabilistic classifiers or support vectociaes would be to choose points
that have probabilities close to 0.5 [69], or that are aldregrhargin of the separating hyper-
plane. For multi-label classifiers the classification goyrof an unlabeled instance provides
a more general uncertainty measure and several approadEssp to select the point with

the largest entropy for labeling [46].
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A more theoretically motivated framework for active leagpconsiders choosing points that
reduce the version space of the classifier the most. Theovesgiace of a classifier is the
set of all hypotheses that are consistent with the currardfdabeled examples. If training

a classifier is viewed as a search for the best model withivéingion space, then the goal
of such methods is to constrain the size of the version spaoguah as possible using few
labeled instances. In [98], a simple margin-based selectiethod for SVMs is proposed
which attempts to minimize the version space of the SVM atyeweration. In [90], a query

by committee approach for active learning is proposed, &/l@ecompeting committee of
models is initially trained on some labeled data, followimigich the unlabeled instance that
disagrees most with the committee is selected for labelihgoretical justifications showing

that such an approach reduces the version space is prowifi@s] i

Another general active learning approach is to query thaimte that would impart the great-
est change to the current model if its label were known. Famgde, decision-theoretic
measures that compute the expected model change have h@eredxn [71, 55], where

they were applied to classify synthetic data and voicemailcommon result of all these
approaches is that random or passive learning tends to wéetge amount of labeled train-
ing data which are either uninformative or already corgeckhssified, while active learning

strategies instead choose only a small subset of the tepdiata to reach similar accuracies.

Given the advantages of such techniques and the expens&aofing labeled image data, a

few authors have begun to apply active learning methodsifi@reint problems in vision.

Relevance feedbadak content based image retrieval was first identified as allplesspplica-

tion of active learning in [18, 75], where image retrievadults are refined to match a user’s

28



subjective query concept. In [123], relevance feedbaclomsiclered for video annotations
in an active learning framework taking into account the kigéxpense of annotating video

data.

Active learning with Gaussian Process classifiers is intced in [54] for the task of image
recognition. An active criterion for instance-level g@aris suggested in [89] and applied
within an MI learner for an image categorization task whereémaage is a weakly labeled
bag of segments. More recently, [48, 52] consider activenlag for multi-class object
recognition using nearest neighbor and support vector maatiassifiers. In [77] the au-
thors propose a two dimensional active selection apprdaathselects along both the label
dimension and the instance dimension, which applies to thié-fabel setting where an ex-
ample is associated with multiple labels. Dataset creatsing active selection is explored
in [21]. These approaches are examples of traditional @édiarning, which we also refer
to asflat-cost active learningince they assume unifom cost for obtaining labels and try to

reduce the total number of labels.

However, in reality, the amount of effort required to pravidbels could vary significantly
across different unlabeled examples and labels dependiragrmumber of factors. A few
studies in the learning community try and quantify manuébréfon a per example basis
for different learning tasks in order to perforost-sensitive active learningn [55, 4], the

length of a voice mail or sentence is used to approximat@tifly examples that could take
more or less manual effort to annotate. Budgeted learningdtive classifierswhich work

on constrained budgets while querying attributes on a ¥&stele, is explored in the work of

[41] for medical diagnosis. In [80], regressors are leadp&skd on sentence length, number
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of characters, etc to predict annotation time for documiasssdfication. While the length of a
voice mail or the cost of a medical diagnosis directly pregithe cost of an example, no such
direct measure exists to quantify the effort involved inyidang an image annotation. Thus
far, no existing approaches in object recognition attemgantify or predict the amount of

effort required to provide annotations on image examples.

The above approaches focus on selecting a single unlabedthtce to label, retraining the
classifier at each iteration. However, retraining can bespgye and even disruptive to the
learning process; in fact, when one has access to multipteeférs” at once (e.g., on Me-
chanical Turk [96, 24]), datchselection would be more effective. A fdvatch-mode active
learning approaches have been proposed recently [12, 57, 42], inguche that targets a
computer vision application [45]. Batch selection calls fimore than a selection of thE-
best queries at a given iteration, since such a greedy gyrdiges not account for possible
overlap in information. Instead, researchers design seftefunctions that balance infor-
mativeness with the so-call@liversityamong the selected set [12, 45]. In [57], the authors
provide bounds on the advantage of myopic active learnimg batch-mode selection meth-
ods when using the maximum entropy criterion, which is anartgmt result for batch-mode
selection approaches. Using this bound they design anitlgothat switches between se-
quential active learning (exploration) and batch-modenieg (exploitation) depending on

the tightness of the bounds on the current classifier.

Discussion.Active learning approaches so far considered for objecigeition are based on
what we refer to as the traditional active learning paradigniinary or multi-class classifi-

cation. In traditional active learning each example hag onk type of label associated with
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it, and the idea is to select the example that should be ldivedet. We also refer to this type
of active learningsingle-levelactive learning to emphasize the fact that labels are odxdain
at a single level of granularity. However, the active setecproblem for object recognition
is more complex. Most real world images typically containltiple objects belonging to
different categories, and users can provide annotatiodgfatent levels depending on the
classifier's knowledge. Moreover, the amount of manualrefiequired to provide a partic-
ular annotation could vary significantly depending on bdié type of annotation and the

particular image example.

In addition, most approaches are myopic in the sense thatdheose a single example
to label at an iteration. The few batch-mode active lear@pgroaches ignore the cost of
labeling examples and rely on the current classifier to edgrancertainty. As a result, these
functions’ performance can degrade with very large bateareswhen the examples have

variable costs.

Finally, previous active learning methods in vision focasmage classification, and no work
addresses the more complex problem of object detectionendres needs to not only name
objects but also localize their extent in the images. BExgséipproaches demonstrate results
under the “sandbox” setting where fixed datasets of modett b@ve already been selected

and labeled. | address these issues in this thesis.

2.3 Reducing the Effort of Providing Supervision

Collecting benchmark datasets and training examples #inggvarious object recognition

methods has been largely the responsibility of the visiseaechers trying to build category
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models. The Caltech 101 dataset for 101 different categovees, for example, collected
from the web and manually pruned by a group of researcheraltgdd. This places a huge
burden on the researchers and could further introduce diasthe dataset. Thus, some
research seeks to facilitate or ease the “effort” involvedallecting and providing annotated

examples using innovative interfaces for images and videos

2.3.1 Labeling Services

A few distributed labeling services that target the largenbar of users in the world wide
web have been successfully utilized for obtaining imageotations efficiently. The La-

belme dataset [83] targets vision researchers by provicleanly labeled data in return for
providing annotations using their free web annotation {sek Figure 2.3). More recently,
the possibility of directly compensating annotators widisit in a distributed framework has

arisen with crowd sourcing services such as Mechanical [k

These methods provide nice web-based interfaces wheres#rtasushown an image along
with possibly one or more existing annotations, which aeswiron the image. The user has
the option of annotating a new object by clicking along thermary of the desired object
and indicating its identity, or editing an existing annaiat The user may annotate as many
objects in the image as they wish. Most users work either ii@cticompensation or as a

constructive way of entertaining themselves.
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Figure 2.3: A screenshot of the labeling tool in use. The issshown an image along with
possibly one or more existing annotations, which are drawthe image. The user has the
option of annotating a new object by clicking along the bamydf the desired object and
indicating its identity, or editing an existing annotatioiihe user may annotate as many
objects in the image as they wish. Image from [83].

2.3.2 Image Annotation Games

In the work of Luis Von Ahn [116, 117, 44], the process of pdirg annotations is posed
as innovative games which are targeted at the large comynoindnline users. When users
play the game they help determine the contents of imagesserdueferences by providing
meaningful labels for them. Briefly, the games are playedway partners and is meant to
be played online by a large number of pairs at once. Partmersaadomly assigned from

among all the people playing the game.

In [116], the goal of the game is to guess what their partnéygsg for each. Once both
players have typed the same string, they move on to the neademThe words that two

players agree on are treated as valid labels for the imag@eékaboom[117], one of the
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partners (Boom) gets an image along with a word related tanti must reveal parts of
the image for the other partner (Peek) to guess the correat. wsimilarly, Matchin [44]

measures user preferences by making people guess whichsrrer partners would prefer.

2.3.3 Interactive Segmentation

Interactive segmentation algorithms make it easier for ramotator to specify a region of
interest. Such tools require very little user interactmeeégment complex foreground objects
without having to trace the outline of the entire objecteligent Scissors [74] allows a user
to choose minimum cost paths by roughly tracing the objdmbsndary with the mouse.
As the mouse moves, the minimum cost path from the cursotipodiack to the point is
shown. In graph Cut [11], the interface allows users to markain pixels as belonging to
the foreground or background. Graph cut algorithms are tised to find a globally optimal
segmentation using boundary and region information. Guriaf8l] extends the graph-cut
segmentation tool using a robust algorithm for “border mgttto estimate simultaneously

the alpha-matte around an object boundary and the colomedifound pixels.

Discussion. The above approaches provide nice interfaces for colig@motations with
the goal of making the annotation process less cumbersomm®i@ interesting to the user.
However, they select image queries in a random fashion withaotion of which example
might be useful to a classifier. Integrating an active leagfilamework with these techniques
could provide more direction to the image queries enablivegdonstruction of small but

extremely informative datasets for learning categories.

Having summarized related work in this area, | will next detey approach to address these
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issues in the following chapters. The next chapter intreduane of the central ideas of my

thesis, that ofmulti-level active learning
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Chapter 3

Cost-sensitive Active Learning with Multi-level Queries

Active learning strategies provide a way to reduce the mekaon labeled training data by
minimizing the number of labeled examples required to ledassifiers. They typically do
this by allowing the classifier to choose which example needb& labeled next from a large
pool of unlabeled examples, reducing supervision withaatificing much accuracy in the
final model. The assumption is that while unlabeled exampdesbe collected with little
or no effort, providing annotations on the examples entals-trivial effort. Such methods
are therefore appealing for object recognition becauskeohbundance of unlabeled images
(available, for example, on the Web) and the substantiatteféquired to provide detailed

annotations.

However, in the general case, visual category learning doesit the mold of traditional

active learning approaches, which primarily aim to redieertumber of labeled examples
required to learn a classifier, and almost always assumeaafilecision task. When trying to
choose informative image data to label for recognitiontelege three important distinctions

we ought to take into account.

First, while many of today’s manually collected datase®iase that the class to be learned

occurs prominently in the foreground and therefore can lseaated with a single label,
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Coarser labels,
less expensive

(@) Most real-world images contain
multiple objects and can therefore be
associated with multiple labels.

Finer labels,
more expensive

(b) Useful image annotations can occur
at multiple levels of granularity. For ex-
ample, a learner may only know whether
- Py B the image contains a particular object or
Low effort High effort not (top row, dotted boxes denote object

(c) The actual manual effort required to is present), or it may also have segmented

label varies according to annotation type foregrounds (middle row), or it may have
and image example. detailed outlines of object parts (bottom

row).

Figure 3.1: Three important problems that need to be adelles$ile choosing informa-
tive image data to label for recognition, none of which arasidered by traditional active
learning approaches.

most naturally occurring images consist of multiple olgecTherefore, an image can be
associated witlmultiple labelssimultaneously as shown in Figure 3.1taJhis means that

an active learner must assess the value of an image comaome unknown combination

of categories.

Second, whereas in conventional learning tasks the ammotptocess consists of simply

assigning a class label to an example, image annotation ealoe at different levels—

IMulti-label is thus more general thanulti-class where usually each example is assumed to represent an
item from a single class.
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by assigning class labels, drawing a segmentation of oljeghdaries, or naming some
region (Figure 3.1(b)). Richer annotations such as segatiens provide more information
from which to infer class membership, but require more éféor the part of the person
providing supervision. While recent work has begun to esgloays to reduce the level of
supervision ([119, 94, 78, 6, 31, 70, 116, 83, 105]), suchrigpes fail to address a key
issue: to use a fixed amount of manual effort most effectiuedy call for a combination of
annotation at different supervision levels. Thereforstead of ignoring annotations such as
segmentations, which require more effort to obtain, we reepdncipled way of predicting
the tradeoff between the effort and information gain asged with any candidate image
annotation. This means an active learner must be able tselfomm annotations at multiple
levels of granularity and specify not only which example &isb whattype of annotation is

currently most helpful.

Third, while previous methods implicitly assume that alhatations cost the same amount
of effort (and thus minimize the total number of queriesg, élctual manual effort required to
label images varies both according to the annotation typeetisas the particular image ex-
ample. For example, completely segmenting an image andinigtadl objects requires more
time and effort than providing an image-level tag spectyobject presence. Even for the
same type of annotation, some images are faster to annbtatethers (e.g., a complicated

scene versus an image with few objects, as seen in Figur@3.1(

In this chapter, | incorporate these insights and proposaifeed framework for predicting
both the information content and the cost of different typesmage annotations, for the

Multiple-instance Multi-label learning (MIML) setting.iure 3.2 provides an overview of
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Figure 3.2: Overview of the proposed approach. (a) We lebjecb categories from multi-
label images, with a mixture of weak and strong labels. (@ @btive selection function
surveys unlabeled and partially labeled images, and fdn eandidate annotation, predicts
the tradeoff between its informativeness versus the maeftat it would cost to obtain. (c)
The most promising annotations are requested and used &beuibed current classifier.

our proposed approach. After learning from a small initetlaf labeled images, our method
evaluates all available unlabeled data using a novel Valuaformation (VOI) based se-
lection function in order to choose the most promising aaton to receive next. After
re-training, the process repeats, continually improvimgmodels with minimal manual in-

tervention.?

3.1 Multi-level Active Prediction of Useful Image Annotations for Recog-
nition
The goal of this work is to learn category models with minimsupervision under the real-

world setting where each potential training image can beaated with multiple classes.

Throughout, our assumption is that human effort is morececand expensive than machine

2The contents of this chapter were published in [106, 107, 108].
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cycles; thus our method prefers to invest in computing thet eeries to make, rather than

bother human annotators for an abundance of less usefiings2

We consider image collections consisting of a variety ofesuigory information: some im-

ages are labeled as containing the category of intereso{prsome have both a class label
and object outlines, while others have no annotations at\&lderive an active learning cri-

terion function that predicts how informative further atat@mn on any particular unlabeled
image or region would be, while accounting for the varialxgense associated with different
annotation types. Specifically, we show how to continuadlyess the value of three different
types of annotations: a label on an image region, an imags &g, and a complete segmen-
tation of the entire image (see Figure 3.6). We also refdneed types as “levels”, since they
correspond to different levels of detail in the annotatids long as the information expected
from further annotations outweighs the cost of obtainiregrihour algorithm will request the

next valuable label, re-train the classifier, and repeat.

In the following, | introduce the multiple-instance leargi (MIL) and multiple-instance

multi-label learning (MIML) frameworks and define a dischmative kernel-based classifier
that can deal with annotations at multiple levels (Sectidnl3d. Then, | derive a decision-
theoretic function to select informative annotations iis thulti-label setting, leveraging the
estimated costs (Section 3.1.2.3). Finally, | develop eehmethod to predict the cost of an

annotation (Section 3.1.2.4).

3Later in Chapter 5, | will return to the issue of how to also miize the machine effort (selection time).

40



3.1.1 Multiple-instance Multi-label Learning

An arbitrary unlabeled image is likely to contain multiplgjects. At the same time, typically
the easiest annotation to obtain is a list of objects presghin an image. Both aspects
can be accommodated in the multiple-instance multi-lag@iding setting, where one can
provide labels at multiple levels of granularity (e.g., oedevel or region-level), and the
classifier learns to discriminate between multiple clagses when they occur within the

same example.

In the following, | extend support vector machine based Milttie multi-label case. The
main motivation of our design is to satisfy both the multv¢hscenario as well as the needs
of our active selection function. Specifically, we need siféers that can rapidly be incre-
mentally updated, and which produce probabilistic outputsstimate how likely each label

assignment is given the input.

3.1.1.1 Multiple-instance Learning

In the MIL setting, as first defined by [25], the learner is gigets(bags) of instances and
told that at least one example from a positive bag is posiwele none of the members in a
negative bag is positive. The goal of MIL is to induce the fimt that will accurately label

individual instances such as the ones within the trainirggha spite of the label ambiguity:

the ratio of negative to positive instances within everyifpgsbag can be arbitrarily high.

Specifically, there is a set of labeled training bags which is itself comprised of a set of

positive bagsY, and a set of negative bags,. Let X be a bag of instances, ardd, =
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{X € &)} andX, = {z|z € X € X,} be the set of positive bags and negative instances,
respectively. The goal is to determine the functjon R {+1, —1} that best predicts
labels for new input patterns drawn from the same distrdovudis the training examples, such

that the probability of error is minimized.

(b)

Figure 3.3: Example scenarios where MIL is suitable for imatassification. (a) In this
scenario training images are represented by a bag of regiwha positive image contains at
least one of the regions containing the object of interdgt Groups of images downloaded
from keyword searches from multiple search engines areip®biags and individual images
are the instances.

MIL is well-suited for the following two image classificaticscenarios as illustrated in Fig-

ure 3.3:

¢ In the first scenario, training images are labeled as to venetiey contain the category
of interest, but they also contain other objects and backgt@lutter. Every image is
represented by a bag of regions, each of which is charaeteby its color, texture,
shape, etc. [73, 125] as shown in Figure 3.3(a). For poditags, at least one of the
regions contains the object of interest. The goal is to ptedhen new image regions
contain the object—that is, to learn to label regions agfiarend or background. Since

a positive instance is a positive bag containing a singkais, MIL can accommodate
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both region labels (instance-level) and image tags (bagleThis is a form of “weak”

supervision.

¢ In the second scenario, the keyword associated with a agtégoised to download
groups of images from multiple search engines in multipfegleages. Each down-
loaded group is a bag, and the images within it are instarkagare 3.3(b)). For each
positive bag, at least one image actually contains the bbjemterest, while many
others may be irrelevant. The goal is to predict the presenabsence of the category

in new images. We first proposed this scenario in [106].

In both cases, an instance-level decision is desirabldydyHevel labels are easier to obtain.
While it has been established that MIL is a valuable clasgifi paradigm in such cases,
previous methods do not consider how to determine whatdakellld be most beneficial to

obtain.

3.1.1.2 Multiple-instance Multi-label Learning

While in the MIL setting described so far each bag is labeke@asitive or negative, in the
more general MIML setting, each instance within a bag candse@ated with one of’
possible class labels; therefore each bag is associatkdnwitiple labels—whichever labels

at least one of its instances has.

Formally, let{(X1, L,), (X2, Lo), ..., (Xn, Ly)} denote a set of training bags and their as-
sociated labels. Each bag consists of a set of instaNges {z{,z},...,2% }, and a set

of labelsL; = {I},15,...,1., }, wheren; denotes the number of instancesf, andm;
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(a) unlabeled (b) bag-level labels

Contains cow, water, grass

(c) partial instance-level label|(d) fully labeled & segmented

Contains cow, water, grass

Figure 3.4: In our MIML scenario, images are multi-label ag regions (instances). Un-
labeled images are oversegmented into regions (a). For ageiwithbag-levellabels, we
know which categories are present in it, but we do not know lictv regions (b). For an
image with somenstance-levelabels, we have labels on some of the segments (c). For a
fully annotatedmage, we have true object boundaries and labels (d).



denotes the number of labels In. Note that often a bag has fewer unique labels than in-
stances(; < n;), since multiple instances may have the same label. Evetgricer’, is
associated with a descriptign(z}) in some kernel embedding space and some class label
li € L ={1,...,C}, but with only the bag-level labels it is ambiguous whichtamee(s)
belongs to which label. A bag’; has label if and only if it contains at least one instance
with label/. Note that a labeled instance is a special case of a bag, whekeg contains

only one exampler(; = 1), and there is no label ambiguity.

We first consider the first scenario defined above: an imageb&gaand its instances are
the oversegmented regions within it found automaticallhwai segmentation algorithm (see
Figure 3.4). A bag’s labels are tags naming the categoresept within the image; a region
(instance) label names the object in the particular regach region has a feature vector
describing its appearance. This follows the common use affgd images ([73, 129, 107]),

but in the generalized multiple-instance multi-label case

Our MIML solution has two components: first, we decomposentioéti-class problem into
a number of binary problems, in the spirit of standard onews classification; second,
we devise aMulti-label Set Kernethat performs a weighting in kernel space to emphasize

different instances within a bag depending on the categodguconsideration.

Each one-vs-one binary problem is handled by an SVM traineseparate bags contain-
ing labell; from those containing;, for all 7, j. For the single-label case, one can average

a bag's features to make a single feature vector summaralinigs instances:p(X;) =

\)i-\ Y5, w(xh), and then train an SVM with instances and bags; this is therldbized Set

Kernel (NSK) approach of [37]. The NSK is a kernel for setg] anderived from the defi-
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Tree Building vs Tree Tree Building vs Tree

Figure 3.5: The intuition behind our multi-label kernel @ion. Left: In MIML, if an im-
age’s representation is independent of its label, two wffelabels could map to the same
point in feature spaceRight: Our Multi-label Set Kernel weighs instances based on the
predicted class membership, thereby associating spesificriis within the image to the pro-
vided labels. In the top image the region containing a bagdiighter shading) contributes
more to the overall image representation given the labelding”, while in the bottom image
the region containing a tree contributes more for the latrek”.

nition of convolution kernels using the set-membershigcfiom. In order to correct for the
cardinality of the sets, a normalization factor based onltlee 2-norm is introduced. For
the MIL setting, every instance in a bag can be seen as a maeyhbe bag, and the NSK
corresponds to an averaging process carried out in fegbaes The NSK approach can be

construed as a balancing constraint on the positive bagsaaensin [13]. Intuitively, this

means thabn averageve expect the label on a positive bag to be greater than zero.

However, in the multi-label case, some bags could be adsdciaith both labels/; and
l;. Simply treating the image as a positive example when tgitioth classes would be
contradictory (see Figure 3.5 (left)). Intuitively, whemaihing a classifier for clask, we
want a bag to be represented by its component instances¢haiost likely to have the label
l;, and to ignore the features of its remaining instances. Ofs® with bag-level labels only,

the assignment of labels to instances is unknown.
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| therefore propose a Multi-label Set Kernel (MSK) that wegjthe feature vectors of each
instance within the bag according to the estimated proibhabilat the instance belongs to
the class. That way if an instance has a high chance of belgrgithe given class, then its
feature vector will dominate the representation (Figue(Bght)). To this end, we design
a class-specific feature representation of bags. Xet {z,...,z,} be a bag containing
labelsL = [4,...,1,, (where here we drop the example indefor brevity). We define the

class-specific feature vector &f for class, as
W) =" Pr(lila;)elx;), (3.1)
j=1

which weights the component instances by their probabdftypeing associated with the
class label under consideration. Hérg!,|x;) denotes thérue probability that instance;
belongs to category;, which we approximate ar(l;|z;) ~ p(l;|z;), wherep(li|z;) is the
posterior probability output by the classifier using théniray data seen thus far. For a single
instance (or equivalently, a single-instance bag), thereilabel ambiguity, so the instance

is simply represented by its feature vector.

For generic kernels, we may not know the feature space mapgin) needed to explicitly
compute Equation (3.1). Instead, we can apply the sameréeatights via the kernel value
computation. LetX; and X, be bags associated with labéjsand/,, respectively, that are
currently being used to construct a classifier separatiagseld; and/,. Then the MSK

kernel value between bag§, X, is given by

ny  n2

K(X(ll X(l2 ZZp l1|l' l2|523' ) (‘%1715)

i=1 j=1

whereC(z}, 2%) = o(x})"¢(x3) is the kernel value computed for instanegsandz3, and

p(li|z}), p(lz|z3) are the posteriors from the current classifiers. Note thease the kernel

47



is parameterized by the label under consideration, a a4 bag can contribute multiple

different(feature,labél pairs to the training sets of a number of the one-vs-oneitiass

Our Multi-label Set Kernel can be seen as a generalizatiaeNSK [37], which is re-
stricted to single-label binary classification. It is alsbated to the kernel in [61], where
weights are set using a Diverse Density function. In contras estimate the class condi-

tional probabilities using the classifier constructed wthité currently available training data.

The proposed kernel is valid for both instances and bagsharsccan be used to build SVMs
for all required component binary problems. Each SVM careptoovel instances or bags:
the feature for an input instance is unchanged, while antibpg is weighted according to
Equation (3.1). Given a new inpW,.,,, we (a) run it through algC x (C' — 1) classifiers,
(b) compute the}C x (C'— 1) resulting two-class posteriors using the method of [76§, an
finally, (c) map those posteriors to the multi-class postgsrobabilitiesp(l| X ,...,) for each
labell € {1,...,C}. For this last step we use the pairwise coupling approach2#][ where
the pairwise class probabilities are used to solve a lingstem of equations to obtain the

multi-class probabilities.

While in our implementation we combine one-vs-one binapbpgms to obtain a multi-class
classifier, our method is not restricted to this setting.c8iaur approach defines a kernel
for the multi-label problem, it can be used with other ketibabed multi-class approaches,

including one-vs-all SVMs.
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(a) Name an object in the im- (b) Label the specified region (c) Segment the image and
age (unlabeled bag). (unlabeled instance). name all objects (label all in-
stances).

Figure 3.6: The three candidate annotation types (or “88y#tat our approach chooses from
when formulating a request.

3.1.2 Active Multi-level Selection of Multi-label Annotations

Thus far we have defined the multi-label learner, the basissdier with which we want to
actively learn. Next we describe our strategy to do actiyecs®n among candidate annota-

tions.

There are three possible types of annotation request: #@ssitier can ask for a label on a
bag, a label on an instance within a bag, or a label on all mest® within a bag. A label
on a bag serves as a “flag” for class membership, which is arobgbecause we do not
know which of the instances in the bag are associated withathed. A label on an instance
unambiguously names the class in a single image regionewdbkling all instances within
a bag corresponds to fully segmenting and labeling an imeaggire 3.6 illustrates each of

these three types.

In the following subsections, | will first motivate the neeat ising multiple types of an-
notations (Section 3.1.2.1). Then | will define the valuerdbrmation based criterion for

scoring candidate annotations (Section 3.1.2.2) baseleoexipected reduction in risk (Sec-

49



tion 3.1.2.3) and the manual effort cost (Section 3.1.2)) summarize the active learning

algorithm (Section 3.1.3).

3.1.2.1 lllustration: Need for Comparing Multiple Types of Annotations

Traditional active learning methods assume equal mantait gfer label, and thus try to
minimize the total number of queries made to the annotatoreality annotation costs will
vary substantially from image to image, and from type to tyfieus, the standard “flat cost”

implied by traditional active learners is inadequate.

To illustrate this idea more concretely, we ran an experimdrere we measured both the
reduction in misclassification risk produced by adding ancaéation with its correct label
from an unlabeled pool of images and the time to obtain thet@tion. The misclassification
risk is defined in the standard way, as the probability ofsifggig each example with an
incorrect label, summed over all examples. Figure 3.7 shibiggesult for all examples in
the unlabeled pool with the three annotation types (segatiens, image tags and region

labels) for two different sizes of the initial training s&tgnd 100 image tags respectively).

The figures suggest that neither more expensive nor lessigixpeexamples are regularly
more useful than the other. Similarly, the annotation thatvides the best reduction in
risk might not be the most effective in terms of the cost ofaglihg it. For example, in
Figure 3.7 (right) there are examples from all three anrmtdaypes with reductions in risk
above 200 units. While a standard “flat cost” active learnaulél choose the more expensive
segmentation (because of the marginally higher reductionisk) a cost-sensitive learner

might choose the less expensive one.
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Figure 3.7: This figure shows the reduction in risk for eacanegle in the unlabeled pool
plotted against the time required to provide an annotatfer &raining with 5 image tags
(left) and 100 image tagsight). There is not an absolute correlation between the cost of an
annotation and how informative it is, motivating the use @dtesensitive active learning.

The figures also illustrate that while segmentations areeddnore expensive to obtain, the
larger reductions in risk can effectively mitigate the ciustseveral examples. In addition,
the relative risk reduction versus the annotation time iregus a function that continually
changes as more annotated data is acquired, as evident veheomypare the total shape of
the scatter plots on the left (where only 5 examples have beemn per class) and on the right
(where 100 examples have been seen per class). Hence, tethest human involvement,

the active learner needs a quantitative measure of thet effquired to obtain any given

annotation.

3.1.2.2 Defining the Value of Information for an Annotation

Thus, inspired by the classic notion of theue of informatior{VVOI), and by previous binary
single-label active learners ([55]), we derive a measugatme the relative risk reduction a

new multi-label annotation may provide. The main idea isvaw@ate the candidate images
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and annotation types, and predict which combination (ofjetdype) will lead to the greatest
net decrease in risk for the current classifier, when eaclcehs penalized according to its
expected manual effort. In contrast to previous VOI methods measure enables the multi-

label setting and considers multiple types of annotatiorsetect from.

At any stage in the learning process the dataset can be dintethree different poolsy;,

the set of unlabeled examples (bags and instandgs}the set of labeled examples; aaA@,

the set of partially labeled examples, which contains ajdfar which we have only a partial
set of bag-level labels (refer back to Figure 3.4). If theeladm an image is considered to be a
binary vector of lengtlt”, then the images i, are examples where the binary label vector
is completely known. Images i}, are examples where none of the labels are known, and
images inYp are examples where some of the elements in the vector and aiosome of

its instances are known. An example is moved fradmto X'» when any one of its unknown
labels is requested. An example is moved fraip to X, only when the labels on all its

instances have been obtained.

The total costl’'(X;, Xy, X'p) associated with a given snapshot of the data is the total mis-

classification risk, plus the cost of obtaining all the lauktlata thus far:

T(Xp, Xy, Xp) = R(XL)+ R(Xy) + R(Xp) + Z ZC(Xf), (3.2)

X,eXp leL;

whereXp = X', U Xp, andC(-) is defined in Section 3.1.2.4.

We measure the utility of obtaining a particular annotatgrpredicting the change in total

cost that would result from the addition of the annotationtito Therefore, the value of
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information for an annotationis:

VOI(z) = T (X, Xy, Xp)—T ()eL, Xy, XP) (3.3)

= R(X) +R(Xy) + R(Xp) — (R()EL) + R(Xy) + R()EP)) — C(2)(3.4)

whereX;, X7, Xr denote the set of labeled, unlabeled and partially labedéal after obtain-

ing annotatiorz. Note thatz could be any one among the three annotation types described
in Figure 3.6. If all the labels on the example have been nbththrougtx then the example

is moved to the labeled pool, i.et; = X, U z. On the other hand, if the example contains
instances (regions) with no label information even aftaawiing annotatiorz then the ex-
ample is moved to the set of partially labeled data, i&.= X» U z. Similarly, the example

associated witlz is removed from; or X» as appropriate.

Thus, for each candidate, the selection function meastgexpected informativeness and
subtracts its predicted cost. A high VOI for a given input akexs that the total cost would
be decreased by adding its annotation and is therefore rae&itlgiven its cost. So at every
iteration our approach computes the VOI of all candidategenannotations present itip
and X;; and chooses the example with the largest VOI for queryingceQhe annotation is

obtained it is moved fronk’r / Xy to X1,/ Xp as appropriate and the classifier is retrained.

Thus far we have defined our VOI based selection function taatiwe selection among can-
didate annotations. In the following sections, we first addrhow to predict informativeness

(Section 3.1.2.3) followed by cost (Section 3.1.2.4).
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3.1.2.3 Predicting the Informativeness of an Annotation

Let , denote the risk associated with misclassifying an examelenging to clas$. The
risk associated witk;, is:
R(X) =Y > n(l-pllX), (3.5)
X;eXy lel;
wherep(l|X;) is the probability thatX; is classified with label. Here, X; is again used to
denote both instances and bags @nds label(s). IfX; is a training instance it has only one

label, and we can computgl|X;) via the current MIML classifier.

If X;is a multi-label bag in the training set, we compute the pbdlig it receives label as
follows:

ng

pUIX) = p (U, ...ah) =1 - J[(1 - p(tlai)). (3.6)

j=1
For a bag tonot belong to a class, it must be the case that none of its insgdeteng to the

class. Thus the probability of a bawt having a label is equivalent to the probability that

noneof its instances have that class label.

The MIML classifier implicitly assumes that every imagefarsce can be classified into one
of C'labels. However, in the more general case, the datasetsaoaitain images that do not
necessarily belong to th& classes. Such images are given a “negative” label, whictifsge
that none of the instances/regions in the image belong tmétlye classes id1,...,C},
similar to the “negative” label in a standard MIL formulatidn this case, we weight(/| X;)
with the probability ofX; belonging to any one of thé' classes as against the “negative”

class, which is obtained by training a standard MIL classi®te that wherd’ = 1, a single
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foreground class, the above reduces to the standard Miltisolsincep(l| X;) is trivially 1.

Similarly, in the absence of a “negative” class the aboveced to the MIML solution.

The corresponding risk for the unlabeled data is:
C
R(Xy) = > > n(l—p(l|X,) Pr(|X,), (3.7)
XieXU =1
where we compute the probabilities for bags using Equatién &ndPr(/|.X;) is the true

probability that unlabeled exampl¢; has label, approximated aBr (| X;) ~ p(l| X;).

For the partially labeled data, the risk is:

R(Xp) = > Y r(l—p(X)+ > r(1—plIX)p(ilX:),  (3.8)

X, eXplel; lev;

whereU; =L\ L;.

The valuer; is the risk associated with misclassifying an example lgglonto clasd, spec-
ified in the same units as the cost function in Section 3.1.Rtlitively, it should reflect
the real cost of a classification mistake, as our algorithraatly trades off the cost of the
manual labeling against the damage done by misclassificatéhile this can be set based
on realistic system requirements, we interpret it as theaforanually fixing a classification
error (e.g., an average segmentation requires 50 secdhdsg preferred to avoid errors on
a particular class, that could be encoded with variapl@lues per class labél Note thatr,

is not a parameter that needs to be optimized for performaateer, it gives flexibility for

situations that have real costs associated with the task.

The VOI function relies on estimates for the risk of yet-urdked data, so we must predict

how the classifier will change given the candidate annatatiathout actually knowing its
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label(s). We estimate the total risk induced by incorpagt candidate annotatienusing

the expected value:
R(XL) + R(Xy) + R(Xp) = E[R(XL) + R(Xy) + R(Xp)] (3.9)

If the annotatiorz will label an unlabeled instance (Figure 3.6(b)), compuitime expectation
is straightforward, since that instance can simply be reesddvom X;; and added tov;, to
evaluate the risk were it assigned each of thgossible labels in turn:

E[R(XL) + R(Xy) + R(Xp)] = > (R(Xr, Uz") + R({Xy, Xp} \ 2)) Pr(l[z), (3.10)

lell

wherelL = {1,...,C'} is the set of all possible label assignments#ofThe valuePr((|z)
is obtained by evaluating the current classifierzoand mapping the output to the associ-
ated posterior, and risk is computed based on the (tempQrarodified classifier withz(*)
inserted into the labeled set. Similarly, if the candidateaationz will add an image-level
label to an unlabeled or partially labeled bag (Figure 3)6{aenPr(l|z) is calculated using

Equation 3.6.

However, if the annotatiom entails fully segmenting and labeling an image with au-
tomatically segmented regions (Figure 3.6(c)), we needatoutate the utility of obtain-
ing the joint set of labels for all of a bag’s instances. Sitlvere areC™ possible la-
belings: L = {1,...,C}¥, a direct computation of the expectation is impractical- In

stead we use Gibbs sampling to draw samples of the labelnassig from the joint dis-

tribution over theM instances’ descriptors. Let= {z,..., 2y} be the bag’s instances,
and letz® = {(zf“)), ce (z]((}M))} denote the label assignment we wish to sample, with
a; € {1,...,C}. To sample from the conditional distribution of one instladabel given
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the rest—the basic procedure required by Gibbs sampling+evigin the classifier with
the given labels added, and then draw the remaining labelrdicg toa; ~ Pr(l|z;), for
l € {1,...,C}, wherez; denotes the one instance currently under consideratiarbdgy,

the expected total risk is then the average risk computedatveamples:

A~ A~ ~

E[R(X) + R(Xy) + R(Xp)] = (R({&L ~z} U {z\r, . oy

| =
E

=
Il
—

+ R(XU AN {21,22,...,21\/1}) —|—R(Xp)), (311)

wherek indexes thes samples. We compute the risk dfy for each fixed sample by remov-
ing the bagz from the unlabeled or partially labeled pool, and inseriiisgnstances with
the label given by the sample’s label assignment. Note thdeveomputing the VOI of a
candidate annotation we have no supervision informatiothahexample, including the ob-
ject outlines. Hence, the computation of VOI is performeidigsegments/regions generated
using an automatic segmentation algorithm. Once we obtaonglete segmentation of an

image from the annotator, we use the actual region outlindsadbels to retrain the classifier.

Computing the VOI values for all unlabeled data, especi@iythe positive bags, requires
repeatedly solving the classifier objective function witlly different inputs; to make this

manageable we employ incremental SVM updates [17].

3.1.2.4 Predicting the Cost of an Annotation

Given the expected reduction in risk defined in the previegtien, we still need to define the
cost of an annotation in order to compute its VOI as defineckrtiBn 3.1.2.2. We define the

cost of an annotation based on how much time a human annot&bt require to provide
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Figure 3.8: Which image would you rather annotate? Humansaaily glance at an image
and roughly gauge the difficulty. This appears to be true &idrout prior knowledge about
the specific objects present in the image (second row).

it. However, since we cannot directly obtain an annotas@wst without first obtaining the

annotation itself, we require a method to predict the cosinadinnotation given an image.

Thus, the goal in this section is to accurately predict aztm time based on image content
alone—that is, without actually obtaining the annotatiwe need to estimate how long it will
take a typical annotator to complete it. As Figure 3.8 sutggésimans are able to predict the
difficulty of annotating an image even without prior knowgedabout the objects occurring
in the image (second row) or other high-level cues. Theegfiirseems plausible that the
difficulty level of an image could be predicted based on thageis low-level features. For
an extreme example, if an image contains a single color ittiilcedy contains only one
object, and so it should not be difficult to segment. If thegmaas significant responses to

a large number of filters, then it may be highly cluttered, sad could take a long time.

Thus, we propose to use supervised learning to estimatdftioelitly of segmenting an im-
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age. It is unclear what features will optimally reflect aratmn difficulty, and admittedly
high-level recognition itself plays some role. We selecididate low-level features, and then
use multiple kernel learning to select those most usefulfertask. Multiple kernel learning
approaches automatically select the weights on the vafeatares (kernels) by posing the
problem as an optimization of the coefficients of such a cowtiton. This reduces to a con-
vex optimization problem known as a quadratically-cons&d quadratic program (QCQP)
as shown in [63]. In [3], a novel dual formulation of the capending QCQP as a second-
order cone programming problem is proposed to yield a foatirh for which the sequential
minimal optimization (SMO) algorithm can be applied. We tlie SMO algorithm to select

cost-predictive features, since it allows efficient salns for large-scale problems.

We begin with some generic features that may be decent itodicaf image complexity: a
histogram of oriented gradients, a gray-scale histograuh t@o new features based on the
edge density and color uniformity. The features are desigoeexploit the fact that more

objects could lead to more annotation time.

e The edge density feature divides the image into a hieraatlgicd of cells and con-
catenates the edge density within each cell into a featw®reWe reason that edge
density could be a good indicator of the number of objecigeswith a larger number
of objects in an image there are bound to be more edges sepgatta¢m. The hier-
archy, by capturing edge densities at multiple scales shelplealing with objects of

different scales.

e The color uniformity feature computes the standard dematif the r, g, b values of

every pixel in the image based on a small neighborhood saodiag it, and obtains
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Interface on
Mechanical Turk

32 s,
24 s,
48 s,

Figure 3.9: Our interface on Mechanical Turk to collect aation times for segmenting
images from anonymous users. The system times the respassesers use a polygon-
drawing tool to superimpose object boundaries, and nameuattide every major object.

a histogram of the standard deviations. With more objectexpect larger standard
deviations in a neighborhood compared to a small number ob#imly varying regions

such as sky or grass.

We gather the data online, using Amazon’s Mechanical Tugtesy, where we can pay
anonymous users to segment images of our choosing. Thearsagsven a polygon-drawing

tool to superimpose object boundaries, and are instruct@diine and outline every major
object (see Figure 3.9). The system times their responskess the labels on the training
images will be the times that annotators needed to completdéannotation. To account for

noise in the data collection, we collect a large number of tsgponses per image. Even if
users generally have the same relative speeds (faster groees, slower on harder ones),
their absolute speeds may vary. Therefore, to make the va@lommparable, we normalize

each user’s times by his/her mean and use the average tisredakan image to be its target

label.
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Current Effort
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m Selection

V
Partially and
Unlabeled weakly labeled
images

Issue request:

“Get a full
segmentation
on image #32.”

Human
annotator

Labeled,
segmented
images

Figure 3.10: The summary of our multi-level active learnapgproach. After learning from
a small initial set of labeled images, our method surveysamylable unlabeled and par-
tially labeled data. The VOI of every candidate annotatioroag three different types of
annotations is computed using the expected change in riskharpredicted effort of obtain-
ing the annotation given by our cost predictor. The annaaéind example with the largest
VOI is then selected and a human provides the annotaticer,\aftich the example is moved
from the unlabeled/partially labeled pool to the partidilily labeled pool as appropriate.
The process repeats until there are no more examples wittived#Ol, or once the allowed

annotation cost limit has been reached.
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We construct &> RBF kernel over the training examples per image feature e®as the
timing obtained from the anonymous users we divide the sétagiing images into a dis-
crete range of “easy” and “hard” images using the mean tine all the images. We then
use the MKL approach of [3] to learn the weights on the imagéuiees for the binary classi-
fication problem of classifying images into “easy” and “Hazdtegories. Using the obtained
combined kernel, we also learn a cost predictor functiongiSupport Vector Regression
(SVR).

From this we can build a cost functidtiz) that takes a candidate annotatioas input, and
returns the predicted time requirement (in seconds) asuauf¥henz is a candidate full
segmentation, we apply the learned function to the imageeniis a request for a tag (bag-
level label), we sef(z) as the cost estimated using similar time-based experimeimtally,
whenz entails outlining a single object, we estimate the cost adfuli image’s predicted

time, divided by the number of segments in the image.

3.1.3 Summary of the Algorithm

We can now actively select multi-label, multi-level imageatations so as to maximize the
expected benefit relative to the manual effort expended. MWL classifier is initially
trained using a small number of tagged images. To get eackequbnt annotation, the
active learner surveys all remaining unlabeled and parigbeled examples, computes their
VOI, and requests the label for the example with the maxiralle. After the classifier is
updated with this label, the process repeats. Figure 3.4Wdes a high-level summary of

the approach. The final classifier can predict image- andmnelgivel labels, in binary or
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multi-class settings.

3.2 Results

In the following subsections, we evaluate five aspects obpproach: (1) its accuracy when
learning from multi-label examples, (2) its ability to acately predict annotation costs, (3)
its effectiveness as an active learner when selecting fhoeetdifferent types of annotations
on both binary and multi-label problems, (4) the effect dfaducing the cost predictor in

the active selection function, and (5) the robustness oapproach with respect to the initial

training set.

3.2.1 Datasets and Implementation Details

To validate our method we use three publicly available ddsaghe SIVAIZ dataset, the
Google dataset [31] and the MSR@ataset, since they have been used to evaluate previous
MIL and MIML based approaches, which allows us to comparé stiate-of-the-art methods

in the two settings. Additionally, the MSRC is a common banark for multi-class object

segmentation.

e The SIVAL dataset contains about 1500 images from 25 obj@tts cluttered images
contain objects in a variety of positions, orientationsalions, and lighting conditions.

See Figure 3.11 for examples. The images have been overstgiriato about 30

“http://www.cs.wustl.edu/accio/
Shttp://research.microsoft.com/ens/projects/objectclassrecognition/
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dirtyworkgloves

bluescrunge  banana spritecan

Figure 3.11: Example images from the SIVAL dataset. Eachroalillustrates one of the 25
objects.

Figure 3.12: Example images from Google downloaded dat&seh column shows images
downloaded using a particular category name. Since thegmaig from keyword search not
all images belong to the category of interest (e.g. row 4ol 1 is not an airplane).
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regions (instances) each, each of which is represented ¢danBensional feature
capturing the average color and texture values of the segameheach of its cardinal

neighbors. These features are provided with the SIVAL @dfas

e The MSRC v2 contains 591 images from 21 classes and a variabi®er of objects
per image, with 240 images and 14 classes in the (subset) &&.Figure 3.13 for
examples. In all MSRC experiments we use an RBF kernel with 10, and set the
SVM parameters (including the sigmoid parameters for th&$Wobabilistic outputs
given by the method of [76]) based on cross-validation. Wwig all “void” regions
in the MSRC images. We segment the images with Normalized @b a small
number of segments (10 in our experiments). For each segmeetiten obtain texton
and color histograms, as in [92]. We learn a dictionary ofdeg by convolving the
images with a 38-dimensional filter bank and running K-medinstering to obtain 420
textons. For color histograms we obtain a 120-dimensioeetor by concatenating a

40-dimensional histogram of each channel of the LUV repred®sn of the image.

e The Google dataset [31] contains on average 600 examplad@aseven object cat-
egories. Since the images are from a keyword search, thentrober of training
examples for each class are sparse: on average 30% contpod’‘view of the class
of interest, 20% are of “ok” quality (extensive occlusioimsage noise, cartoons, etc.),
and 50% are completely unrelated “junk”, as judged in [31¢m® example images
from this dataset are shown in Figure 3.12; each column ismpkseof images from a

different keyword. To form positive bags from these images must group them into

Shttp://www.cs.wustl.eduésg/accio/SIVAL.html
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Figure 3.13: Example images from the MSRC dataset. The MSR&sdt contains 21 cat-
egories, and most images have multiple categories in thegn (building”, “road”, “sky”,
“tree”).

multiple sets. Given the percentage of true positives,aangelections of bags of size

25 are almost certain to contain at least one.

The SIVAL and MSRC datasets handle the main scenario disdwsove; multi-label object
segmentation and recognition. The Google dataset hanuteseicond MIL scenario (see

Section 3.1.1.1).

3.2.2 Multi-label Visual Category Learning with the MSK

In our first experiment, we evaluate our proposed Multi-l&ket Kernel (MSK) classifier’s
effectiveness in learning using only image-level labelgoages containing multiple objects.
We divide the MSRC v2 into five folds containing about an equahber of images, as is

done by [129]. We choose one part as the test set, one to sehetars, and train on the rest.

Each image is a bag, and each segment is an instance. ToheavH ML classifier, we use

only image-level (bag-level) labels, i.e., we withholdtak pixel-level labels during classifier
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Ave. AUROC | Ave. AUROC
Approach , )
(img) (region)
Ours 0.896+0.00 | 0.91+0.01
Zha et al. 2008 [129 0.902 0.863

Table 3.1: Five-fold cross-validation accuracy when tiragrwith only image-level labels.

training. We first compare against the approach of [129], ptowide state-of-the-art results

on the MSRC dataset while learning from image-level labels.

Table 3.1 shows the average AUROC when predicting labelganimagegsecond column)
or newregions(third column). We use AUROC to evaluate accuracy becausetie most
appropriate measure for binary classification and it allowd4o compare our results with
existing state-of-the-art methods such as [129]. For irlagel prediction our results are
comparable to the state-of-the-art for MIML [129], wherdaisregion-level prediction we
achieve a notable improvement (0.91 vs. 0.86). This appedrs a direct consequence of
our Multi-label Set Kernel, which weighs the region destmip so as to represent an image
by its most relevant instances for each image-level labsla Aesult, we are able to directly

separate novel regions from each class within a new imagknanjust name objects that

occur in it.
Approach Supervision| Accuracy (%)
Winn et al. 2005 [121]| Pixel-level 67.6
Shotton et al. 2006 [92] Pixel-level 70.5
Ours Image-level| 64.1+2.9
Ours Region-level 66.3

Table 3.2: Region-level multi-class classification accigscompared to state-of-the-art ap-
proaches that use pixel-level information for training.

Next we compare against the approaches of [92] and [121wise pixel-level labels (full
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segmentations) to train multi-class classifiers. We evalad approaches using the region-
level multi-class classification accuracy. While [121]rle@ generative model of texton
histograms, [92] learn a discriminative CRF model incogbimig appearance, shape and con-
text information. A comparison with these approaches weelldus how important stronger
supervision is on this dataset and how effectively our rHaliel classifier is able to utilize
image-level labels. Table 3.2 compares the region-levédlifolass accuracies obtained over
five trials of approximately equal train-test splits. Thushwmuch less manual training ef-
fort (image tags), our method performs quite competitiveith methods trained with full
segmentations; this illustrates the advantage of the daldél multi-instance learner in ef-
fectively utilizing weaker supervision. Using both regicand bag-level labels we obtain
an accuracy 066.3%. This seems to suggest that selectively obtaining regwatllabels

should further improve our classifier.

Finally, using the NSK ([37]), which essentially removes é&ernel weight mapping, the
accuracy for this test would only B6.95% =+ 1.43. This result indicates that the proposed

method to map different regions to the image-level labetsase effective.

3.2.3 Multi-level Active Selection for Learning Object Catgories

In this section we demonstrate our approach to activelyhlgeual categories for both the
binary setting, where an image contains a single objecttefast in a cluttered background
as well as the multi-label setting, where an image contaulsiphe familiar objects that must

be segmented and classified. We test all three datasetsaesabove.

We provide results by simulating the active learning preceghen the system requests an
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annotation on an image example, we satisfy the request tisenground truth labels. For
instance, when the request is to outline all the objectsenrnitage, we use the ground truth
segmentation provided with the dataset (SIVAL/MSRC) toaobtall the objects and their
labels. However, recall that when calculating the VOI of giwa/image, the system uses an

automatic low-level segmentation of the image.

3.2.3.1 Active Selection from MIL Data

For the binary MIL setting, we provide comparisons with $@lgvel active learning (with
both the method of [89], and where the same VOI function islis# is restricted to actively
label only instances), as well as passive learning. For #esipe baseline, we consider
random selections from amongst both single-level and AriBl annotations, in order to
verify that our approach does not simply benefit from havingeas to more informative

possible labels.

For Gibbs sampling, we generaie= 25 samples with an initial burn-in period of 50 samples.
This number was set arbitrarily; later experiments indrepthe sample size to 50 did not
improve results significantly, though in general larger gl® should yield more accurate
VOI estimates. The risk parametef)(and the cost of labeling a single instance are all set to
1, meaning we have no preference for false positives or fagatives, and that we view a

misclassification to be as harmful as requiring a user td lafe instance.

We evaluate our approach for the two MIL classification sdesaexplained in Figure 3.3.
To recall, in the first scenario training images are reprieseby a bag of regions and a

positive image contains at least one of the regions comgitiie object of interest. The goal
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is to predict when new image regions contain the object—ithab learn to label regions
as foreground or background. In the second scenario, groluppsages downloaded from
keyword searches from multiple search engines are positigs and individual images are

the instances. The goal is to predict the presence or absétioe category in new images.

Actively Learning Visual Objects and their Foreground Regions. We use the SIVAL

dataset for evaluating the first MIL scenario. Thus each eni@ga bag containing both
positive and negative instances (segments). Labels omdimeng data specify whether the
object of interest is present or not, but the segments thgesare unlabeled (though the
dataset does provide ground truth segment labels for dvatuaurposes). We again report

accuracy using the AUROC measure since classification oAlSi¥a binary task.

As the SIVAL dataset contains exactly one object per image &gure 3.11), we do not
expect the segmentation costs to vary on a per example bakserefore, for this dataset
we attribute a single cost to all annotations of a partictype. To determine how much
more labeling a positive bag costs relative to labeling ataimce, we performed a user study.
Users were shown oversegmented images and had to click trealegments belonging to
the object of interest. The baseline task was to provide septéabsent flag on the images.
For segmentation, obtaining labels on all positive segmuk users on average four times
as much time as setting a flag. Thus we set the cost of labelipgsdive bag to 4 for
the SIVAL data. The value agrees with the average sparsitheflataset: the SIVAL set
contains about 10% positive segments per image. The usersoehk part in the experiment

were untrained but still produced consistent results.

The initial training set is comprised of 10 positive and 1Qateé/e images per class, selected
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Figure 3.14: Results on the SIVAL dataset. Sample learnimges per class, each averaged
over five trials. Our method corresponds to the “Multi-leaetive” curves. First six are
best examples, last three are worst. For the same amounhofadion cost, our multi-level

approach learns more quickly than both traditional single! active selection as well as
both forms of random selection.
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Figure 3.15:Left: Summary of the average improvement over all 25 SIVAL categafter
half of the annotation cost is use@ight: Comparison with [89] on the SIVAL data, as
measured by the average improvement in the AUROC over thialimodel for increasing
labeling cost values.

at random. Our active learning method must choose its quémen among 10 positive
bags (complete segmentations), 300 unlabeled instamuaisifiual segments), and about
150 unlabeled bags (present/absent flag on the image). Wequedratic kernell (x, y) =

(1 + ap(x)e(y))?, with a coefficient ofx = 10~°, and average results over five random

training partitions.

Figure 3.14 shows representative (best and worst) learunges for our method and the
three baselines, all of which use the same MIL classifier (N&SKM). Note that the curves
are plotted against the cumulatigest of obtaining labels—as opposed to the number of
queried instances—since our algorithm may choose a sequémgieries with non-uniform
cost. All methods are given a fixed amount of manual effortdd$t units) and are allowed
to make a sequence of choices until that cost is used up. IRbaala cost of 40 could
correspond, for example, to obtaining Iabelsi‘@nz 40 instances ofﬁl—O = 10 positive bags,

or some mixture thereof. Figure 3.15 (left) summarizeséaerling curves for all categories,

in terms of the average improvement at a fixed point midwagubh the active learning
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phase.

All four methods steadily improve upon the initial clasgifteut at different rates with respect
to the cost. (All methods fail to do better than chance on thy glove’ class, which we
attribute to the lack of distinctive texture or color on thhject.) In general, a steeper learning
curve indicates that a method is learning most effectivegnfthe supplied labels. Our multi-
level approach shows the most significant gains at a lowey m@saning that it is best suited
for building accurate classifiers with minimal manual effon this dataset. As we would
expect, single-level active selections are better thadaam but still fall short of our multi-
level approach. This is because single-level active delectan only make a sequence of
greedy choices while our approach can jointly select bagsstdinces to query. Interestingly,
multi- and single-level random selections perform quiteiksirly on this dataset (see boxplots
in Figure 3.15 (left)), which indicates that having more mnéguous labels alone does not

directly lead to better classifiers unless the right instarare queried.

At a cost 0f24 units the mean AUROC over all 25 classes for active seledtiomed out to
be0.723, which is92% of the accuracy achievable if usiagl the labels and examples in the
unlabeled pool. To reach the same accuracy random seleetjoiresi4 units of cost. This
means that to reach¥% of the upper-bound accuracy, active selection requies’ less

annotation cost than the passive learner.

The table in Figure 3.15 compares our results to those regant[89], in which the authors
train an initial classifier withmultiple-instance logistic regressipand then use the MI Un-
certainty (MIU) to actively choose instances to label. Tokmowledge this is the only other

existing approach to perform active selections with MILajahaking it a useful method to
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compare to. Following [89], we report the average gains@AWROC over all categories at
fixed points on the learning curve, averaging results overia® and with the same initial
training set of 20 positive and negative images. Since tlearacy of the base classifiers
used by the two methods varies, it is difficult to directly qmare the gains in the AUROC.
The NSK-SVM we use consistently outperforms the logistgression approach using only
the initial training set; even before active learning ouerage accuracy is 68.84, compared
to 52.21 in [89]. Therefore, to aid in comparison, we alswrefhe percentage gain relative
to random selection, for both classifiers. The results sh@t dur approach yields much
stronger relative improvements, again illustrating thiei@af allowing active choices at mul-
tiple levels (the method of [89] only allows active queriesihstance-level labels). For both
methods, the percent gains decrease with increasing basmakes sense, since eventually

(for enough manual effort) a passive learner can begin tthagt to an active learner.

Actively Learning Visual Categories from Web Images. Next we evaluate the scenario
where each positive bag is a collection of images, amongwiinty a portion are actually
positive instances for the class of interest. Previous auxlnave shown how to learn from
noisy Web images, with results rivaling state-of-the-ageyvised techniques [106, 31, 70].
We show how to boost accuracy (AUROC) with these types ofnlerar while leveraging

minimal manual annotation effort.

To re-use the publicly available dataset from [31], we ranyogroup Google images into
bags of size 25 to simulate multiple searches as in [106}iyig about 30 bags per category.
We randomly select 10 positive and 10 negative bags (frootladlr categories) to serve as the

initial training data for each class. The rest of the posibiags of a class are used to construct
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approach outperforms both random selection strategietharmsingle-level active method.
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the test sets. All results are averaged over five randontipagi We represent each image
as a bag of “visual words”, and compare examples with a likeamel. Our method makes
active queries among 10 positive bags (complete labelsphodt 250 unlabeled instances
(images). There are no unlabeled bags in this scenariog €wery downloaded batch is

associated with a keyword.

Figure 3.16 shows the learning curves and a summary of oivedetirner’'s performance.
Our multi-level approach again shows more significant gaing lower cost relative to all
baselines, improving accuracy with as few as ten labeldgdmaegs. On this dataset, random
selection with multi-level annotations actually outpenfie random selection on single-level
annotations (see the boxplots). We attribute this to theibligion of bags/instances: on
average more positive bags were randomly chosen, and editioaded to a larger increase

in the AUROC.

3.2.3.2 Active Selection from MIML Data

In the previous section we considered active selectionarbihary setting when the image
contains a single object among background clutter or witk gEnoisy images obtained by
keyword searches. Next we use the MSRC dataset to demansteatmpact of using our

multi-label active selection function in the more generaltiiabel setting, where an image
contains multiple objects of interest plus clutter, aneésibns can be made from different

types of annotations.

We divide the examples into five folds containing an equal Inemin each and use the first

part for training and the rest for testing. We construct thigal training set such that each
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class appears in at least five images, and use image-leeds$ |abhe rest of the training set
forms the unlabeled pool of data. The active learner canegtqeither complete segmenta-
tions or region-level labels from among the initial traigiexamples, or image-level labels
from any unlabeled example. We set= 50 for all classes, which means that each mis-
classification is worth 58 of user time. The parameter should reflect the real cost of a
classification mistake. Our choice of the valuerpfs based on the fact that an error made
by the automatic labeling would take around$i® manually fix for the average image. For
this experiment we fix the costs per type using the mean tinoes feal users: 56for com-
plete segmentations, XXor a region outline, and 8for a flag. We compare our approach
to a “passive” selection strategy, which uses the sameifiéadsut picks labels to receive
at random, as well as a single-level active baseline (itadit active learning) that uses our
VOI function, but only selects from unlabeled regions. Aitimods are given a fixed cost and

allowed to make a sequence of label requests until the cased up.

Figure 3.17 shows the resulting learning curves for the MSRCAccuracy is measured as
the average value of the diagonal of the confusion matrixégron-level predictions on the
test set since the task is multi-class classification. Aules are averaged over five random
trials. The proposed multi-level active selection yields steepest learning curves. Random
selection lags behind, wasting annotation effort on legsrimative examples. As before,
single-level active is preferable to random selection,wefget best results when our active
learner can choose between multiple types of annotatinalsiding segmentations or image
flags. The total gains after 1800 secs are significant, gikercomplexity of the 21-way
classification problem with a test set containing 1129 im@&ggons. Note that the random

selection curve is probably an over-estimate of its quadityce we limit the unlabeled pool
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Figure 3.17: Learning curves when actively or randomlyceig multi-level and single-level
annotationsLeft: Region-level accuracy for the 21-class MSRC v2 datasetquaigainst
ground truth costRight: Region-level accuracy when 80 random images were addee to th
unlabeled pool. Our multi-level active selection approgieds the steepest learning curves
while random selection lags behind, wasting annotatiooreffn less informative examples.
When 80 random images are added to the unlabeled pool, ragelestion lags even further,
since there are more uninformative images that it can choose

to only images from the MSRC, any example it requests is gtonge fairly informative.
Figure 3.17 (right) shows results for the same setting witeraBdom images are added to
the unlabeled pool with the “negative” class label, indimgtthat the more uninformative

images that are present, the more random selection willéagni’

When active and random selection are run to completion olaladlls, both methods reach
an accuracy 059.5% &; random selection requires 5776 units of manual effort &zhethe
upper-bound while active selection requires only 3075sunithus with active selection we

reach the upper bound using.7% less cost than the passive learner requires.

In Chapter 6 | explore this notion further with live learniegperiments in which training images, obtained
automatically by querying web-based photo collectionsjrzdly contain a mixture of useful and uninformative
examples.

8Note that since we use a different train-test split for ekpents in this section, this upper-bound is not
comparable to the accuracy reported in Section 3.2.2
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(b) Annotations selected by the active learner in order (major).

Figure 3.18: (a) Initial training set containing two exaepper class. (b) Annotation queries
selected by our method in subsequentiterations. Each i(hage left to right) represents the
example with the largest VOI as selected by our active leama sequence of iterations. The
active learning query (one among a regiorf fabel, an imagetagcomplete segmentation) is
displayed at the bottom of the image along with the oracle&eer. For a query on a region,
the corresponding region is highlighted in the image; fomaage tag, the text on the top of
the image represents what label is expected to produce #hedukiction in risk.
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3.2.3.3 Active Selection Examples

In this section we look at the types of annotation queriesdbaapproach requests based on
some qualitative and quantitative results. Figure 3.18vshennotation queries selected by
our approach during the first 12 iterations of an example tamtisg from a small training set
consisting of two image tags per class. The initial trairsegis displayed in Figure 3.18(a),
and Figure 3.18(b) shows the first 12 queries selected bymanoach in row major order.
The type of query and the result from the oracle are displagdtie bottom of the image.
We also highlight the region being queried in the case of relgbel; text on the top of the
image shows which image tag our approach thinks would pmdue biggest reduction in

the risk (thel with the largest value in the summation in Equation 3.10).

The annotations requested by our approach are dominateadgeitags, which is reasonable
considering they are the least expensive labels among tbe types. At the same time, the
images for which tags are requested appear to consist of A rsmmaber of clearly defined
objects (‘sky’, ‘water’ in the second and third images, ‘@@t ‘building’ in the first image,

etc.). On more complex images, such as the sixth image ofifblae, a complete segmen-
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tation is requested. Also a region label on the ‘tree’ regorequested on the tenth image,
even though a tree image tag is already available on the gaageiin the training set. This
illustrates that in some cases stronger annotations megteduired, even when the classifier

already contains weaker information about a class.

The examples selected by our approach are also diverseiirafipearance and class labels.
For example, in the images selected by our approach thaaicotite region ‘sky’, the ap-
pearance of the region is distinct from the examples of ‘sliseéady available in the training

set. This is also the case for classes ‘building’ and ‘water’

Figure 3.19 shows the cumulative number of labels acquoeddch type of annotation with
increasing number of queries on the SIVAL dataset for the cadinary classification. Our
previous observation on the larger proportion of image tagds true in this dataset too.
In addition, on this dataset our approach appears to sedegplete segmentations early on,
followed by queries on unlabeled segments later on. Inelitj as the classifier becomes
stronger it may be that fewer segmentations can provideuadegisk reductions to mitigate

their higher costs, and hence the less expensive image ¢agsie favorable.

3.2.3.4 Effect of Initial Training Set Size

A well-known concern when performing active selection iatth faulty initial model might
select uninformative examples to label and thus never cgave the most general hypothe-
sis. Thus, we next consider the robustness of our approaeariging the number of training
labels used to train the initial classifier. For the MSRC datave train the initial classi-

fier with two, four, and eight image tags per class (42, 84, Hfslimage tags overall) and

81



Initial training set: 2 examples per class Initial training set: 4 examples per class Initial training set: 8 examples per class

o
a

4.}

@

o
a

—e—Active
& Best possible choice| aaS an
- =-Random

—o—Active
A Best possible choice| a "
-=-Random o

a
o

—e—Active
A Best possible choice|
- =-Random

o
=}

o

=)

IS
a
I
@
IS
@

-8
e

Accuracy (%)
Accuracy (%)
Accuracy (%)

N
S

N

o

) 100 200 300 400 %0 100 200 300 400 0 100 200 300 400
cost cost cost

Figure 3.20: Effect of the initial training set size on théwaeselection on the MSRC dataset.
The classifier is initialized with two (left), four (middleand, eight (right) image tags per
class, and active selection is compared with a random In@satid the best possible selection
criterion based on the actual VOI. On the MSRC dataset ouveastlection criterion is
robust to the initialization and performs much better treemdiom selection on all three initial
training sets. Nonetheless, we can expect the quality ofriti@l model to influence the

reliability of the VOI in general.

then perform active selection with each model. In Figur®3vize compare our multi-level
active selection approach against a multi-level randonelbesand the best possible selec-
tion criterion. The best possible selection is obtained ®yputing the actual VOI of an
example using its ground truth label. This is to compare hilmsaty our expected VOI can

approximate the actual VOI. We average results over fiveaamitials.

On all three initializations, particularly for the smalkats, our active selection approach has
a larger slope than random selection. In addition, our adelection follows the trend of
the best possible selection criterion. This illustrates hbustness of the approach to the
initialization on this particular dataset. Also, since owulti-class classifier is an ensemble
of a large number of binary classifiers, even with two imags f@er class the final classifier

could have enough examples to discriminate between theedas

We show results for the same experiment for binary classificaon the SIVAL dataset in
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Figure 3.21: Effect of the initial training set size on aetselection on the SIVAL dataset. We
initialize the classifier with two, six, and twenty imagesaggually distributed across positive
and negative classes. The figure shows some representssteafnd worst) learning curves
for our active selection approach and a random baselinehi®uataset a small training set
composed of only two examples produces sub-optimal setector some classes.
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Figure 3.21. The figure shows some representative (best arsl)Mearning curves compar-
ing our selection function and a random baseline startiriy twio, six and twenty examples
equally distributed across the positive and negative ekasbhe results are averaged over six
random trials. Note that the three curves start at diffepaits on the cost axes because
they start with a different number of training examples. ldwer, accuracies at a particular
cost on the different curves are not necessarily compamabte the random initialization
selects an equal number of positive and negative examplake active and random selec-
tion approaches select from an unbalanced pool of positidenagative examples due to the

one-vs-all binary setting.

The more variable results, as seen in the figure, could poiatharder dataset or the ex-
tremely low number of examples used in the binary settingoaspared to the multi-class
setting. The first row of learning curves show examples wiaegeod initialization (larger
number of examples) helps the active selection criteriom.tii@se examples it appears that
with smaller number of examples the active selection ¢atecould be misled into regions
of the hypothesis space that do not necessarily correspdhd tmost general solution for the
given training set. The first two curves in the second row aegrgles where even with very
few training examples the active selection criterion iseablmatch results with a larger ini-
tial set. The final curve in the second row shows an exampleendetive selection performs

worse than random on all three initializations.

These results suggest that active learning could be affdmtethe initialization on certain
problems. However, note that we deliberately chose anmelgesmall initial training set

(two, six examples) to illustrate this point. Arguably, forost real applications one can
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User Number | Accuracy
of images (%)
User 1l 160 68.75
User 2 188 72.34
User 3 179 70.95
User 4 151 72.85
User 5 167 59.88
User 6 164 63.41
User 7 169 67.46
User 8 179 79.33
All users 210 73.81

Figure 3.22: Accuracy of our cost function in predicting Sgavs. “hard”, both for user-
specific and user-independent classifiers.

reasonably expect to initialize the model with at least b®kbeled examples.

3.2.4 Annotation Costs and Active Selection

In the following sections we evaluate how well we can learpriedict the difficulty of seg-
menting images using image features and the impact of usengredicted cost when making

an active selection.

3.2.4.1 Annotation Cost Prediction

First, we isolate how well we can learn to predict the diffigudf segmenting images based
on image features. To train our cost function, we gather datta Amazon’s Mechanical

Turk. Users are required to completely segment images fremi4-class MSRC v1 dataset
while a script records the time taken per image. We colleeb@@annotations per image

from different users. Users could skip images they prefen@ to segment; each user was
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Figure 3.23: The easiest and hardest images to annotateé basectual users’ timing data
(top), and the predictions of our cost function on novel iemfpottom).

allowed to label up to 240 images. However, no user compkt&l0 images. The fact that
most users skipped certain images (Figure 3.22, column: béurof images) supports our

hypothesis that segmentation difficulty can be gauged hycgig at the image content.

We train both classifiers that can predict “easy” vs. “haatid regressors that can predict
the actual time in seconds. To divide the training set inByeand hard examples, we simply
use a threshold at the mean time taken on all images. Usinfg#tere pool described in

Section 3.1.2.4, we perform multiple-kernel learning [@}select feature types for both the
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user-specific data and the combined datasets. The edgé&deesisure and color histograms

received the largest weights (0.61, 0.33 respectivelyt)) thie rest near zero.

Figure 3.22 shows the leave-one-out cross validation ¢lgaesult when classifying images
as easy or hard, for the users for whom we had the most datah&aonajority, accuracy is
well above chance. Most of the errors may largely be due taduitrary division between

what is easy or hard based on the mean.

To train a regressor we use the raw timing data and the sandd ssdtures. Figure 3.23
shows examples that were easiest and hardest to segmergaasared by the ground truth
actual time taken for at least eight users. Alongside, wavghe examples that our regressor
predicts to be easiest and hardest (from a separate paditibe data). These examples are
intuitive, as one can imagine needing a lot more clicks tavgralygons on the many objects
in the “hardest” set. Figure 3.24 (left) plots the actualditaken by users on an image
against the value predicted by our cost function, as obdawith loo-cv for all 240 images
in the MSRC v1 dataset. The root mean square difference ketthe actual and predicted
times is 11.3s, with an average prediction error of 22%. In comparisondigterg a constant
value of 50s (the mean of the data) yields an average prediction erro8%f.45iven that the
actual times vary from 8 to 10§ and that the average cross-annotator disagreement was 18

s, an average error of 1dseems quite good.

In order to verify that we were not simply learning a categbaged level of effort, we looked
at the actual and predicted times split across differersselsa. Figure 3.24 (right) shows a
plot of the actual and predicted times broken across theréifit scene settings in the MSRC

dataset. The x-axis shows the most dominant foreground @asl in that particular scene
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Figure 3.24:Left: Scatter-plot of the actual time taken by users to segmenhage vs. the
value predicted by our cost function, for the 240 images @MSRC v1. The predicted and
actual times are highly correlated, implying that our castctor has learned how difficult
an image is to segment using only low-level image featuReght: The actual and predicted
times split across the different categories of images itMB&C dataset. The plot shows that
most classes have images with varying difficulties, andrasghat the difficulty measure we
have learned is not class-specific.

layout. This figure shows that every class/scene layouboanimages with varying difficulty

in terms of the annotation effort required by users. Whileecategories have more variation
than others (cow vs car), there is no direct connection betwiee image class and the time
taken to provide annotations. The plot also shows that fostrobthe examples our cost

predictor provides fairly accurate predictions of the aation costs.

3.2.4.2 Active Selection with a Learned Cost Function

Thus far we have fixed the costs assigned per annotation type;we show the impact
of using the predicted cost while making active choices. ¥@ta binary multi-instance
classifier for each MSRC category using image Iabel'%mh of the data per class, in five

different runs. The rest is used for testing. We compare tvilo &dtive learners: one using
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Figure 3.25: Representative learning curves when usingeaselection with the learned
cost predictor, as compared to a baseline that makes aeteetions using a flat cost value.
For classes like Tree, Cow, and Airplane (shown here), tis¢ peediction produces more
improvement per unit cost, while for a few like Sky there issignificant difference—maost
likely because the images within the class are fairly caestsand equally informative and
easy to label.

cost prediction, and one assigning a flat cost to annotatidhgest time, both learners are

“charged” the ground truth cost of getting the requestedtation.

Figure 3.25 shows representative (good and bad) learningguwith accuracy measured
by the AUROC value. For Tree, Cow, and Airplane, using theligted cost leads to better
accuracies at a lower cost, whereas for Sky there is litffereéince. This may be because

most ‘sky’ regions look similar and take similar amountsiofe to annotate.
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% acc imp. Cost(secs) % Cost
Cost prediction| Flat cost| saved

5 11.40 11.52 +1.07

10 24.52 31.41 | +21.94

15 45.25 63.24 | +28.45

20 165.85 251.10 | +33.95

25 365.73 543.69 | +32.73

Table 3.3: Savings in cost when using cost prediction witheactive learner. Overall, our
active selection takes less effort to attain the same levatouracy as a cost-blind active
learner.

Table 3.3 shows the cost required to improve the base clEssifilifferent levels of accuracy.
The fourth column shows the relative time savings our costligtion enables over a cost-
blind active learner that uses the same selection strategyarger improvements, predicting

the cost leads to noticeably greater savings in manualtefflover 30% savings to attain a

25% accuracy improvement.

3.2.5 Computation Time

With our implementation of the incremental SVM techniqud15f] it takes on average.5

secs to evaluate a single region atdsecs to evaluate a bag (image) on.& GHz PC.

This corresponds to abol# minutes to choose which annotation to request when theetatas
contains~ 100 bags (images) for 20 classes. Once an annotation is selected it takes less
than0.1 secs to retrain the classifier. The most expensive step @ctsay an annotation is
the Gibbs sampling procedure coupled with the need to uditeye number of classifiers

in the one-vs-one setting.

Since the complexity of the Gibbs sampling procedure dependhe number of segmented
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regions within an image one way to reduce computationakoestld be to avoid overseg-
menting an object into multiple regions. In [109], we propds novel top-down segmenta-
tion approach by defining pairwise potential functions fgglamerative grouping that mea-
sure how the classification entropy of the object-levelsifeess changes when considering
the combined appearance description of adjacent regicastirt§y from an initial overseg-

mentation, we then iteratively merge regions which areebettassified together. Such a
technique could significantly improve the running time of aative selection scheme since

it would avoid splitting adjacent regions if they are bettlassified when they are merged.

3.3 Discussion

This chapter addressed a new problem: how to actively choosenly which instance to
label, but also what type of image annotation to acquire inst-effective way. Through

extensive experiments | have validated several aspecty aiitral thesis.

| showed that compared to traditional active learning, Whigstricts supervision to yes/no
guestions, a richer means of providing supervision and aoadeto effectively select super-
vision based on both information gain and cost to the supervs better-suited for building
classifiers with minimal human intervention. Specificatly,the MSRC dataset we can save
up to 50% of manual effort by choosing from multiple levels of annaiast. Interestingly,
our approach appears to select stronger supervision reéetinning of the active learning
phase when the classifier is weak and switches to weaker\gsiperas it improves with

more labels.

| showed that annotation effort, computed in terms of timgitovide annotations, varies
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widely across images and annotators, from as littléaseconds to more thahminutes.
By utilizing such user responses collected through an erdiowd-sourced labeling service,
| then showed that one could learn a function to predict ingugific cost based on image
features alone to a fair degrez2{; prediction error). A large portion of the error could be
attributed to disagreement across annotators due toididfekill and attention levels. This
suggests that extending the approach to target specific¢atormand build user-specific cost

functions could provide more accurate predictions.

| also showed that our approach is fairly robust to the ihdiassifier as long as the model
Is initialized with 10’s of examples. With fewer th@nabels the results obtained for active
learning are more variable. It appears that with smallerlmemof examples to start with, the
selection function could be misled into regions of the hiagsts space that do not necessarily
correspond to the most general solution for the given tngirsiet. Although, note that we
deliberately chose an extremely small initial training (&b, six examples) to illustrate this
point. Nonetheless, this is a common concern of all actilectien approaches and results

depend on the exact data distribution and the difficulty eftdsk being learned.

Our method is general enough to accept other types of anmutadr classifiers, as long
as the cost and risk functions can be appropriately definpdciftcally, this would require
defining classifiers that can provide posterior probabgifior different types of annotations
being considered and a way to measure the cost of each typeofadion. For example,
for a part-based object detector/classifier one could usetations at the part-level or treat
object parts as latent variables when given object-levebtations and apply my technique

to learn from a combination of the two.
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While we have concentrated mostly in the domain of objecbgadion, the problem of
comparing different types of annotations in a unified framews potentially applicable to
several other domains both in vision and machine learninly as video annotation, tracking,
or document classification. For example, in document diaatiobn a web document would
be a bag of paragraphs and one could obtain annotations omants as a whole or on indi-
vidual paragraphs while learning a particular concept.il@nhy, videos could be considered

as bags of frames where annotations can be obtained eitterioleo as a whole or on its

individual frames.

So far, | considered selecting a single annotation from igieltevels in order to reduce
total human effort. In the next chapter | will address thebem of selecting examples for
multiple simultaneous annotators so as to improve the spééte annotation process by

posting annotation questions in parallel.
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Chapter 4

Selection under a Budget for Multiple Simultaneous
Annotators

The previous section dealt with choosingiagleannotation from a large pool of multiple
types of annotation queries. Such methods can be usednataasifiers when a single hu-
man annotator is available to interact with the system. Hewan some real applications
we may have access to multiple simultaneous annotations.eX@mple, systems such as
Mechanical Turk or LabelMe provide access to a large numbanotators on the web. An
active learning system that needs to repeatedly go offlidleeampute the next annotation re-
quest cannot take advantage of such resources. Thereforay in some cases be preferable

to farm out abatchof good queries at once.

In this chapter, | formalize the problemfair-sighted active learning under a budgétt each

iteration the active learner is allowed to choose a set afngkes to get labeled, provided the
total sum of costs associated with the selected examplegler @ given budget. The techni-
cal problem of selecting a good set of examples at once isettghg, since one must take
care to avoid overlapping information, i.e., it is wastdfulbsk a batch of similar questions.
Furthermore, it is risky to formulate a large selection lolasely on the current model’s view
of the data: some examples within large sets may lead tofsigni changes to the classifier

that ultimately invalidate the perceived value of otheet there selected.

94



The result of [57] is of particular interest for any non-myopr batch-mode active learning
algorithm that tries to make a large selection based on thremtuclassifier. Central to their
analysis is a theoretical bound which quantifies the perdoiee difference between sequen-
tial active learning (myopic) and a priori design stratege batch-mode selection methods.
Using Gaussian processes (GP) and a maximum entropy bdsetisescheme, they show
that if there is low uncertainty over the classifier paramsstiee predictive distribution should
be independent of additional observed values and therddshealmostno benefit from se-
guentially (one at a time) obtaining label information oralreled examples. However, the
result requires that the probability distribution of thasgifier parameters is highly peaked,
which is not always true in active selection where the ihttlassifier is trained on a small

number of examples and is therefore quite uncertain.

While a few “batch-mode” active learning strategies hawenq@oposed in the machine learn-
ing literature [85, 12, 45, 42], none consider how to balahegoint selection with cost re-
guirements. Meanwhile, current active selection appresithat do account for labeling cost

lead to a myopic selection of a single request at a time [5514107, 108].

| propose a novel method for optimally selecting a set of g¥asfor a support vector ma-
chine (SVM) classifier under these conditions. Given a langlabeled pool of data where
each example has an associated cost, we introduce a setasfdaselection variables. We
formulate an optimization problem to learn the maximum rmahyperplane along with the
instance variables that minimize the empirical risk (onhbibte labeled data and selected
unlabeled points), while satisfying the given budget caist. We then relax it to a con-

tinuous optimization problem that can be decomposed intostinictly convex optimization
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problems loosely coupled in the hyperplane parameterseladton variables. We devise a

monotonically convergent alternating minimization algon to compute the solution.

In the following, | will formally define the problem settingf our approach and explain
our alternating optimization solution and provide an ailgpon for the same. | then provide
validation for our approach on benchmark datasets for tl@eggnition applications: object
recognition, activity recognition, and content-basedgmaetrieval. | demonstrate the ad-
vantages of our approach compared to passive, myopic graedyatch selection baselines,

and show its effectiveness across a range of budgets.

4.1 Budgeted Batch Active Learning (BBAL)

Given a preliminary recognition model and a budget for aations to improve the training
set, our method considers all the available unlabeled intiag@ and computes the set of
recommended requests that are jointly most informativefatdavithin the budget. Below,
we first formally define the problem of budgeted selectionl, @arerview the main idea of our

approach. In Section 4.1.2 we present the detailed forionland algorithm.

4.1.1 Problem Definition and Overview

We consider the problem of actively selecting a batch of gaato label, where the contents
of the batch must be constrained by some budget. Formally,3e{(x1, y1), (x2,y2), ...(x1, yi)}

denote a set dfinitially labeled examples, whegg € {+1, —1}. LetU = {x;11, T112, - Tpiu}

1The contents of this chapter were published in [112].
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Figure 4.1: The problem setting of budgeted batch activeieg. At each iteration the active
learner can select a set of examples to label whose totahuests a given budget of super-
vision for the iteration. The selected examples can therabeléd by multiple annotators
working in parallel (for example, by using services such ascNManical Turk).

denote an unlabeled pool from which examples can be selaotkdiven to human labelers.

Each unlabeled example is associated with a cost, which measures the manual effort

required to obtain a label far;. Note that the cost varies per example, as in Chapter 3.

At each iteration, a set of exampl8s= {zy,, x1,, ...z, } € U can be selected for labeling,
as long as the total cost of the selection does not exceedciiegebudget!’. That is,
Z?zl cy, < T. Since costs vary, the number of selected examplissnot fixed. The goal
is therefore to maximally utilize the given buddéby selecting the sef that is expected to
produce the most gain in the classifier’'s performance. Aftgaining labels for the chosen
set, the classifier will be retrained, and the process cagatepne batch at a time. Figure 4.1

provides an overview of the problem setting.

A naive approach to this problem, which we refer tdvagpic Active Batch Learningvould

be to greedily choose the top most uncertain examples aoga@the current classifier that
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fit under the given budget—in other words, to rank the pointdescending order by their
uncertainty, and start adding them to the Seintil the total budget is exhausted. However,

such an approach ignores the information overlap betweegdlected examples.

Existing methods counter this problem by choosing a setdbatains both examples that
are uncertain and that are mutually diverse [12, 45]. Asidenfneeding good heuristics
to balance the two properties, estimating uncertainty doasethecurrent classifier(e.g.,
using the distance from the margin for an SVM) also fails tptaee how uncertainty will
change once the selected examples are added to the labeletisbe model’s parameters
are retrained. For large batches of examples this can beiep@roblematic. In addition,
existing methods are specifically targeted at choosing & finenber of examples at each
iteration, but a variable-sized batch may be able to morenaply use labeling resources
(i.e., a fixed-size batch must takeotal examples, whereas a more effective selection might
entail choosing a couple of the more expensive examplegitegeith a set ok < n cheaper

ones).

Therefore, we propose an approach that directly targetartteint of reduction in the SVM

objective that is to be expected by choosing a given set ahples under a budget. We call
thisbudgeted batch selectiofihe main idea is as follows: we introduce an indicator \@aa

over the unlabeled examples, and formulate a continuoushization problem to determine
which subset of possible queries should maximize the imgm®nt to the classifier’s objec-
tive, without overspending the budget. When fixing the selacvariables, the optimization
reduces to that of a standard SVM objective function, wheh loe solved efficiently; when

fixing the model parameters, the selection variables arepoted via linear programming.
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Because we incorporate the predicted change in the modahinaandidate examples will

induce, the method is “far-sighted” in terms of the effedtthe entire batch.

4.1.2 Formulation and Algorithm

Given a set of labeled examplés the SVM objective seeks the optimal separating hyper-
plane defined by parameters, b):
1 9
art%rﬁm §||wH +C Z €,
(wi,yi)EL
sitoyi(whz; +0) > 1 — ¢, (24,4:) € L,

€ >0, (4.1)
where each; denotes the hinge loss an andC' denotes the constant regularization penalty.

This familiar SVM objective simultaneously minimizes tHassification error on the training

examples while maximizing the margin of separation betvwtBerpositives and negatives.

Let A and B be two (possibly distinct) sets of labeled examples. Torbitation below, we

define an intermediate cost function, which takes paramé¢ieand B:
1 .
9(fa, B) = 5llwal* + CR5, (4.2)

wheref, denotes the SVM hyperplane parametérs= (w4, b4) obtained by training on set
A, andR4 = E(%yi)eB ¢! denotes the empirical loss incurred by modglover the sef3,
and

e = max(0, 1 — y;(whz; +ba)) (4.3)
denotes the hinge loss an resulting from the modef,. Note that the cost measured by

g(fa, B) evaluates a margin terdfj|w.||*> (which reflects generalization ability) using the
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solution according to labeled dath whereas it evaluates losses (which reflect misclassifica-

tions) on examples i using the modef 4.

We want both the labels on the candidate selection sets amsvifle existing labeled data
to simultaneously influence the batch selection. As thetpaima candidate se&t are as yet
unlabeled, we can only estimate the most “optimistic” cesduction by maximizing over all
possible labels of. In the following, we use the teroptimistic labelgborrowed from [42])

to refer to a label assignment for unlabeled points undechvbost is maximally reduced.

Let Y* = {yk,,.--, sk, }, De the set of optimistic labels associated with the exasnjle
the optimal selectiors* C U, whereY* € {+1,—-1}", for n = |S*|. We want to select
(S*,Y*) such that together they yield the maximal cost reductioomeasured by the cost
producedeforetheir addition to the labeled set versus the cost prodaftedthey are added.

Specifically, we want:

(S*7Y*) = argsr&ijr’ly g(fL’aL/) - g(fL7 Ly (Sa YL))?

S.t. Z ¢ < T, (44)

T, €S

wherel/ = LU (S, Y )—thatis, the labeled set expanded with some label assigronei—
andY;, denotes the labels obtained by classifyihgsing f;. The last inequality reflects the
budget constraint limiting total annotation cost amongsteld examples t6. Note that the
first term in the above objective measures the classificati@mr onLU(S, Y') and the margin
when training using botk and(S, Y’), while the second term measures both the margin and
the classification error for the selected examples undefaidé model f;,, which is trained
only on L. Thus, the optimalS*, Y*) results in the maximal reduction in the SVM objective

when considering optimistic labels.
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To solve this optimization problem, we first expand the reprg¢ation of the unlabeled set
so that each unlabeled example appears as two examplesdahigh both possible classes.

Formally, we expand’ to also include:

v, = wigforiell+u+1,...,014 2u,
vy, = +1, foriell+1,...,1+ul,

gy, = —1, forie(l+u+1,....1+2u). (4.5)

From here on{J represents the expanded unlabeled set. We then introdusaa@ wf indi-
cator variableg € [0, 1]*“, wheregq; = 1 denotes that example, ; € S, andg; = 0 denotes
that it is not. LetY;; denote the set of labels on all unlabeled examples, whidhdes the
labelsY” for selectionS. Now redefiningl’ = L U (S, Yy) we can rewrite the firsy term

from Equation 4.4 as:

1 AL
9(fv, L) = 5llen|P + CRy

1 . o
— §||wL/||2 + CRE + OUR(LS,YU),

1 2 /\L/ 2u L/
= Sllwpll* + CRE + Cu > aiell;, (4.6)

j=1

where(, is a constant regularization penalty for the selected wiabexamples. Herg
is obtained by solving the optimization problem in Equatdioh with the set. U (S,Y"), and
the values for each are also based on this modg} (and hence the labels;), as denoted

by thec/ ; terms.

Substitutingg( f1/, L) from Equation 4.6 into Equation 4.4, the desired selecti@mblem
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can now be written as:

2u 2u
o1
min §Hw||2+C’ E € + Cy E €1+jq; — Cu E 61L+jqj7
sy =1 ]:1

x, €L 7
s.t. yi(wai—i—b) >1—¢€,6>0,1<i<I[+42u,

2u
Z qic; < T,
=1

G+ quey =1, 1 <7<,

95 € {07 1}7 1<7< 20, (47)

wherel’ = LU(S, Y ). Note that our encoding of the indicator means thatself represents
(S*,Y*) from Equation 4.4, and similarly the expanded labeled $é& a function ofg. We
drop the superscriptd’ for the ¢; variables for clarity sincd.” is now a parameter that we
are optimizing over. Note that the first two terms of Equatdo® for g(f., L U (S,Y)) are
constant w.r.t. the optimization variables and thus arerigd. The last term reflects the loss
incurred for examples i§ using a modeL that doesot account for labels?,, whereas the

middle two reflect errors after its inclusion.

Although Equation 4.7 includes a constraint for every uelatd example;,; € U, since the
penalty for the corresponding slack variabje; is zero wheneveg; is zero, the constraint
only affects the cost for examples with non-zerothat is, forz;; € S. Finally, the con-
straint on pairs of variables §; + ¢..;) reflects that only one of the labels { or —1) can

be chosen for an unlabeled example.

The optimization problem defined above is an integer prograrg problem which in general
is NP-hard. Hence, we first relax it to a continuous optimaraproblem by allowing the

variables to take values betwegn 1). Now the above objective can be seen as two different
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optimization problems loosely coupled by the teﬁ‘mzfil €1+j¢;- one on(w, b) and the
other ong, both of which are convex. Fixing, the minimization overv can be done by
standard convex quadratic programming. Fixingthe minimization over is a convex

linear programming problem.

To solve the relaxed problem, we devise an iterative alterganinimization procedure that
is guaranteed to converge to a local optimum of the objedtimetion. Assuming; to be
constant, Equation 4.7 reduces to
1 2u
(w*,b") = ar%glin §Hw||2 +C Z e+ Cy Z €147

(zi,y:)€L j=1
st yi(w e +0) > 1—¢,6 >0, (v;,y;) € L,

yi(wal+j +0) > 1— €y,

€5 20, 245 €U, yyj € Yu. (4.8)

Note that this objective has a very similar form to that of thensductive SVM, as first
proposed in [50]. Importantly, unlike the transductive SMMthis case the inclusion of the
indicator vectoly means we penalize labeling errors on unlabeled dasaanly, which is a
subset of all unlabeled examples. Moreover, for a fixélde problem reduces to that of the
standard SVM problem, where the cost terms for the unlabetadnples are a function of
the ¢ variables. Hence, for a given we can efficiently optimize the SVM parameters and

their optimistic labels for the selected batch.

On the other hand, fixing the model parametersb) and relaxing the indicator vector as
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q € (0,1)%, Equation 4.7 reduces to

2u 2u
¥ . L
q = argmin Cu E €1+5;49; — Cu E EH-ijv

! j=1 j=1

2u
s.t. qucj <T,
j=1
G+ qur; <1, 1<) <,

0<¢qg; <1, 1<) < 2u. (4.9)

The above problem is a linear programming problem and can be solved using standard
methods like an interior point methddlhee, ; variables depend on the current solution for
(w*, b*) from Equation 4.8, whereas, ; is a function of the parametefs;,, b, )—which are

obtained by training o, alone—and;,, the true labels obtained so far.

Finally, by alternating between Equation 4.8 and 4.9, we a@anpute the batch selection
meeting the given budget that is expected to most improvel#ssifier. We always initialize
thee values to 0, which corresponds to initializing our methothvtihe myopic solution. We
form S* by choosing the examples with the largedhat fit the given budgét’. Algorithm 1

provides pseudo-code for the procedure.

Note that the constraints onw, b, €} in Equation 4.7 are independent @f Similarly, con-
straints ong are independent ofw, b, ¢}. Hence, fixingg and optimizing for{w, b, ¢} de-
creases the objective function (Step 5in Alg. 1). SimilgZ8iep 6 also decreases the objective

function. Hence, our algorithm converges monotonicaltyfalct, with a stronger analysis, it

2In the implementation, we need to add slackZosince with varying costs per example one can only hit
the budgefl” as closely as possible, but for clarity of presentation wé @rm the notation above.
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Algorithm 1 Budgeted Batch Active Learning (BBAL)
Require: Labeled data £, Unlabeled data ¥/,
Current loss on unlabeled data’
Labeling costs ¢ = [cy, ..., ¢,], Budget -T,
Parametersc¢’, C, (.
Initialize ¢,; =0, forj = 1,..., 2u.
Yo =A{v1,-..,vy2.}, S€t @s in Equation 4.5.
C(qo1q) = 00, WhereC(-) denotes objective in Equation 4.7
repeat
q = solvelinearprogram ¢, €, ¢, T)  // Equation 4.9
[w,b] =svm(l U (U, Yy), C UqC,) /I Equation 4.8
Computer usingYy, w, andb.
C(dnew) = q-
until convergence.
Setq; = max(,, ¢j+.), forj=1,... u.
return SetS* = U, -9 714 ,forj =1,... u.

©e NN R

=
e

is easy to show that our algorithm converges to a local optirhthe objective function. In

our experiments the algorithm converges quickly, reqgitypically only 10-15 iterations.

4.1.3 Summary: Using BBAL

Our approach can be used for active training of any SVM diassion problem. The inputs

are an initial training set containing some labeled examplethe categories of interest,
the number of selection iterations, an unlabeled pool oh,dand the available budget. In
practice, one would set this budget according to the ressuawailable—for example, the
money one is willing to spend on Mechanical Turk to get a trgjrset for the next object

recognition challenge. We construct the initial classifd then for each iteration, solve for
the indicator vector specifying which set of unlabeled addpects should be annotated next.

For unlabeled data with non-uniform costs, each resultogest will consist of a variable
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number of items (images, video clips). Once these tasksanpleted (either sequentially,
or in parallel by a team of annotators), the labeled set isledpd accordingly, the classifier

is updated, and budgeted selection repeats. The final asthe trained classifier.

4.2 Results

| demonstrate my approach for active budgeted selectidmmihultiple visual recognition

applications. The main goal of our experiments is to dematesthe advantage of maxi-
mally utilizing budgets of any size, and to validate the imance of using the change in the
classifier objective when choosing large batches. To shewetlthings, we consider three

baselines:

e Passive selectionrandomly chooses examples to label. To implement this ardgét,
we randomly draw from the unlabeled pool until the budgeklsagisted.

e Myopic active batchlearner (MAB): greedily takes the top most informative exées
whose summed costs come in under budget.

e Batch-mode activelearner (BMAL): a state-of-the-art approach that selectixhes
of a fixed size [45]. Like our method, it considers an SVM ohjex; but unlike ours
it does not include the model’s expected change during sefeand it ignores per-

example costs.

We emphasize that, to our knowledge, no existing methowvallmtch selection on a budget,

making these the best three baselines to analyze.

106



Cost (secs)
min | max | mean| median| total
SIVAL 4 202 | 31.9 32 6752
Hollywood | 1.64| 92.7| 15.4 8.7 2476.7

Dataset

Table 4.1: Distribution of manual effort costs on SIVAL an@®HA.

4.2.1 Datasets and Implementation Details

We use three publicly available benchmark datasets: SI\@Lobject recognition, Holly-
wood for activity recognition, and Corel for CBIR. The firgtd consist of examples that
require variable effort to annotate, allowing us to study dldvantages of selecting requests
to meet a budget. The third allows us to make direct compasigath a state-of-the-art batch

selection method for image retrieval.

e The SIVAL dataset contains 1500 images, each labeled wighadr25 object labels
(e.g., gloves, apple, etc.). The cluttered images contiajects in a variety of poses
and lighting conditions. We use the color and texture fesgtyorovided by the dataset
creator$, which gives a 30-dimensional descriptor for each of 30aegjiper image.
For this dataset, the annotation cost per image is the tiqeneel for manual segmen-
tation; we use the cost data provided by [88], though onedcorddict annotation costs
using image features alone with sufficient training as wensttbin Chapter 3. Note

that this data was also used in the VOI experiments in Ch&pter

e The Hollywood dataset (HOHA) contains 444 video samplek mitman actions from

32 movies [65]. Each sample is labeled according to one oerabB action classes

3http://www.cs.wustl.edu/accio/
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(e.g., AnswerPhone, GetOutCar, HandShake, etc.). We es&lian” training set.
For features, we use the authors’ cotieextract HoG-HoF descriptors around space-
time Harris interest points. The space-time Harris detdé#] detects local structures
in a video where the image values have significant local tiana in both space and
time. The HoG-HoF descriptors compute histograms of oggigradients and optical
flow inside a space-time volume surrounding the interesitgsoMVe then convert each
action clip into a bag-of-words representation with 100@dgo For this dataset, we use
the length of a video-clip to measure the annotation effirige a human will watch
the entire clip in order to identify which of the actions aerformed in it. Table 4.1

shows the distribution of manual effort costs on the two ahiatasets.

e The Corel dataset contains 5,000 images from 50 differetiegoaies (e.g., antelope,
butterfly, car, cat), as selected by the authors of [45]. HEatkgory contains 100
images. We use the features provided on the authors’ wépsitéch consist of color

moments, edge histograms, and a wavelet-based textuuedeat

For SIVAL, we use an RBF kernel with the coefficientidf~5, which we set based on the
feature space dimension. For HOHA, we usg &BF kernel on HoG and HoF, with param-
eters as specified in [65]. We set the SVM penalty paramegefs & 100 andC,, = 100

for all approaches, a large value intended to emphasizeaastassification of the selected
examples. We train and test all approaches in the one-\srally classification setting, and

use the standard provided train-test splits. For SIVAL amilywood datasets, we use the

“http:/lwww.irisa.fr/vista/Equipe/People/Laptev/ddead. html
Shttp://www.cais.ntu.edu.sgchhoi/SVMBMAL/
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plot) when actively learning categories of human activignii video clips.

area under the ROC curve (AUROC) as the evaluation metrit iaghe most appropriate
metric for binary classification. For COREL, we report résulsing precision and recall

since the task is image retrieval and it will also allow us ¢éonpare our results with other

state-of-the-art approaches such as [45].

For SIVAL and HOHA, our active learner’s initial trainingtseonsists of five positive and

five negative images per class, selected at random; we ugertt@nder as the unlabeled

pool. We average all results over five such random selections

109



4.2.2 Learning Activities on a Budget

Figure 4.2 shows representative (best and worst) learnings for our method and the pas-
sive and myopic baselines plotted against the cost (anaot#ine) of the selected examples
on the Hollywood dataset. The buddgts set such that all the unlabeled examples would
be exhausted in about 20 batch iterations. About 10-15 ebemngm average get chosen per
iteration. Note that average precision (AP) accuracy ist@dbagainst the effort required to
obtain annotations on the selected examples—not the nuaiflogpreries—since the videos

vary in length and require variable time to annotate.

All three methods steadily improve upon the initial clagsjfbut at different rates with re-
spect to the cost. In general, a steeper learning curvedtetichat a method is learning most
effectively from the supplied labels. For most classes,amproach shows the most signifi-
cant gains at a lower cost, meaning that it is best suited #odmmally utilizing a budget. The
myopic active batch baseline (MAB) is a bit better than rand®lection for most cases, but
is weaker than our method due to its failure to account foretteamples’ cost and potential
redundancy. Our results on some actions (e.g., “get outrdf aee more variable than oth-
ers, which we attribute to the fact that the training andakgs are from distinct movies, and
therefore vary a lot in terms of lighting, appearance, ottara, etc. Overall, however, our
approach consistently produces better accuracy for loweotation cost, and outperforms

the baselines on average over all eight actions (bottont pighin Figure 4.2).
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Figure 4.3: Results on the SIVAL dataset: example learnurges (first two are best, third
Is worst) and the average over all 25 categories (bottont pigt) when actively learning
object categories from image examples.

4.2.3 Learning Objects on a Budget

Figure 4.3 shows corresponding results on the SIVAL dataEbe budgetl is set to 300

secs, again so that all unlabeled data would be exhauste@Oniterations. Our approach
is consistently better than both baselines, as seen in titenboight plot above. For some
categories (such as “dirtyworkgloves”), none of the apphea improve with more labels,
apparently due to those objects’ non-descript texturefcdlVhile the differences between

the approaches may appear to be smaller that what we see téAHBey are consistent and
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Figure 4.4: (a) Example batch selections made by our apprdeit) and the myopic baseline
(right) for the SIVAL “bluescrunge” object on the first itei@n, with a budget of 60 secs. (b)
Selections made by our approach and the two baselines opwad “stand up” category

for a budget of 13 seconds. Our approach is able to selectlesshexpensive and more
informative examples, while sticking within the alloweddget as closely as possible.

112



significant considering that the results are averaged overdndom initializations and 25
categories. Moreover, to achieve about 90% of the ultimeteiracy level possible on this
dataset (0.7 AUROC), our method requires notably less ebstut 43% less annotation cost

than the passive selector, and 20% less than the myopid@elec

Figure 4.4 shows example batch selections made by our agfpaval the baseline techniques
on the two datasets. The examples illustrates the main taty@af our approach: we are
able to select both less expensive and more informative pbesywhile sticking within the

allowed budget as closely as possible.

4.2.4 Effect of the Budget Size

Next we study the impact of increasing budget sizes. We éxpedar-sightedness of our
approach to offer particular advantages for larger buddétis is because when a large num-
ber of examples is selected we expect the classifier to chatgeand baselines techniques
that depend on the unchanged current classifier to choosepdes might not be able to in-
corporate this change. For this experiment, we vary theditiee budget, and measure the
accuracy of our method and the baselines at a fixed cost forraiget (approximatelgi of
the total unlabeled pool’s cost). The range of budget sest®tl was set so as to exhaust all

unlabeled data in aboub, . . ., 40 iterations.

Figure 4.5 shows the results, for two example categorian VAL and HOHA. We in-
clude a minimal budget size to illustrate that for a budgktwahg only ~a single item to
be selected, MAB and our approach would be almost equivédertleftmost points on both

plots). As expected, for larger budgets, the myopic chailtep in accuracy, sometimes be-
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Figure 4.5: Active learning performance as a function oféasing budget size. The quality
of our far-sighted selections remains more stable for langdgets.

low the random baseline. Passive selection’s accuracyldesacross budget sizes since it
is simply random. Our approach shows the least degradatorersequence of considering
how the classifier changes if we were to obtain the most plelabels on the candidate

examples for selection. This is a key result, given thatmeabgnition systems drawing on a
pool of annotators must be able to pick a large batch of jolselyiin order to farm them out

in parallel.

4.2.5 Comparison to State-of-the-Art Batch Selection

Next we provide comparisons with the state-of-the-art lbaode active learning (BMAL)
method of [45] on a CBIR task with Corel. The approach of [4&jsiders a min-max view
of the SVM objective function and derives a selection ciaterfor batches that minimizes
both the total classification uncertainty and the redungamong the selected examples.

The two BMAL variants use quadratic programming (S%}ﬁ]z)) and combinatorial opti-
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Batch Size
5 10 15 20 25 30
Ours 0.620| 0.734| 0.809| 0.853| 0.888| 0.905

SVM3@ 1 0.640| 0.718| 0.798| 0.835| 0.860| 0.886
SVM;5199 | 0.622| 0.717| 0.776| 0.835| 0.868| 0.889

Batch Size
5 10 15 20 25 30
Ours 0.321| 0.371| 0.417| 0.452| 0.477| 0.503

SVM3@ 1 0.332| 0.373| 0.423| 0.452| 0.468| 0.490
SVM;ICO) 1 0.321| 0.377| 0.412| 0.447| 0.471/| 0.493

Precision

Recall

Table 4.2: Corel resultsTop: The average precision of the top 20 retrievals with différen
batch sizesBottom: The average recall of the top 100 retrievals with differegiich sizes
(evaluation done as prescribed in [45]).

mization (SVI\/E%%)). While their approach is intended for fixed-size batchesl aurs
allows variable-sized batches, we can still test our methdhis setting since it is a special
case (i.e., budgetbatch size). We replicate the experimental setup given éwattihors, us-
ing 200 random queries, and applying the same kernel [93M $"rameters, and scoring

criteria (see [45] for details).

Table 4.2 shows the results. Our results are comparablet ifetter, than the state-of-the-art,
and the gains are a bit more apparent with larger batch si#esattribute our gains to our
method’s inclusion of the expected classifier change. SBefp4 more results from other
active selection baselines (including [98, 12]), all of efhgenerally underperform BMAL,
and thus our method, for this data. Moreover, our methodigesva more general solution
for the batch selection problem since it can better handiemy sized batches given a fixed

budget as we show in the next section.
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Figure 4.6: Comparison of active batch selections whengusim budgeted approach versus
restricting selections to a fixed batch size.

4.2.6 Impact of Budgets versus Fixed-Size Batches

Finally, we examine the impact of being able to select véeislized batches according to a
fixed budget, as compared to fixing a batch size. We implem&@m®R-&olver for the BMAL
approach ([45]) and run experiments on SIVAL and HOHA. SitieeBMAL baseline must
choosek examples at each iteration (regardless of the cost), wetsethe budgef” divided
by the dataset’s mean cost. We set the BMAL regularizatioarpater as. = 1, as suggested
by the authors [45]. We found this to be a reasonable choidéusirate the advantage of

being able to choose variable-sized batches under budigetetdng.

Figure 4.6 shows the results. On both datasets, our budgelection performs better than
a fixed-batch choice. This reinforces our claim that the @ighe cost variability among the
unlabeled data, the more crucial it is to optimize seletion the given budget. Our method
essentially picks a mixture of less/more expensive exasmgibeas to best utilize the allowed

annotation budget, whereas a method limited to choosing-fxse batches is misled into
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choosing a seemingly informative batch that may be ovempeasive in reality.

4.2.7 Computation Time

Our solution is quite efficient since it uses an LP and QP foictviseveral efficient solvers
exist. In our experiments, convergence typically occurs i) — 15 iterations. Our Matlab
code takes about 0.6 seconds per batch selection for 20baletbexamples, and 4 minutes

for 5000 examples on2a8 GHz processor.

4.3 Discussion

In this chapter, | formalized the problem of far-sighted\actearning on a budget, and pro-
posed a new method for optimally selecting a set of examplea support vector machine

classifier under these conditions. | provided an efficiegrtative minimization technique

that balances candidate examples’ costs and value whestegkla batches. Experiments on
two benchmark datasets show the practical advantages whapeced to passive and greedy
myopic alternatives, as well as an existing active batobcsiein baseline. Overall the results
are quite encouraging and suggest that the proposed appeoables wise use of budgeted

supervision.

In contrast to previous methods, our approach considersrhoeh the classifier objective
changes if we were to obtain the most probable labels on tididate examples for selection.
We find that this aspect is critical to performance, paréidylin the practical scenario where
one wants to set a large budget at each iteration. Note teaf@ based criterion used in

Chapter 3 also considered the change in classifier objdayie®@mputing the expected value
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of reduction in risk over all possible labels for a singleabdled example. In contrast, in
this chapter we considered the mosgtimisticchange in the classifier objective possible by
a set of labels. This is because when selecting a large battamples the expected value
would be more noisy since it would incorporate VOI valuesrfra combinatorial number of

possible labels, out of which only a small subset will be ukef

Furthermore, the proposed approach is the first batch eleetion strategy that is sensitive
to the costs of labeling, and the first method to allow setsaihing examples to be chosen
SO as to meet a prescribed budget. The efficiency of the coempaptimization steps also
makes it rather scalable to large unlabeled data pools gisckres an LP and a QP for which

several efficient solvers exist.

While | have shown applications of our budgeted active liegrapproach for visual recog-
nition tasks, our method is general enough to apply to skeénar domains both in vision
and machine learning since we directly learn an SVM clasgiiieler a given budget of su-
pervision. For example, one could use our approach forileguto classify news documents
into high-level categories given an annotation budgethisi getting the cost of annotating a
news document could similarly be obtained based on the l&rgth of the document or by
setting up user experiments. Similary, we could train d&ss under an annotation budget
to differentiate between urgent versus non-urgent voidsmahere the cost of providing

annotations is proportional to the length of the voicemail.

Like most existing active selection methods our batch sele@pproach has a time com-
plexity that is cubic in the size of the unlabeled pool. In tiext chapter, | address the

problem of large-scale active selection where there arkomsl of unlabeled examples and
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even approaches that are linear in the size of the unlabel&@dape not practical.

119



Chapter 5

Sub-linear Time Active Selection for Web-scale Data

A practical paradox with pool-based active learning aliponis is that their intended value—
to reduce learning time by choosing informative examplesbel first—conflicts with the
real expense of applying them to very large unlabeled dataséenerally methods today
are tested in somewhat canned scenarios: the implemerga heoderately sized labeled
dataset, and simply withholds the labels from the learndt argiven point is selected, at
which point the “oracle” reveals the label. In reality, oneuld like to deploy an active
learner on a massivteuly unlabeled data pool (e.g., all documents on the Web) antdietw!
for the instances that appear most valuable for the targssification task. The problem is
that a scan of millions of points is rather expensive to compxhaustively, and thus defeats

the purpose of improving overall learning efficiency.

In this chapter, | consider the problem of performing actietection on large-scale datasets
where the computational cost of selection outweighs otbasiderations. To exploit such
massive unlabeled pools, a fast (sub-linear time) seard¢hadedo identify the most infor-
mative points to a given classifier is required. Approximageristic solutions such as the
‘59-trick’ [95], where59 examples are randomly chosen and ranked using the seléation

tion, exist for lowering the computational cost of activéeséion. However, such techniques

120



do not provide approximation guarantees except for trisialations such as when the ex-
amples are uniformly distributed and it is unclear if theyubwork for any general data

distribution.

Thus, | address the followintgyperplane-to-poinsearch problem: given a database of points,
which examples are nearest to a novel hyperplane query? Wthisahe nearest neighbor

to a query hyperplaneNNQH) problem. The NNQH search problem ties in with poosds
active learning through the simple-margin selection dotefor linear SVM classifiers. In
this active selection scheme, given a hyperplane clasaifetan unlabeled pool of vector data
U ={xy, ..., zy}, the most informative point (in terms of reduction in versgpace) is the
one that minimizes the distance to the current decision #@ynxz* = argmin,, ., [w”z;|.
This is a widely used margin-based selection criterion §8,15] and it has been shown to

substantially reduce total human annotation effort.

A large number of existing algorithms provide efficient dateuctures for point-to-point
retrieval tasks with various useful distance functiongdpicing either exact or approximate
near neighbors while forgoing a brute force scan througdathbase items, e.g., [34, 101,
38, 1, 19, 120, 59]. By comparison, much less work considers to efficiently handle
hyperplane to point search, which is useful for active leggmn the context of the margin-

based selection criterion of [98].

Locality-sensitive hashing (LSH) methods devise randeahizash functions that map similar
points to the same hash buckets, so that only a subset of thiead® must be searched after
hashing a novel query [38, 1, 19]. A related family of methd@sign Hamming space
embeddings that can be indexed efficiently (e.g., [91, 8@])12
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However, in contrast to our goal, all such techniques aenihtd for vector/point data. A few
researchers have recently examined approximate seakshit&slving subspaces. In [7], a
Euclidean embedding is developed such that the norm in theeéding space directly reflects
the principal angle-based distance between the originamaces. Another method to find
the nearest subspace for a point query is given in [72], thaLig limited to relatively low-

dimensional data due to its preprocessing time/spacerssgants.

Therefore, | propose two solutions for approximate hyperpito-point search. For each,
| introduce randomized hash functions that offer query siragb-linear in the size of the
database, and provide bounds for the approximation erttveaieighbors retrieved. The first
approach devises a two-bit hash function that is locaktysgive for the angle between the
hyperplane normal and a database point. The second appeodmds the inputs such that
the Euclidean distance reflects the hyperplane distaneestifi making them searchable with
existing approximate nearest neighbor algorithms forarettata. While the preprocessing in

our first method is more efficient, our second method has géosccuracy guarantees.

The two NNQH solutions supply exactly the hash functionsdeéeto rapidly identify the
most uncertain examples for a linear SVM classifier accgrtbrthe simple-margin selection
criterion. Therefore, our algorithms make it possible todfeé fromboth massive unlabeled

collections as well as actively chosen label requests.

In the following, | will formally define the problem and prale background definitions for
Locality-Sensitive Hashing (LSH), which is critical to osmlution. Then | will provide two
hashing based solutions for the NNQH problem and explain th@se can be applied for

pool-based active learning. Finally, in Section 5.2, | dastmate our algorithms’ significant
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practical impact for large-scale active learning with SVMssifiers. Our results show that
our method helps scale-up active learning for realistibfams with massive unlabeled pools

on the order of millions of examplés.

5.1 Hashing Hyperplanes to Near Points

We consider the following retrieval problem. Given a dag#R = [zi,...,xy] Of N
points inIR?, the goal is to retrieve the points from the database thatlasest to a given
hyperplanequery whose normal is given by < R¢. We call this thenearest neighbor
to a query hyperplan¢gNNQH) problem. Without loss of generality, we assume tlnat t
hyperplane passes through origin, and that eachw is unit norm. We see in later sections

that these assumptions do not affect our solution.

The Euclidean distance of a pointto a given hyperplang,, parameterized by normat is:
d(hw, x) = |[(z"w)w| = |z w]. (5.1)

Thus, the goal for the NNQH problem is to identify those psiat € D that minimize
|zTw|. Note that this is in contrast to traditional proximity pteims, e.g., nearest or far-
thest neighbor retrieval, where the goal istaximizez” w or —z” w, respectively. Hence,

existing approaches are not directly applicable to thiblem.

We formulate two algorithms for NNQH. Our first approach mé#pes data to binary keys
that are locality-sensitive for the angle between the hylpee normal and a database point,

thereby permitting sub-linear time retrieval with hashi@ur second approach computes a

1The contents of this chapter were published in [49].
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sparse Euclidean embedding for the query hyperplane thps the desired search task to

one handled well by existing approximate nearest-poinhog.

In the following, I will first provide necessary background bocality-Sensitive Hashing
(LSH). The subsequent two sections describe each approdcinn, and Section 5.1.5 re-
views their trade-offs. Finally, in Section 5.1.6, | will gain how either method can be

applied to large-scale active learning.

5.1.1 Background: Locality-Sensitive Hashing

Informally, LSH [38] requires randomized hash functionguigunteeing that the probability
of collision of two vectors is inversely proportional to th&distance”, where “distance” is
defined according to the task at hand. Since similar poigsaasured (w.h.p.) to fall into
the same hash bucket, one need only search those datalmasevit which a novel query

collides in the hash table.

Formally, letd(-, -) be a distance function over items from a Setand for any itenp € S,

let B(p, r) denote the set of examples frashwithin radiusr from p.

Definition 5.1.1. [38] Let hy, denote a random choice of a hash function from the fafdily

The family# is called(r, 7(1 + €), p1, p2) —sensitive fori(-, -) when, for any;, p € S,

e if p € B(q,r) thenPr[hy(q) = hu(p)] > p1,

o it p ¢ Blg,r(1+€)) thenPr[hn(q) = hn(p)] < ps.

For a family of functions to be useful, it must satisfy > p,. A k-bit LSH function
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computes a hash “key” by concatenating the bits returned bgndom sampling ofH:

g(p) = [hg)(p), hg_f) (p), ..., hé_’f)(p) . Note that the probability of collision for close points
is thus at leagt?, while for dissimilar points it is at mogt. During a preprocessing stage, all
database points are mapped to a seriddhakh tables indexed by independently constructed
a,---, g, Where eacly; is ak-bit function. Then, given a query, an exhaustive search is
carried out only on those examples in the union of itheickets to whichy hashes. These
candidates contain the, ¢)-nearest neighbors (NN) fgr meaning ify has a neighbor within

radiusr, then with high probability some example within radiys + ¢) is found.

In [38] an LSH scheme using projections onto single cootemas shown to be locality-

sensitive for the Hamming distance over vectors. For thstt fiznctionp = 182 < L and

logpz — l+e’
usingl = N* hash tables, &l + ¢)-approximate solution can be retrieved in tim(aNuii@).
Related formulations and LSH functions for other distarft@ge been explored (e.g., [19,
1, 47]). Our contribution is to define two locality-senséitiash functions for the NNQH

problem.

5.1.2 Hyperplane Hashing based on Angle Distance (H-Hash)

Recall that we want to retrieve the database vectars) which |w”z| is minimized. If the
vectors are unit norm, then this means that for the “goodisg) database vectons,andx

are almost perpendicular (see Figure 5.1). d,ef denote the angle betweanandw. We
define the distancé-, -) in Definition 5.1.1 to reflect how far from perpendicularand x

are:

dG(wv w) = (ew,w - 7T/2)2' (52)
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Figure 5.1: In order to retrieve those points for whieh’ x| is small, we want probable
collision for perpendicular vectors.

Consider the following two-bit function that maps two inpetctorsa, b € 17 to {0, 1}%:
huw(a,b) = [hu(a), hy(b)] = [sign(u’ a), signv"b)], (5.3)

whereh,,(a) = signu’a) returnsl if u”a > 0, and 0 otherwise, and andv are sampled

independently from a standadedimensional Gaussian, i.et, v ~ N(0, I).

We define ouhyperplane hash(H-Hash) function familyX as:

huwv(Z,2), if z is a database point vector,
hy(2) :{ v %) P

huw(z,—2), Iif zisaquery hyperplane vector.

The idea behind our H-Hash solution is that we generate tvgh bis using independent
random vectors: andwv: one for comparing the angle betweanandx and the other for
—w andxz. If x andw are almost parallel to each other (see Figure 5.2(a)), randkctor

v has a large probability of assigning different bitst@nd —w because of the large angle
betweenx and —w. On the other hand, iz and w are perpendicular to each other as

shown in Figure 5.2(b)), then neitharnor v have a high chance of assigning different bits.
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Figure 5.2: The basic intuition behind our H-Hash solutidve generate two independent
random vectors andwv: one to capture the angle betweemndw, and the other fox and
—w. The probability that the vectors do not split the corregfing angles is highest when
andw are perpendicular, as seen in the figure.

Therefore, when considering bits assigned by the two randmntors together, the probability

of collision is highest for vectors that are perpendicular.

5.1.2.1 Proof of Locality-sensitivity for Hyperplane Hashng
Next, we formally prove that this family of hash functionédsality-sensitive (Definition 5.1.1).

Claim5.1.2. The familyH is (r,7(1 +€), 1 — L7, 1 — Lr(1 + €))-sensitive for the distance

do(-,-), wherer,e > 0.

Proof. Since the vectors, v used by hash functioh, ,, are sampled independently, then for

a query hyperplane vectas and a database point vectey

Prihy(w) = hy(x)] = Prlhy(w) = hy(x) @andh, (—w) = hy ()],

= Prihy(w) = hy()] Prihy(—w) = hy(2)]. (5.4)

Next, we use the following fact proven in [39],

Pr[signu’a) = signu’c)] =1 — ea’c, (5.5)

™
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wherewu is sampled as defined above, ahd denotes the angle between the two vectors

andc.

Using 5.4 and 5.5, we get:

Prlhy(w) = hyy ()] = 222 (1 - 9””’“’) 1o % (620 5)2.

Hence, wher{(6,. ., — T)* < 7, Prhy(w) = hy(x)] >

such that(0,, ., — %)2 > r(14¢), Prihy(w) = hy(x)] < 1 — ’1(:2”) = ps. [

We note that unlike traditional LSH functions, ours are asyetric. That is, to hash a
database point we useh,, ,(z, ), whereas to hash a query hyperplameve use,, ,(w, —w).
The purpose of the two-bit hash is to constrain the angle regpect to bothw and—w, so
that we do not simply retrieve examples for which we know dhBtx is 7 /2 or lessaway

from w.

With these functions in hand, we can now form hash keys by atenatingt two-bit pairs
from k£ hash functions fron#, store the database points in the hash tables, and querawith

novel hyperplane to retrieve its closest points (see Seétib.1).

5.1.2.2 Approximation Guarantees for Hyperplane Hashing

We next derive the approximation guarantees and prove tireatness of this scheme by
adapting the proof of Theorem 1 in [38]. We first recall theadsiructure used for LSH.
We storel-hash tables and every hash table cont&ist hash keys. So, theth hash table

has a corresponding functign : R? — 0, 1* that given a vector, maps the vector ko
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bit hash keys. Each functiog, is obtained by randomly sampliry with replacement:

gs = (hsyy hsyy ooy g, ).

Here, we show that using locality-sensitive hash functionshe distancel(-, -) along with
hash tables, we can get(a + ¢)-approximate solution to our hyperplane-to-point search

problem in sub-linear time.
In particular, we prove the following theorem:

Theorem 5.1.3.LetH be a family of(r, »(1 + €), p1, p2)-locality hash functions (see Defini-
tion 3.1 Main Texy)), withp, > p,. Now given a database of points, we set = log, ,,, V
and! = N”, wherep = % Now usingH along with/-hash tables ovek-bits, given a
hyperplane queryw, with probability at Ieas% — é the algorithm solves the-, ¢)-neighbor
problem, i.e., if there exists a poimts.t. dy(x, w) < (1 + €)r, then the algorithm will return

the point with probability> 1/2 — 1/e. The retrieval time is bounded kay(N?).

Proof. Our proof is a simple adaption of the proof of Theorem 1 in Gaet al. [38]. We

present it here for the sake of completeness.

Following [38] we prove two properties:
Pl Letz* be a point such thaty(z*, w) < r, theng;(z*) = g;(w) for somel < j <
with probability1/2 — 1/e.

Proof: Now we know that

% logy /p, N _
Pr(g;(x") = gj(w)] > pk =p, /7" =N
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Hence,
Prlg;(a*) # g;(w),Vj] = IL; Prlg;(a*) # g;(w)] < (1= N7°)' = (1 = N"")M < 1/e.
Thus, P1 holds with probability 1 — 1/e.

P2 Consider the sef = {y s.t, dyp(y, w) > r(1+¢) andg;(y) = g;(w) for somej}. Then
|S| < ¢l with probability at least — 1/c.
Proof: Now if dy(y, w) > r(1 + ¢), thenPr[h(y) = h(w)] < po. Hence, for anyj,

10gy /pp, 1

Prlg;(y) = g;(w)] < ph = p, =1/N.

Thus the expected number of collisions for a singie N - Pr[g,(y) = g;(w)] = 1 and hence

E[|S|] = l. Therefore, by Markov’s inequality:
Pr(|S| > cl) < 1/c.
Hence, P2 holds with probability 1 — 1/c.

The theorem now immediately follows from P1 and P2, as by Pamessured of retrieving
the pointz* with probability > 1/2 — 1/e, and by P2 we are assured of not looking at more

thancl = O(N”) points. ]

In summary, we have shown that with high probability our LStHesme will return a point

within a distance(l + €)r, wherer = min,; dy(x;, w), in time O(N”), wherep = }gg—g

As p; > po, We havep < 1, i.e., the approach takes sub-linear time for all values, ef

log(1— AT
9, can also be bounded as< W

1+% log 4

Note that this bound fop is dependent on, and is more efficient for larger values:of

Furthermore, ap; = 1 — %, andp, = 1 —

2 1
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5.1.2.3 Improved Hyperplane Hashing based on Angle DistaeqIH-Hash)

We can further improve the approximation guarantees of ldhHzased on the observation
that the bits computed using andv need not be ordered. Recall that in H-Hash bits com-
puted usingu always compare: with w and those computed usingcomparer with —w,
which is too restrictive. Therefore, by mapping thbit vectors obtained through the ran-
dom hyperplanes to a single bit using the logical exclusiviioction (®), we can double

the probability ofp; for H-Hash.

We define ourmproved hyperplane hash(IH-Hash) function familyZ as:

hal(z) = hu(z) ® hy(z),  if z is a database point vector,
ne h.(z) ® hy(—2), if zis aquery hyperplane vector.

Claim5.1.4. The familyZ is (r,7(1 +€), 3+ — 57,2 — 5r(1 + €))-sensitive for the distance

do(-,-), wherer,e > 0.

Proof. Since the vectors, v used by hash functioh, ,, are sampled independently, then for

a query hyperplane vectas and a database point vectey

Prlhz(w) = hz(@)]) = Pr{(hu(w) ® hy(~w)) = (hu(@) ® hy(@))]
— Prl(hy(w) = hu(@) andhy(—w) = hy ()

OF (W) # hy () andhy,(—w) # hy(@))]
= Prlha(w) = hy(®)] Prlhy(~w) = hy()]

+ Prlhy(~w) = hu(@)] Pl (w) = hy(z)]  (5.6)
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Using 5.6 and 5.5, we get:

Prlhz(w) = hz(x)] = W <1— 7;)+<1— W) W
1 1 T\ 2
= 3 (e 3) -7

Hence, wher{f,,., — g)z <r, Prlhy(w) = hy(x)] >

such that(fz,. — %)2 > r(1+€), Prlhy(w) = hy(z)] < 1 — 1 = p,. O

Note that thep,; obtained above for IH-Hash is exactly twice the obtained using H-
Hash. Hence, the factgr = }Zi—;’; improves upon H-Hash, remaining lower for lower

values ofe leading to better approximation guarantees. Specificallggn be bounded as

1—log(1—22
b < a-2%)
1+%10g2

5.1.3 Embedded Hyperplane Hashing based on Euclidean Distee (EH-Hash)

Our second approach for the NNQH problem relies on a Eugiidgabedding for the hy-
perplane and points. Figure 5.3 illustrates the basictintubehind our solution. It offers

stronger bounds than H-Hash, but at the expense of morequegsing.

Given ad-dimensional vectorn, we compute an embedding inspired by [7] that yields a

d?>-dimensional vector by vectorizing the corresponding ramkatrix aa’:
V(a) = vec(aa®’) = [a%, a0y, . .., G104, a3, Ax03, . . ., afl} , (5.8)

wherea; denotes thé-th element ofa. Assuminga andb to be unit vectors, the Euclidean

distance between the embeddinigéa) and -V (b) is given by||V(a) — (=V(b))||* =
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Figure 5.3: The basic intuition behind our EH-Hash solutidfe compute an embedding on
both points and hyperplanes such that the distance betwpeimaand a hyperplane in the
original space is proportional to the Euclidean distand¢e/ben their embeddings. In the left
figure points in green are close to the hyperplane and paimeliare far from the hyperplane
in terms of the hyperplane to point distance. Correspongiihg points in green on the right
are close to the hyperplane in Euclidean distance in the éddaespace.
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2 + 2(a’b)%. Hence, minimizing the distance between the two embeddinggquivalent to

minimizing |a” b, our intended function.

Given this, we define ouembedding-hyperplane hasEH-Hash) function famil\¢ as:

he(z) = h. (V(2)), if zis adatabase point vector,
e h. (=V(2)), if zis aquery hyperplane vector,

whereh,, (z) = sign(u’ z) is a one-bit hash function parameterizechby- N (0, I).

Claim 5.1.5. The family of function§ defined above iér, r(1+e), Lcos'sin®(y/r), Lcos™ sin®(y/r(l+

sensitive forly(-, -), wherer, e > 0.

Proof. Using the result of [39], for any vectap, x € R?,

—V(w)"'V(x)
[V ()| [V ()]

Pr [sign(u” (=V(w))) = sign(uv"V(z))] =1 - %cos_1 < ) , (5.9)

whereu € R* is sampled from a standarti-variate Gaussian distributiom, ~ A/(0, I).

Note that for any unit vectors, b € R, V(a)"V (b) = Tr(aa”bb”) = (a”b)? = cos?® fa.p.

Using 5.9 together with the definition éf above, given a hyperplane quaryand database

pointx we have:

Prihe(w) = he(x)] =1 — e cos™ (= co8®(bpw)) = cos™" (cos*(0pw)) /7 (5.10)

s
Hence, wher{f, ., — 5)* <,

Prihe(w) = he(x)] > ~ cossin2(vF) = p. (5.11)

™

Similarly, for anye > 0 such that(6,, ., — g)Q > 7r(1+e€)

Prihs(w) = he(x)] < %COS_l sin?(\/r(1 +¢€)) = pa, (5.12)
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Figure 5.4: Comparison of the probability of collision fouroEH-Hash methodp, =

L cos™sin?(y/r), with that of IH-Hashp, = § — 2, which is also twice the, for H-Hash.

The two functions are very close to each other and therefi@approximation guarantees of
EH-Hash are similar to IH-Hash.

O

We observe that thig; behaves similarly t@( %5). That is, as varies, EH-Hash’g,

i
returns values close to those returned by IH-Hagh'sr twice those returned by H-Hash'’s
p1 (See Figure 5.4)). Hence, the factor= }gg% improves upon that of the previous sec-
tion, remaining lower for lower values ef and leading to better approximation guarantees.

Section 5.1.4 provides a more detailed comparison of thebtwumds.

On the other hand, EH-Hash’s hash functions are signifigantire expensive to compute.
Specifically, it requires)(d?) time, whereas H-Hash requires orf{d). To alleviate this
problem, we use a form of randomized sampling when compukiadghash bits for a query
that reduces the time t0(1/€), for ¢ > 0. Our method relies on the following lemma,
which states that sampling a vectoaccording to the weights of each element leads to good
approximation ta”y for any vectory (with constant probability). Similar sampling schemes

have been used for a variety of matrix approximation proklésee [53]).

Lemma 5.1.6.Letv € R? and definey, = v2/||v||>. Constructo € R? such that the-th
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element isy; with probability p; and is0O otherwise. Seleat such elements using sampling

with replacement. Then, foranyce R%, ¢ > 0,¢ > 1,¢ > =

i 1
Pr([o"y — vyl < ¢|lv|*lly]*) > 1 - e (5.13)

Proof. Let i, denote the randomly sampled index (using probability distion p defined in
the lemma) at thé-th round, i.e.j;, is index; with probabilityp;. Next, we define a random
variableG), as,

G = Uikyik/pik-

Note that,

J

242

(%
Var(Gy) =) pi(vjy;/p)° — (v7y)* < tz/T\yH? = [vlP*lyl* = 1. (5.15)
j J

(5.16)
Now, our final approximation fov”y is obtained by averaging random variabigs i.e.,
1
~T o
v x = i Z Gp.
k
Now, using Bernstein’s inequality:
t
Pr(| > (Gr —v"y)| > te) < exp(—te®).

k=1

Hence, if we seleat = 5, then with probability at least — log(1/c),

oy —v'y| <e
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O

The lemma implies that at query time our hash functigtw) can be computed while incur-
ring a small additive error in timé)(e,%), by sampling its embedding (w) accordingly, and
then cycling through only the non-zero indiceslofw) to computeu” (—V (w)). Note that
we can substantially reduce the error in the hash functionpeation by samplin@(e%)
elements of the vectaw and then using ac(ww?’) as the embedding faw. However, in

this case, the computational requirements increaé)z(;t%).

While one could alternatively use the Johnson-LindenssddL) lemma to reduce the di-
mensionality of the embedding with random projectionspdao has two major difficulties:
first, thed — 1 dimensionality of a subspace represented by a hyperplapkesrihe ran-
dom projection dimensionality must still be large for thel@mma to hold, and second, the
projection dimension is dependent on the sum of the numbdatabase pointand query
hyperplanes. The latter is problematic when fielding antietyi number of queries over time
or storing a growing database of points—both propertiesateintrinsic to our target active
learning application. In contrast, our sampling methodsance-dependent and incurs very

little overhead for computing the hash function.

Comparison to [7]. Basri et al. define embeddings for finding nearest subsp&gedri
particular, they define Euclidean embeddings for affine gaites queries and database points,
which could be used for NNQH, although they do not specifycapply it to hyperplane-
to-point search in their work. Also, their embedding is netltto LSH bounds in terms
of the distance function in Equation 5.2, as we have showwneabé&inally, our proposed

instance-specific sampling strategy offers a more compacesentation with the advantages
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discussed above.

5.1.4 Comparison of Approximation Guarantees

In this section we compare the bounds on retrieval for botbwfhashing methods. To

recall, our H-Hash method guarantees thet ¢)-approximate solution in timé&/*, where
< l—log(le—%) andp < ;log(le—%g)

P> 17
1+% log 4 1+% log 2

using the improved hash-bit computation in IH-Hash.

Similarly, our EH-Hash method guarantees thet ¢)-approximate solution in timév?,

log cos ™! sin? (y/r)—log ™
log cos—1 sin? (/7 (14-¢/2))—log w

larly to % — % which is equal to the probability of collision for IH-Hashdtwice the prob-

wherep < . Note that the functioros~! sin?(y/r) behaves simi-

ability of collision for H-Hash method when the points arghin distancer (Figure 5.4).
This indicates that the bounds for EH-Hash and IH-Hash nostlstould be similar and

significantly stronger than the corresponding bounds fotash.

Figure 5.5 compares the valuesobbtained for EH-Hash and H-Hash for different values
of e. We can clearly see that for our EH-Hash method the valyeigfalways smaller than
the corresponding value for H-Hash method. Now, we give @ieia example. Let = 3.5.
Then it can be easily computed that if the closest point tdperplane is at angle of around
5°, then H-Hash will return a point withif° in time N°°7 while the corresponding bound

for EH-Hash method will beV%#’, a significant gain.
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Figure 5.5: Comparison of the valuesmgfwhich is the parameter that determines the number
of examples to searchVf’), for our H-Hash and EH-Hash methods with different values o
e ={3.0,3.5,4.0}

5.1.5 Recap of the Hashing Approaches

To summarize, | presented two locality-sensitive hashipgr@aches for the NNQH prob-
lem. Our first H-Hash approach defines locality-sensitiuitthe context of NNQH, and
then provides suitable two-bit hash functions togethehwitbound on retrieval time. Our
second EH-Hash approach consists @falimensional Euclidean embedding for vectors of
dimensiond that in turn reduces NNQH to the Euclidean space neareshin@igoroblem,
for which efficient search structures (including LSH) arailable. While EH-Hash has bet-
ter bounds than H-Hash, its hash functions are more expEnsovmitigate the expense for
high-dimensional data, we use a well-justified heuristierewe randomly sample the given

query embedding, reducing the query time to lineaf.in

Note that both of our approaches attempt to minimizev, ) between the retrieved and
the hyperplanev. Since that distance is only dependent onahglebetweenr andw, any
scaling of the vectors do not effect our methods, and we datydaeat the provided vectors

to be unit norm.
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Figure 5.6: Our hashing based solution to run active selean millions of unlabeled ex-
amples efficiently. Offline, we hash unlabeled data into #etalsing the locality-sensitive
hash functions proposed in Section 5.1.5 for the NNQH prabBuring the active selection
loop we hash the current classifier as the query vector tattiireetrieve next examples for
labeling. By virtue of our hash function design, these exasipre guaranteed to be close to
the hyperplane margin, and the retrieval process has a timglexity that is sub-linear in
the size of the unlabeled pool.

5.1.6 Application to Large-scale Active Learning

The NNQH problem, which is to obtain database vectors thaimize the distance to a
query hyperplane:* = argmin, ., lw”a;|, directly corresponds to the “simple margin”
selection criterion for linear SVM classifiers [98, 85, 19]hus, our two NNQH solutions
supply exactly the hash functions needed to rapidly idgiti€ next point to label: first we
hash the unlabeled database into tables, and then at eaah laaetning loop, we hash the
current classifietv as a query. Figure 5.6 provides a flowchart of this procedureunning

approximate active selection on large unlabeled pools.
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5.2 Results

| demonstrate our approach applied to large-scale actaraileg tasks. | compare our meth-
ods (H-Hash in Section 5.1.2 and EH-Hash in Section 5.1.3)vtobaselines: 1) passive
learning, where the next label request is randomly seleeted 2) exhaustive active selec-
tion, where the margin criterion in Equation 5.1 is compubedr all unlabeled examples
in order to find the true minimum. The main goal is to show ogoathms can retrieve

examples nearly as well as the exhaustive approach, busuiitstantially greater efficiency.

5.2.1 Datasets and Implementation Details

We use three publicly available datasets.

e The 20 Newsgroups consists of 20,000 documents from 20 mewsgategories. We

use the provided 61,118-dimensional bag-of-words feafued a test set of 7,505.

e The CIFAR-10 [58] dataset consists of 60,000 images fromat@gories. It is a man-
ually labeled subset of the 80 Million Tiny Image datasef][9¢hich was formed by
searching the Web for all English nouns and lacks groundh tialtels. We use the

provided train and test splits of B0and 10 images, respectively.

e The Tiny-1M dataset consists of the first 1,000,000 (unkdheimages from [99]. For
both CIFAR-10 and Tiny-1M, we use the provided 384-dimenaldIST descriptors

as features.
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Figure 5.7: Newsgroups results. (a)mprovements in prediction accuracy relative to the
initial classifier, averaged across all 20 categories and.r(b) Time required to perform
selection.(c) Value of|[w”z| for the selected examples. Lower is better. Both of our appro
imate methods (H-Hash and EH-Hash) significantly outperfitre passive baseline; they are
nearly as accurate as ideal exhaustive active selectiomegaire 1-2 orders of magnitude
less time to select an example. (Best viewed in color.)

For all datasets, we train a linear SVM in the one-vs-allisgttising a randomly selected
labeled set (5 examples per class), and then run activetiseléor 300 iterations. We report
results using the area under the ROC curve (AUROC) metriaaatage results across five

such runs. We fix: = 300, N? = 500, ¢ = 0.01.

5.2.2 Document Classification: Newsgroups Results

Figure 5.7 shows the results on the 20 Newsgroups, startitiigtine learning curves for all
four approaches (a). The active learners (exact and appadg) have the steepest curves,
indicating that they are learning more effectively from ttteosen labels compared to the
random baseline. Both of our hashing methods perform silyila the exhaustive selection,
yet require scanning an order of magnitude fewer exampledNtite that Random requires
~ 0 time for selecting a point. Figure 5.7(c) shows the actulesof|w” x| for the selected

examples over all iterations, categories, and runs; indittle our methods’ guarantees, they
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Figure 5.8:CIFAR-10 results. (a)-(c)Example learning curvegd)-(f) Plotted as in above
figure. Our methods compare very well with the significantlgrenexpensive exhaustive
baseline. Our EH-Hash provides more accurate selectiondbhaH-Hash, though requires
noticeably more query time.

select points close to those found with exhaustive searealgb observe the expected trade-
off: H-Hash is more efficient, while EH-Hash provides bet&sults (only slightly better for

this smaller dataset).

5.2.3 Object Recognition: CIFAR-10 Results

Figure 5.8 shows the same set of results on the CIFAR-10. Emel$ are mostly similar
to the above, although the learning task is more difficulttos tlata, narrowing the margin
between active and random. Averaged over all classes, weehap outperform exhaustive

selection (Figure 5.8(d)); this can happen since there iguarantee that the best active
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Figure 5.9: First 15 examples selected per method whenitgathe CIFAR-10 Airplane
class.

choice will help test accuracy, and it also reflects the wideiation across per-class results.
The boxplots in (f) more directly show the hashing metho@stehaving as expected. Both
(e) and (f) illustrate their trade-offs: EH-Hash has stemguarantees than H-Hash (and thus

retrieves lowemw” = values), but is more expensive.

Figure 5.9 shows example image selection results wheniteathe Airplane class. Both
exhaustive search and our hashing methods manage to chmages useful for learning
about airplanes/non-airplanes. This shows that we canesffig obtain relevant training

data using our approach for large-scale datasets.

5.2.4 Minimizing both Selection and Labeling Times

Figure 5.10 shows the prediction accuracy plotted agahestdtal time taken per iteration,
which includes botlselectionandlabelingtime, for both datasets. This requires knowledge
of the time required to label a single example on both dagdtstel cost), which is not avail-
able for these benchmark datasets. Therefore, we prowsdésdor a range of values for this

parameter in order to study the trade-offs involved in miaing both selection and labeling
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Figure 5.10: Improvements in prediction accuracy as a fanatf the total time taken, in-
cluding both selection and labeling time. We provide residlt different values of the cost of

labeling a single example on both datasets. By minimibioti selection and labeling time,
our methods provide the best accuracy per unit time.
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costs. A large value for this parameter indicates that mizimg labeling time is more impor-

tant and therefore could favor exhaustive active selectiom the other hand, a small value
for this parameter indicates that the computational cosetdction is more important and
hence could favor fast selection schemes. We show resultgfioesentative labeling costs

of {1, 10,50} seconds, which are reasonable estimates for annotatingraods and images.

As expected, exhaustive selection performs better foeldapeling costs, whereas random
selection fares better for lower labeling costs. Theseltebest show the advantage of our
approximate methods: accounting for both types of costreiteto training the classifier,
they outperform both exhaustive and random selection mgarf the accuracy gains per unit
time for most values on either dataset. While exhaustivieeselection suffers because of
its largeselectiontime, random selection suffers because it wastes expeladieéng time
on irrelevant examples. Thus, our algorithms provide thet Becuracy gains by minimizing

both selection and labeling time.

5.2.5 Active Section from 1 Million Images

Finally, to demonstrate the practical capability of our éggane hashing approach, we per-
form active selection on the one million tiny image set. Wéatfize the classifier with 50
examples from CIFAR-10. The 1M set lacks any labels, makimg & “live” test of ac-
tive learning (we ourselves annotated whatever the metbelésted). We use our EH-Hash

method, since it offers stronger performance.

Even on this massive collection, our method’s selectiomsvary similar in quality to the

exhaustive method (see Figure 5.11(a)), yet require ofarsagnitude less time (b). The
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ples selected by EH-Hash among 1M candidates in the firstit@regions when learning the
Airplane and Automobile classes.

10"

Iw.x|
=
e o
Time (secs) - log scale

images (c) show the selections made from this large poohdute “live” labeling test;
among all one million unlabeled examples (nearly all of vahi&ely belong to one of the
other 1000s otlasse¥our method retrieves seemingly relevant instances. Tamawledge,
this experiment exceeds any previous active selectiontsasithe literature in terms of the

scale of the unlabeled pool.

5.2.6 Comparison with the 59-trick Heuristic

So far, we have provided results comparing our approachexitiaustive and random selec-
tion, which are the most relevant baselines for our apprat@selection schemes. Nonethe-
less, one could design a simple heuristic to improve upodaamselection by considering
T randomly selected examples from the unlabeled pool andmgrikem based on the ac-
tive selection criterion. Depending on the size of the suhsesuch an approach could be
computationally fast and at the same time outperform passection since it selects the

most informative example from a small subset of the unlabel@ol. In [95], the authors
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Figure 5.12: Comparison with the ‘59-trick’, an approxieaeuristic proposed in [95{a)-

(e) Representative learning curves on CIFAR-{{). The distances to the hyperplane of the
unlabeled examples selected by all approaches. Our appoedperforms the baseline on

some categories (a-c) and is worse on others (d-e). Howaweapproximate method always

selects points that are close to the margin (f) which is gedgithe guarantee that we provide.

outline such a heuristic and further provide approximagomrantees when the examples
are uniformly distributed. In particular, they show thatdyosing justl” = 59 examples,

one could obtain an estimate that is with probabilitys among the besi% of the ranking

function. We refer to this technique as the ‘59-trick’.

The weakness of this approximation is that it assumes tleatitfabeled pool is uniformly
distributed, which is seldom true in realistic applicagorParticularly for active learning,
one would expect the number of useful examples for a categdog a small fraction of all

possible unlabeled data. If not, random selection shouttbpe as well as active learning.
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In order to justify this claim, we provide some empiricalukts comparing the 59-trick.

Figure 5.12 shows representative learning curves obtainetifferent categories in CIFAR-

10 for our approach and 59-trick, for which we randomly cleo®$ examples and select
the one that is closest to the hyperplane for labeling. Famesoategories our approach
clearly outperforms the heuristic (a-c), whereas it ishgligworse on (d-e). However, our
approximate selection scheme always selects points thatl@se to the margin as seen in
Figure 5.12(f). There is no such guarantee for the baselihés suggests that the efficacy
of the baseline approximation would depend on the exactildision of the set of useful

examples, which is not known in general.

5.3 Discussion

In this chapter, | introduced two methods for the NNQH segmablem. Both permit effi-

cient large-scale search for points near to a hyperplameegperiments with three datasets
clearly demonstrate the practical value for active leagniith massive unlabeled pools. My
approach is the first to perform efficient active selectioruatabeled pools in the scale of

millions of examples.

In addition, most existing active learning techniques assthat human effort is more scarce
and expensive than machine cycles and thus effectivelymnimeijust the number of examples
to label or the total annotation time. In contrast, my apphominimizes bothannotation

time, by adopting an active learning strategy, aatéctiortime, by using an efficient hashing
based approach. Thus when considering the total time erggpet iteration my approaches

produce the largest improvement in the classifier.
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The previous chapters considered active selection fumetitat computed the expected change
in misclassification risk on unlabeled data or in the classibbjective. In contrast, in this
chapter, we used an active selection function that depemigia the unlabeled point under
consideration. We chose such a function out of necessitgusecthe former functions would
require at least quadratic time complexity for performimgj\ee selection, which would be
impractical for the large-scale datasets that we have deresil here. Nevertheless, the selec-
tion function used in this chapter has strong theoreticalgutees in terms of the reduction
in the size of the version space as shown in [98] and thergitoran reduce overall manual

effort compared to passive learning.

My approach makes two assumptions regarding the data arutbsfier which we believe
are well justified. First, we assume that the data is norredlizvhich is the case for most
image representations. For example, even for the populeofbasual words representation it
has been shown that normalizing with the-norm results in better generalization than using
unnormalized data [103]. Nonetheless, we would like tdferexplore other hash-functions
for our H-hash scheme and data structures that could enadiler fselection for the sake of
generality. Second, we assume that the classifier is a higoerpvhich is the case for a linear
SVM. This is not too limiting as recent research in image sifasation shows that with a
non-linear representation such as sparse coding, eveea ktassifier can outperform more
expensive kernel based methods [118]. Atthe same time LildNee interesting to investigate
sublinear time methods for kernel based active learningeRework on embeddings for the
x? RBF kernel [104] and solutions to the kernel LSH problem [6@fht provide some

insight into extending our hashing schemes for non-lin&ssifier functions.
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In the next chapter, | show that our approximate active iegracheme is suitable for large-
scale problems by building a large-scale, autonomousnenéarning system for training

object detectors.
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Chapter 6

A Large-scale System for Autonomous Online Visual
Learning

In the previous chapters, | defined and provided solutiossveral problems that will enable
large-scale transfer of human knowledge for learning Visaacepts. In this chapter, | will
demonstrate the effectiveness of our solution as a viabli®pol for learning visual models,
by building the first complete end-to-end system for scalabltomatic online learning of
object detectors. We introduce the conceptiwé learningof object detectors where both
examples and annotations are autonomously collected wgigbased resource, and the

learning of the detector proceeds in a live manner.

Object detection is a suitable setting to demonstrate &spéour solution because (1) it typ-
ically requires identifying a single tight-fitting windowrsong thousands of windows within
an image, an ideal setting for our large-scale selectioncaah; (2) state-of-the-art methods
for detection typically require large numbers of trainin@eples annotated using bound-
ing boxes, whose expense can be significantly reduced usingative approach; (3) it is
an extremely challenging problem where any progress igatilly recorded and encour-

aged [23, 30, 103, 62, 29].

The system design and large-scale experimental setupdrriesthis chapter addresses three
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limiting factors of current methods to train object detestdirst, the vision researcher has
already determined the dataset’s source and scope, meahiclg images will even be con-
sidered for labeling is fixed (and possibly biased), for hbthtraining and test sets. Second,
active learning methods have only been tested on “sandlai®’fdr which the true labels are
really known, and merely temporarily withheld from the stilen algorithm. In fact, nearly
all work targets the activenage classificatioproblem—not detection—and so images in
the unlabeled pool are artificially assumed to contain onky prominent object. These com-
mon simulations likely inflate the performance of both thavacand passive learner, since
anything chosen for labeling is relevant. Third, most cresedrced collection processes re-
quire iterative manual fine-tuning by the algorithm desigeeg., revising task requirements,
pruning responses, barring unreliable Mechanical Tujkezfore the data is in usable form.
Thus, it is unknown to what extent current approaches caoaltstate to real settings, where

the designer of the recognition algorithm is not in the loop.

Rather than fill the data pool with some canned dataset, @iesyitself gathers possibly
relevant images via keyword search (we use Flickr). Keywmasged search is often used
for dataset creation [116, 83, 24, 21] followed by manuahprg. In contrast, our system
repeatedly surveys the data to identify unlabeled sub-avirstthat are most uncertain accord-
ing to the current model, and generates tasks on Mechanicklt® get the corresponding
bounding box annotations without further human involvetn@ifter an annotation budget is
spent, we evaluate the resulting detectors both on benéaasa, as well as a novel test set
from Flickr. Notably, throughout the procedune do not intervene with what goes into the

system'’s data pool, nor the annotation quality from the hradd of online annotators.
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To make the above a reality requires handling some impot¢ghhical issues. Active selec-
tion for window-based detection is particularly challemgsince the object extents (bounding
boxes) are unknown in the unlabeled examples; naively ongdveeed to evaluate all possi-
ble windows within the image in order to choose the most uagerThis very quickly leads
to a prohibitively large unlabeled pool to evaluate exhi@ast Thus, we introduce a novel
part-based detector amenable to linear classifiers, andlstw to identify its most uncertain

instances in sub-linear time with the hashing-based swlutproposed in Chapter 5.

We show that our detector strikes a good balance between spekaccuracy, with results
competitive with and even exceeding the state-of-the-arthe PASCAL VOC, a widely
accepted challenging benchmark for object detection. agbrtantly, we show successful
live learning in an uncontrolled setting. The system leatmurate detectors with much less

human effort than strong baselines that rely on human-gdrieyword search results.

6.1 Live Learning of Object Detectors

Our goal is to enable online active crowd-sourced objeadet training. Given the name
of a class of interest, our system will produce a detectootallize novel instances using
automatically obtained images and annotations. In orderake this feasible, we first pro-
pose a part-based linear SVM detector, and then show hovetdifg its uncertain examples

efficiently using a hashing scheme.

1The contents of this chapter were published in [111].
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6.1.1 Object Representation and Linear Classifier

We first introduce our part-based object representatiom.g0al is to design the representa-
tion such that a simple linear classifier will be adequatedbust detection. A linear model
has many complexity advantages important to our setting8iM training requires time
linear in the number of training examples, rather than c{filg, ii) classification of novel
instances requires constant time rather than growingriyeath the number of training ex-
amples, iii) exact incremental classifier updates are ptessivhich makes an iterative active
learning loop practical, and iv) my hashing based algori{f@napter 5) enables sub-linear

time search to map a quehyperplando its nearest points according to a linear kernel.

Inspired by recent findings in sparse coding for image diassion [126, 118, 10], we ex-
plore a detection model based on sparse coding of localfEsatombined with a max pooling
scheme. Previous representations pool coded SIFT featuaesingle global window or in a
fixed class-independent hierarchy of grid cells (i.e., diappyramid structure). While suf-
ficient for whole-image classification, we instead aim taespnt arobjectseparately from

its context, and to exploit its part-based structure wldss-dependerstubwindow pooling.

To this end, we propose an object model consisting of a ront@w -, multiple part win-
dows{pi,...,pp} that overlap the root, and context windofs, ..., cc} surrounding it.
See Figure 6.1. LeD = [r,p1,...,pp,c1,...,cc| denote a candidate object configuration
within an image, and lep(1/) denote the sparse feature encoding for local image destsipt

extracted from a given subwindoW (to be defined below). The detector scores a candidate
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Figure 6.1: Proposed part-based object representation.
configuration as a simple linear sum:
f(O) = w'p(0) (6.1)

= fw,mp —|—pr2 pZ+Z'wcl cZ

wherew denotes the learned classifier weights, which we obtain &M training. We
next flesh out the window descriptions; Section 6.1.2 exglaiow we obtain candidate root

placements.

6.1.1.1 Window Descriptions

Given a novel test image, we first extract local image desmsp we use a dense multi-
scale sampling of SIFT in our implementation. Each windopety, p;, or ¢;) uses these
features to create its encoding ). Theroot windowprovides a global summary of the object

appearance, and is invariant to spatial translations ¢fifes within it.

Similarly, eachpart windowsummarizes the local features within it, discarding theisip
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tions; however, the location of each part is defined reldtviine current root, and depends
on the object class under consideration (i.e., bicyclescansleach have a different configu-
ration of thep; windows). Thus, they capture the locations and spatial gardtions of the

most important parts of the object. We train with the paratamns and bounds output by the

detector in [30]; alternatively, they could be requestedeodirectly from annotators.

Thecontext windowscorporate contextual cues surrounding the object, ssitihespresence
of “sky”, “ground”, “road”, etc., and also help discard peorcandidate windows that cover
only parts of objects (in which case object features spiti the context window). We create
the context windows using@&x 1 partition ofr’s complement, as shown in the top right of
Figure 6.1. We find that providing this context strengthegrain categories, which agrees
with recent findings [102].

6.1.1.2 Feature Encoding

Each window is represented using a nonlinear feature engdafised on sparse coding and
max-pooling, which we refer to as Sparse Max Pooling (SMe $MP representation is
related to the well-known bag-of-features (BoF); howeualike BoF, each component local
descriptor is first encoded as a combinatiomaitiplevisual words, and the weights are then

pooled within a region of interest using the max function.

Offline, we cluster a large corpus of randomly selected feattio obtain a dictionary of

|V| visual words: V' = [vy, ..., v)], where each colump; € R'* is a cluster center in
. F

SIFT space. For any windoW (whether root/part/context), let = { fi}L:‘l be the set of

local features falling within it, where eagh € #!?® is a SIFT descriptor. We represent this
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Figure 6.2: Sketch to illustrate contrasts with relatedtxg models. See text for details.
window with a sparsél/|-dimensional vector, as follows.

First, each featurg; is quantized into a//|-dimensional sparse vectey that approximates
f: using some existing sparse coding algorithm and the diatiol’, that is, f; ~ s;V.

Taking this encoding for every; as input, the SMP representationlbfis given by:

oW) = [¢' ..., ¢V, where (6.2)

¢ = max(s;(j)),i=1,...,|F|

for j = 1,...,|V], ands;(j) is the j-th dimension of the sparse vector encoding il

original feature f;. Finally, we normalize>(W) by its L, norm?

The rationale behind the SMP window encoding is twofold: gharse coding gives a fuller
representation of the original features by reflecting nessrio multiple dictionary elements
(as opposed to BoF’s usual hard vector quantization), whdenax pooling gives better dis-
criminability amidst high-variance clutter [10]. See [1@6] for useful comparisons between
various sparse coding approaches, which shows their adlrantage when combined with a

linear kernel as compared to the popular BoF.

2We use Locality-constrained Linear Coding (LLC) [118] tataib the sparse coding, though other algo-
rithms could also be used for this step.
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6.1.1.3 Relationship to Existing Detection Models

Our model intentionally strikes a balance between two restate-of-the-art detection mod-
els: i) a nonlinear SVM with a spatial pyramid (SP) in whiclclearid cell is a histogram
of unordered visual words [103], and ii) a latent SVM (LSVMithva root+deformable part
model in which each part is a rigid histogram of ordered dddrgradients [30]. See Fig-

ure 6.2.

On the one hand, the SP model is robust to spatial transtatiblocal features within each
grid cell. On the other hand, its nonlinear kernels (requil@ good performance [103])

makes the classifier quite expensive to train and test, @il class-independent bins may
fail to capture the structure of the best parts on an objeet Esgure 6.2(a)). In contrast, the
LSVM model can robustly capture the parts, since it learnftiple part filters that deform

relative to the root. However, its dynamic programming dtepgompute parts’ alignment
makes it expensive to train. Furthermore, its use of theapatlense gradient histograms
for both the root and parts make them less tolerambternal shifts and rotations (see Fig-

ure 6.2(b)).

Our model attempts to incorporate positive aspects of tbgeatwo models, while maintain-
ing a much lower computational cost. In particular, we hdass:specific part configurations,
like [30], but they are fixed relative to the root, like [L08ur SMP-based encoding is robust
to shifts within the part and object windows, thereby tdiiegasome deformation to the exact
part placement without needing the additional DP alignnségp during detection. In short,
by utilizing a part-based representation and a linear flasour approach provides a very

good trade-off in terms of model complexity and accuracy.
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6.1.2 Generating Candidate Root Windows

So far we have defined a representation and scoring funairamify candidate window. Now
we discuss how to generate the candidates, whether in restehtages or unlabeled images
the system is considering for annotation. A thorough buhititively expensive method
would be the standarsliding windowapproach; instead, we use a grid-based variant of the

jumping windowmethod of [20, 113].

The jumping window approach generates candidate windowsHough-like projection us-
ing visual word matches, and prioritizes these candidatesrding to a measure of how
discriminative a given word and coarse location is for thgctclass (see Figure 6.3). First,
each root window in the training images is divided intoMérx M grid. Let1,.(r) denote a
root window’s position and scale. Given a training windowand a visual word> occurring
at grid positiong € {1,..., NM}, we record the tripletv, g, W..(r)). We build a lookup
table indexed by the entries for all training examples. Then, given a test imégeeach
occurrence of a visual word, we use the lookup table to retrieve all possibilg.(r)’s, and
project a bounding box in the test image relative to #iatposition. Note, candidates can

vary in aspect ratio and scale.

The grid cell componenj in each triple is used to assign a priority score to each clatelj
since we may not want to examine all possible candidates ethfsypm the lookup table.
Specifically, we score a given pajp, g) based on how predictive it is for the true object
bounding box across the training sét(v, g) is the fraction of the occurrences of woed
that appear at grid locatiogn This function gives a higher score to bounding boxes where

the visual word occurs consistently across positive trgj@xamples at a particular position
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Figure 6.3: lllustration of jumping window root candidateSrid cells serve to refine the
priority given to each box (but do not affect its placement).

(see Figure 6.3).

Given a test image, we take the tép candidate jumping windows based on their priority
scores. The detector is run only on these boxes. In expeténer obtaind5% recall on
most categories when taking just = 3,000 candidates per test image. The same level of

recall would require up ta0° bounding boxes if using sliding windows (see [103]).

6.1.3 Active Selection of Object Windows

We initialize the online active learning system with a lin&¥M trained with a small num-
ber of labeled examples for the object. Then, it crawls foroal pf potentially relevant
unlabeled data using keyword search with the object name ifidownloads a set of images
tagged ‘dog’ when learning to detect dogs). We want to efiilyedetermine which images
among those retrieved should be labeled next by the humantators. As an active learn-
ing criterion, we use the “simple margin” selection method $VMs [98], a widely used

criterion that seeks points that most reduce the versionespd@his is the same criterion |
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dealt with in Chapter 5. Given an SVM with hyperplane normeand an unlabeled pool of
datallp = {¢(01),...,¢(0,}), the point that minimizes the distance to the current dewisi

boundary is selected for labelin@* = argmin,, ., |w” (0;)|.

As discussed in Chapter 5, a naive application of this ¢oiteentails computing the classi-
fier response on all unlabeled data, ranking thenmusy»(0O;)|. However, even with a linear
classifier, exhaustively evaluating all unlabeled exaspteeach iteration is prohibitively ex-
pensive. Whereas previous active learning work is geneuaitoncerned about the amount
of time it actually takes to compute the next labeling retjuébecomes a real issue when
working out of the sandbox, since we have live annotatorstangathe next labeling jobs
and massive unlabeled data pools. In particular, since \wd t@eapply the active selection
function at the level of th@bject not the entiramage we have an enormous number of
instances—all bounding boxes within the unlabeled imaga.daven using jumping win-
dows, thousands of images yield millions of candidates. sTlausimple linear scan of all

unlabeled data is infeasible.

Therefore, we use olnyperplane-hashinglgorithm defined in Chapter 5 to identify the most
promising candidate windows in sub-linear time. Recalt tha algorithm maps inputs to
binary keys using a randomized hash function that is locakinsitive for the angle between
the hyperplane normal and a database point. Given a “quegvgrpiane”, one can hash

directly to those points that are nearest to the hyperplaitie high probability.

Formally, letl/; denote the set of unlabeled images, a&fhgddenote the pool of candidate
object windows obtained using the jumping window prediatarl{;. Note that|Up| =

K x |U;]. The locality-sensitive hash famit{ generates randomized functions with two-bit
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outputs:
huw(0(0:), (0;)), if zis adatabase vector,
hu(z) = .
Py o (W, —w), if z is a query hyperplane

where the component function is defined as
huv(a,b) = [signu’a), signv” b)], (6.3)

sign(u’a) returnsl if u”a > 0, and 0 otherwise, and andwv are sampled from a standard
multivariate Gaussiamy, v ~ AN (0, ). These functions guarantee high probability of col-
lision for a query hyperplane and the points nearest to itmtdary. The two-bit hash limits

the retrieved points’ deviation from the perpendicular bygtraining the angle with respect

to bothw and—w.

We use these functions to hash the crawled data into the.}alileen, at each iteration
of the active learning loop, we hash the current classifiea gsiery, and directly retrieve
examples closest to its decision boundary. We search oosetexamples, i.e., we compute
lwTp(0;)| = |f(0;)| for each one, and rank them in order of increasing value. llijithe
system issues a label request for the Topnages under this ranking. Since we only need
to evaluate the classifier for examples that fall into a pakir hash bucket—typically less
than0.1% of the total number of unlabeled examples—this strategybined with our new

detector makes online selection from large datasets fieasib

SHyperplane hashes can be used with existing approximatenesghbor search algorithms; we use
Charikar’s formulation, which guarantees the probabilitth which the nearest neighbor will be returned.
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Figure 6.4: MTurk interface to obtain bboxes on activelyestdd examples.
6.1.4 Online Annotation Requests

To automatically obtain annotations on the actively sel@e&xamples, our system posts jobs
on Mechanical Turk, where it can pay anonymous workers t@igeolabels. The system
gathers the images containing the most uncertain boundirgsy and the annotators are
instructed to use a rectangle-drawing tool to outline thiegaof interest with a bounding
box (or else to report that none is present). We ask annstaidurther subdivide instances
into “normal”, “truncated”, or “unusual”, consistent wiPASCAL annotations, and to flag

images containing more than 3 instances. Figure 6.4 shathotation interface.

While MTurk provides easy access to a large number of anmrstahe quality of their labels
varies. Thus, we design a simple but effective approach ¢owatt for the variability. We
issue each request to 10 unigque annotators, and then dhusitelbounding boxes using mean
shift to obtain a consensus. We keep only those clustershmites from more than half of
the annotators. Finally, we obtain a single representaixefrom each cluster by selecting

the one with the largest mean overlap with the rest.
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6.1.5 Training the Detector

Training our detector entails learning the weights in Egumea6.1; we use a linear SVM
trained to discriminate between windows that do and do nietado the object of interest. All
regions that do not overlap the target object are poterggdtives; to limit the number used to
train, we mine for “hard” negatives, a common approach tbhaverges to the optimal SVM
classifier [30]. At each active iteration, we use the updafedsifier to extract candidate
windows from only the newly obtained training images. Wentlaeld thel0 top-scoring

windows as negatives if they overlap the target class bythess20%.

We can now actively train an object detector automaticaiing minimal crowd-sourced

human effort. To recap, the main loop consists of using threeatl classifier to generate
candidate jumping windows, storing all candidates in a hable, querying the hash table
using the hyperplane classifier, giving the actively sel@axamples to online annotators,
taking their responses as new ground truth labeled dataupddting the classifier. See

Figure 6.5 for a summary of the complete system.

6.2 Results

The goal of our experiments is three-fold. First, we compghesproposed detector to the
most closely related state-of-the-art techniques. Seoeedvalidate our large-scale active
selection approach with benchmark data. Third, we deplogomplete live learning system
with crawled images, and compare to strong baselines thaest labels for the keyword

search images in a random sequence.
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Figure 6.5: Summary of our system for live learning of objeetectors. The system au-
tonomously gathers unlabeled examples by querying webehiasage collections. We then
generate candidate object windows using our jumping winstdveme and store all unlabeled
windows in a large hash-table using our hyperplane hastppgoach. During active selec-
tion we use the current classifier as a query to directlyeetrthe most uncertain windows
and autonomously post them for labeling on Mechanical Turk.

\ bird boat chair dog pottedplant sheep
Flickr-crawled| 2936 3138 2764 1831 1566 1570
Flickr-test 655 628 419 780 364 820

Table 6.1: Number of images in the crawled data and the neskrAkest set.
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Figure 6.6: Some randomly chosen example images from PASEALY testset (top) and
Flickr testset (bottom) for the categoriesat, chair, dog

6.2.1 Datasets and Implementation details

We use two datasets: the PASCAL VOC 2007, and a new Flicksdafdetails below).

e The PASCAL VOC 2007 dataset contains about 5000 trainingeganejual number of
test images from 20 classes selected from the broad catsgamimals, vehicles and
indoor objects. Since the dataset was downloaded fromrriott manually pruned the
images contain a large number of objects in varying scatesitions, viewpoints and
significant background clutter. Figure 6.6(top) shows soamelom images from the

dataset.

e The new Flickr dataset contains about 3000 images per aassx of the most dif-
ficult categories in the PASCAL dataset. To form the Fliclstteet, we download

images tagged with the class names dated in 2010 and fomigaimages, our sys-
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tem is restricted to images dated in 2009. The Flickr testvestnot manually pruned
and therefore it should contain a more general sample ofesiagailable on the web
than the PASCAL test set. Annotations on the Flickr test ssevobtained using the
same interface used for the live learning process (seedbe®tl.4). Table 6.1 provides
some data statistics. Figure 6.6(bottom) shows some ralyddrasen examples from

the Flickr test set.

We use dense SIFT at three scales (16, 24, 32 pixels) wittsgading of 4 pixels, for 30,000
features per image. We obtajii| = 56, 894 visual words with two levels of hierarchical
k-means on a sample of training images. We use the fast linddrc®desvmper f [51],
with C' = 100. For the LLC coding, we use code by [118], settindhe number of non-zero
values in the sparse vecteyto 5, following [118]. We useP = 6 parts per object from each
of a 2-mixture detector from [30], také = 100 instances per active cycle, and 8&t\/ = 4.

We fix N* = 500 ande’ = 0.01 for the hash table as reported in the previous chapter. Burin

detection we perform non-max suppression on top rankedsoaxe select 10 per image.

6.2.2 Comparison to State-of-the-Art Detectors

First we compare our detector to the algorithms with theemirbest performance on VOC
2007 benchmark of 20 objects, as well as our own implememtaif two other relevant
baselines. All methods are trained and tested with the s&8€RL-defined splits. We re-
port accuracies using the PASCAL benchmark metric, whichpates the average precision
of detected instances where an instance is said to be dgiédte overlap score (intersec-

tion/union) with the ground truth i 0.5. Average precision is the average of precision
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\ classif parts feats canb&ro. bicyc. bird boat bottl bus car cat chair cow dinin. dagsk motor. person potte. sheep sofa train tvrTMean

Ours linear yes single jump48.4 48.3 14.1 13.6 15.3 43.9 493D.7 11.6 30.3 13.321.8 43.6 45.0 18.2 11.128.8 33.0 47.7 43.0 | 30.5
BoF SP linear no single jump30.4 43.1 6.9 3.5 10.8 35.845.017.7 11.5 24.6 3.5 18.0 43.50 4453 15 19.1 14.7 35.7 34.923.0
LLC SP linear no single jump35.9 46.7 6.4 6.3 16.545.6 49.8 26.7 12.5 27.3 6.8 18.2 44.90 438.2 4.6 23.2 22.6 41.3 42.027.0

LSVM+HOG [30]|nonlinear yes single slideg2.8 56.8 2.5 16.8 28.539.751.621.317.918.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 29.1
SP+MKL [103] |nonlinear no multiple jump37.6 47.8 15.315.3 21.950.750.6 30.0 17.333.0 22.5 21.551.2 455 23.3 12.4 23.9 285 45.348.5 | 32.1

Table 6.2: Average precision compared to a spatial pyraroid lBaseline (BoF SP), a sparse
coding max pooling spatial pyramid baseline modeled aft@B] (LLC SP), and two state-
of-the-art approaches [30, 103] on the PASCAL VOC, wherarathods are trained and
tested on the standard benchmark splits.

values computed at a set of uniformly sampled recall levélsmphasizes ranking relevant

detections higher and is therefore appropriate for objetdation.

Table 6.2 shows the results. The first three rows all use thee s&iginal SIFT features,
a linear SVM classifier, and the same jumping windows in tis i®ages. They differ,
however, in the feature coding and pooling. TB@&- SPbaseline maps the local features to
a standara@-level spatial pyramid bag-of-words descriptor withrnormalization. The.LC

SP baseline applies sparse coding and max pooling within tladadpgyramid grid cells.
LLC SP is the method of [118]; note, however, we are applyirigridetection, whereas the

authors propose their approach for image classification.

The linear classifier with standard BoF coding is the weakdst LLC SP baseline performs
quite well in comparison, but its restriction to a global tsglgpyramid structure does appear
to hinder accuracy. In contrast, our detector improves @& SP noticeably for most

objects (compare rows 1 and 3), likely due to its part windows

Our detector is competitive with both of the state-of-tieesgproaches discussed in Sec-
tion 6.1.1:SP+MKL [103], which uses a cascade of classifiers that culminatiémsatearned

combination of nonlinear SVM kernels over multiple feattypes, and.SVM+HOG [30],
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bottle chair

true positives

false positives

Figure 6.7: Example detections on the PASCAL dataset obdaby our detector for five

representative categories (bicycle, car, cat, bottleirch&®ur detector provides accurate
localization despite large variations in appga@rance, pasenumber of objects. Top scoring
false positives are mainly from similar categories (e.g.veadog, bicycle vs. motorbike) or
due to the presence of a large number of similar objects (roaléimn 1, row 7 column 4) or

inaccurate localization.



which uses the latent SVM and deformation models for paridadt, our detector outper-
formsall existing resultsfor 6 of the 20 objects, improving the state-of-the-art. i¢ same

time, it is significantly faster to train (about 50 to 600 tisrfaster; see Table 6.5).

The classes where we see most improvements seem to maketeenser approach outper-
forms the rigid spatial pyramid representation used in [f@3cases with more class-specific
part structure (aeroplane, bicycle, train), while it oufpens the dense gradient parts used

in [30] for the more deformable objects (dog, cat, cow).

This is a very promising result, given our algorithm’s magomplexity advantages during
both training and testing, as well as its reliance on onlynglsi feature type. For compar-
ison, the nonlinear stage of [103] takes 50 seconds on 10did=es, whereas our linear
detector requires only 5 seconds, giving us a speed-up ghigpwan order of magnitude at
detection. The advantage is greater during training; thHéNM$nodel requires about 4 hours

to train [30], while ours requires onk¢5-10 minutes.

Figure 6.7 shows some example detections (high-scoriregdnd false positives) by our
detector for five representative categories.

6.2.3 Active Detector Training on PASCAL

We next compare our active selection scheme to a passivariganaseline that randomly
selects images for bounding box annotation. We select gisesentative categories from
PASCAL: we take two each from those that are “easierd@ AP), “medium” (25-40 AP)
and “hard” (0-25 AP) according to the state-of-the-art kegunax of rows 4 and 5 in Ta-
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= Active (Ours) = = =Passive ¢ SP-MKL[103] = LSVM [30]‘
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Annotations added, out of 4.5 million examples

Figure 6.8: Active detector training on PASCAL. Our largadge active selection yields
steeper learning curves than passive selection, and repela& state-of-the-art performance
using only~30% of the data.

ble 6.2)* We initialize each object’s classifier with 20 examples, #reh let the remainder
of the training data serve as the unlabeled pool, a totakoimllion examples. At each itera-
tion, both methods selett0 examples, add their true bounding boxes (if any) to the &bel
data, and retrain. This qualifies as learning in the “santilimx is useful to test our jumping
window and hashing-based approach. Furthermore, theaha&luttered images are signifi-

cantly more challenging than data considered by prior aahbject learning approaches, and

our unlabeled pool is orders of magnitude larger.

Figure 6.8 shows the results. We see our method’s clear tafy@nthe steeper learning

“4In spite of our method’s efficiencgvaluatingthis experiment on a single category is quite costly: each
point on the learning curve requires running the detectd,000 test images and re-doing hard negatives.
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= Live active (ours) = = =Keyword+image '='='Keyword+window ¢ SP-MKL [103] = LSVM [30]
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Figure 6.9: Live learning results on PASCAL test set.

curves indicate it improves accuracy on the test set usingrfabels. In fact, in most cases

our approach reaches state-of-the-art performance (sé&ersabove 5000 labels) using only

one-third of the available training data.

6.2.4 Online Live Learning on Flickr

Finally, we deploy our complete live learning system, whese training data is crawled on

Flickr, and apply it to both PASCAL and a new Flickr test sek ¥énsider all object classes

for which state-of-the-art AP is less than 25.0 (boat, dag], lpottedplant, sheep, chair)

in order to provide the most challenging case study, and ek saprovement through live

learning where other methods have struggled most. To foenfrlickr test set, we download

images tagged with the class names dated in 2010; when giliwvértraining, our system is
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restricted to images dated in 2009. See Table 6.1 for thestiatigtics. Figure 6.6 shows the
diversity and difficulty of randomly chosen examples frora #lickr test set in comparison

with the PASCAL 2007 testset.

We compare to (1) &eyword+image baselinethat uses the same crawled image pool, but
randomly selects images to get annotated on MTurk, and K&yavord+window baseline
that randomly picks jumping windows to get labeled. Thesestitong baselines since most
of the images will contain the relevant object. In fa€gyword+image exactly represents
the status quo approachvhere one creates a dataset by manually pruning keywordlsea

results. We initialize all methods with the PASCAL-traimaddels, and run for 10 iterations.

6.2.4.1 Live Learning Applied to PASCAL Test Set

Figure 6.9 shows the results for the PASCAL test set. Notetti@learning curves start
at x = 5000 because the training set consists of #0 PASCAL training examples in

addition to annotations requested on the Flickr trainirigiser four of the six categories, our
system improves test accuracy, and outperforms the keyamptbaches. The final AP also
exceeds the current state-of-the-art for three categ(seesTable 6.3). This is an important
and exciting result, given the size of the unlabeled poe&ifillion examples), and the fact

that the system learned its refined models completely autoatis.

However, for two classes (chair, sheep), live learning eleses accuracy. Of course, more
data cannot always guarantee improved performance on atiestdset. We suspect the
decline is due to stark differences in the distribution oS@ML and Flickr images, since the

PASCAL dataset creators do some manual preparation andhgrohall PASCAL data. Our
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\aeroplane bird boat cat dog sheep sofa train
Ours fL 48.4 15.8 18.9 30.7 25.3 28.8 33.0 47.7

Previous best 37.6 15.3 16.8 30.0 21.5 23.9 28.5 45.3

Table 6.3: Categories for which our method yields the bestoAFPASCAL VOC 2007,
compared to any result we found in the literatureméans extra Flickr data automatically
obtained by our system was used to train.)

next result seems to confirm this.

In addition, on further examination of the training imagdsained for “chair” we noticed

that the examples were particularly challenging with heasglusion (due to tables, people,
etc.) and had several ambiguous annotations on similag@aés such as sofa and couch.
The unreliability of the automatically collected annotat due to the ambiguous category

definition could have affected the accuracy to a fair extent.

6.2.4.2 Live Learning Applied to Flickr Test Set

Figure 6.10 shows the results on the new Flickr test set,ewverapply the same live-learned
models from above. Again, the x-axis starts5a00 since we initialize the classifier with
PASCAL training examples. The accuracy of the models tchime PASCAL examples (at
x = 5000) is poor for most categories possibly because this tess sabre challenging and
diverse than PASCAL (see Figure 6.6). However, the impramsimade by our approach
with additional Flickr data are dramatic—both in terms o #bsolute climb, as well as
its margin over the baselines. In all, the results indichtd bur large-scale live learning
approach can autonomously build models appropriate factien tasks with realistic and

unbiased data.
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Figure 6.10: Live learning results on Flickr test set.

Figure 6.11 shows selections made by either method whenitggtboat”, illustrating how

ours focuses human attention among the crawled tagged smitgest of the regions selected
by our approach correspond roughly to the category beingéeia In addition, the selected
images are diverse since there is large variability in theepascale and illumination of the
object of interest. On the other hand, examples that areoralydselected either do not
contain the category of interest or contain instances tteahat particularly useful (note the
extremely small scale of the boats in images selected bydkeline in Figure 6.11). This

shows the importance of obtaining a few useful annotatiaes a large number of irrelevant

examples.

Table 6.4 provides a quantitative measure of the relevahtteeselected windows by com-

puting the mean overlap scores of the windows selected fenying by either approach with
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Figure 6.11: Selections by our live approach (top), Keywarthge (bottom).

\bird boat chair dog pottedplant sheep
Live active (ours)38.4 29.5 23.4 43.2  33.2 34.3
Keyword+window?21.8 17.5 12.6 26.7 14.8 18.8

Table 6.4: Mean overlap scores of the windows selected byapproach and the key-
word+window baseline with the ground truth bounding boxvled by Mechanical Turk
annotators. The higher scores for live active (by up to 2008sbme categories) indicates
that our approach correctly picks the most relevant obggion for querying.

the ground truth bounding box provided by the Mechanicakeumotators. A higher over-
lap score with the ground truth indicates that the seleciedows capture the main region of
interest better. Our approach has up to 200% higher valutbésascore and therefore it ends

up picking windows that are highly overlapping with the mievant object in the image

and is thus able to better focus annotator attention on thre netevant images.

6.2.5 Computation Time

Table 6.5 shows the time complexity of various stages of ur@ach and illustrates our
major advantages for active selection and classifier retrgiin comparison to the state-
of-the-art methods of [30, 103]. Our reported times are thasea dual-core 2.8 GHz CPU,

which is comparable to the systems used by [30, 103]. Our jmgnpindow+hashing scheme
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Active selectionTraining|Detection per image
Ours + active 10 mins 5 mins 150 secs
Ours + passive 0 mins 5 mins 150 secs
LSVM [30] 3 hours 4 hours 2 secs
SP+MKL[103]] 93 hours |> 2 days 67 secs

Table 6.5: Run-time comparisons of different stages of etector against the passive base-
line and other state-of-the-art detectors. Our detectima ts mostly spent pooling the sparse
codes. Active times are estimated for [30, 103] models basdthear scan. Our approach’s
efficiency in selecting useful images and retraining thesifeer makes live learning practical.

requires on average 2-3 seconds to retrieve 2,000 examgdeest the current hyperplane,
and an additional 250 seconds to rank and select 100 imaggpsety. In contrast, a linear

scan over the entire unlabeled pool would require about 6@sho

The entire online learning process requires 45-75 minwgegqration: 5-10 min. to retrain, 5
min. for selection, and-1 hour to wait for the MTurk annotations to come back (tydicab
unique MTurkers gave labels per task). Thus, waiting on MTasponses takes the majority
of the time, and could likely be reduced almost arbitrariljhvbetter payment/incentives. In
comparison, direct exhaustive active selection with theaer of [30, 103] would require

about 8 hours to 1 week, respectively, per iteration.

6.3 Discussion

In summary, our contributions in this chapter are i) a noffetient part-based linear detector
that provides excellent performance, ii) a jumping windowl &dashing scheme suitable for
the proposed detector that retrieves relevant instanceagmillions of candidates, and iii)

the first active learning results for which both image data amnotations are automatically
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obtained, with minimal involvement from vision experts. iy all these parts together, |
demonstrated an effective end-to-end system for learrijgrbdetectors that provides state-

of-the-art results on two challenging datasets.

My result is significant for several reasons. First, neallaetive learning work targets the
image classificatioproblem and so images in the unlabeled pool are artificisdgumed
to contain only one prominent object. This is partly becaokéhe significant challenge
of active selection for window-based detection since thedabextents (bounding boxes)
are unknown in the unlabeled examples. Therefore, naivedyveould need to evaluate all
possible windows within the image in order to choose the raosertain. | dealt with this
large-scale selection issue by introducing our novel paged detector amenable to linear
classifiers for which the most uncertain instances can beegifly obtained in sub-linear

time using our hashing-based solution proposed in Chapter 5

Second, unlike existing object recognition results whéee \tision researcher has already
determined which images will even be considered for lalgelnr system autonomously ob-
tains both image examples and the most relevant labelsghnveb-based resources without
any involvement from an expert. In addition, while mostaetliearning approaches unreal-
istically simulate the active learning process using detathat have already been collected
and labeled, we are the first to test our active approach ifllitreg setting where multiple
human annotators directly provide requested annotatidfesneither intervened with what
went into the data pool nor the annotations returned by tlimyanous annotators and yet
obtained state-of-the-art results on the challenging PASEOC 2007 dataset. This is a

significant step towards our goal of transferring human Kedge with as little human effort
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as possible.
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Chapter 7

Future Work

There are several interesting directions of future worktfas thesis in both choosing the
right examples and questions to ask and the process of tofesupervision information

from humans. | discussed future work for the different congrds of the thesis at the end
of their corresponding chapters. In this chapter | outluehfer research along the broader

theme of this thesis.

A known issue with many active learning approaches is thaallsays selecting uncer-
tain/informative examples according to tti@rent hypothesithey might not “explore” other
regions of instance space as effectively. For examplegittncept being learned consists of
multiple modes (e.g. corresponding to different viewpsioft an object), an active learning
system could end up exploring just one of the viewpoints ddjpg on the initially sam-
pled training set. This could be an important issue whemlagrhundreds and thousands of

object categories found in web images.

It would be interesting to study if active learning schenmeganeral can provide convergence
guarantees with respect to the optimal classifier trainedal labeled data. One could also
consider balancing exploiting the current hypothesis wiploring other regions of feature

space in order to mitigate this issue. A fairly straightfardapproach would be to alternate
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between rounds of exploration, where examples are randdralyn, and exploitation, where
an active selection criterion is used. Thus, it would bergging to investigate how to
correctly balance exploration versus exploitation sotleatr optimal classifiers can be trained
with minimal effort. Our framework provides the best growmak for such studies because

we can collect large-scale datasets and automaticallyrohtaotations.

In terms of annotation collection, while a consensus fronitipie annotators is an effective
approach for obtaining the true answer amidst unreliabletators, it is rather wasteful in
terms of overall effort. Therefore, utilizing multiple amtators cost-effectively to obtain the

correct answer with high confidence is an important probleconsider next.

As a possible solution, one could dynamically evaluate tireement of an annotator with
the consensus and target specific annotators based on énfirrpance and speed on the
task in future iterations. The number of annotators to use fmarticular example could also
depend on the difficulty of the example. Our approach for jsted required effort on novel
test images provides one way of measuring a task’s diffici@gnfusion in the answers of
multiple annotators could also mean an example is difficDie could use such measures
in order to automatically choose the number of annotataysired for novel examples. This
could minimize the number of annotators to use in additiomtoimizing the number of

training examples.

Thus, further research in this direction could lead to faated more effective transfer of

human knowledge in the future.
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Chapter 8

Conclusion

In this thesis | discussed research that enables large-4saakfer of human knowledge while

learning visual categories by solving several importaobfgms in active learning.

[ first generalized traditional active learningdost-sensitive multi-levektive learning where
the learner can pose multiple annotation queries and eawdiation question costs a variable
amount of manual effort. My approach provides a cost-dffedolution for how to actively
choose not only which instance to label, but also what tygenafje annotation to acquire. |
have shown that compared to traditional active learningtvihestricts supervision to yes/no
guestions, a richer means of providing supervision and aoadeto effectively select super-
vision based on both information gain and cost to the supervs better-suited for building

classifiers with minimal human intervention.

My method is general enough to accept other types of anoatbr classifiers, as long as
the cost and risk functions can be appropriately defined VWit have concentrated mostly
in the domain of object recognition, the problem of compauilifferent types annotations
in a unified framework is potentially applicable to severthies domains both in vision and

machine learning such as video annotation, tracking, ouh@nt classification.

My work on this problem opens up several interesting dicgtsi Annotators have variable
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capabilities and speeds depending on the specific task amgkiwontent. Therefore, one
could extend the approach to target specific annotatorsaittiuser-specific cost functions.
This would require designing the VOI criterion to choose ooty what annotation type and
image looks most promising, but also which user ought to bpaesible for annotating it.
Allowing further levels of supervision, such as scene layoantextual cues, or part labels,
would further enable us to improve the way in which human stipers can interact with
computer vision systems. It would be interesting to purstabgbilistic models that can

integrate such diverse annotation cues.

The above approach provides a solution for choosisiggleannotation from a large pool of
multiple types of annotation queries which is well-suitedthe case where a single human
annotator is available to interact with the system. Howgewenight be preferable to farm
out abatchof good queries at once when one has access to multiplebdittd annotators

simultaneously.

Towards this end, | considered the problenbatigeted batch active learnirghere at each
iteration the active learner must select a batch of exammpesting a given budget of super-
vision that can be parallelly annotated using multiple diemeous annotators. The budget is
determined by the funds (or time) available to spend on atioot. Solutions to the problem
can directly utilize the multiple annotators that are aiali through crowd-sourcing services

such as Mechanical Turk.

| formulated the budgeted selection task as a continuoushigaition problem where we de-
termine which subset of possible queries should maximieé@tiprovement to the classifier's

objective, without overspending the budget. | provided ffinient alternating minimization
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procedure in order to find the local optimum of the objectiwedtion. Our results indicate
that budgeted batch selection is crucial for efficient a&ctearning in practical scenarios,
clearly outperforming conventional myopic selection aatch techniques. This is because
unlike the baseline techniques, our approach considersrhoeh the classifier objective
changes if one were to obtain the most optimistic labels enselected examples and is

therefore able to utilize large budgets most effectively.

However, like most existing active selection methods otehbaelection approach has a time
complexity that is at least quadratic in the size of the ueledh pool. This could make it

impractical for really large unprepared unlabeled datalabiz on the web.

In order to handle such large-scale selection problems,omsidered the problem @&ub-
linear time active learningwhere one needs to retrieve the database points that ate mos
informative to a classifier in time that is sub-linear in thember of unlabeled examples,
I.e., without having to exhaustively scan the entire unledbgool. Towards this end, we
introduced two solutions for the nearest neighbor to a qummperplane (NNQH) search
problem. The solutions permit efficient large-scale aclesrning using the widely used
simple margin criterion for linear SVM classifiers on miti® of examples. Our experiments
with three datasets clearly demonstrated the practicakviar active learning with massive

unlabeled pools.

Our work opens up several interesting directions includirgloring more accurate hash-
functions for our H-hash scheme, other data structurescthdt enable faster selection. It
would interesting to see if further improvements can be maeur IH-Hash scheme or

investigate if there are hard upper bounds on the amountr& @ne can save using such
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approximate hashing schemes. It would also be interestirigpisider similar approaches
for performing sublinear time selection when using nomdinkernel based active learning.
Recent work on solutions to the kernel LSH problem [60] migtavide some insight in this

regard.

Finally, tying all these together | proposed the first apphotr live-learningof object de-

tectors using web-based image collections and crowd-sauservices. Instead of manually
collecting, pruning and annotating training datasets, gstesn itself gathers possibly rel-
evant images via keyword search and repeatedly identifiedbeled sub-windows that are
most uncertain according to the current model, and gergetasks on Mechanical Turk to
get the corresponding bounding box annotations withoutramtvement from the algorithm

designer. Using the system we were able to learn object thesefor several classes and

improved on the state-of-the-art on the challenging PASTARIC dataset.

The significance of our improvements are further enhancethéyact that we neither in-
tervened with what was added to the training set nor fineetuhe annotations returned by
annotators on Mechanical Turk. This is an important stepatd® our goal of effectively

transferring human knowledge with as little human efforpassible.

In summary, my thesis work aids in developing vision systémas continuously improve
their knowledge of the world by learning to ask the right kafdjuestions to a human super-
visor in the most cost-effective way. My work has fundaméytxpanded the way in which
visual and other learning systems can obtain informatiomfhumans and has opened up

several interesting problems in this sub-field.
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