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Visual object category recognition is one of the most challenging problems in

computer vision. Even assuming that we can obtain a near-perfect instance

level representation with the advances in visual input devices and low-level

vision techniques, object categorization still remains as a difficult problem be-

cause it requires drawing boundaries between instances in a continuous world,

where the boundaries are solely defined by human conceptualization. Object

categorization is essentially a perceptual process that takes place in a human-

defined semantic space.

In this semantic space, the categories reside not in isolation, but in

relation to others. Some categories are similar, grouped, or co-occur, and some

are not. However, despite this semantic nature of object categorization, most

of the today’s automatic visual category recognition systems rely only on the

category labels for training discriminative recognition with statistical machine
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learning techniques. In many cases, this could result in the recognition model

being misled into learning incorrect associations between visual features and

the semantic labels, from essentially overfitting to training set biases. This

limits the model’s prediction power when new test instances are given.

Using semantic knowledge has great potential to benefit object category

recognition. First, semantic knowledge could guide the training model to learn

a correct association between visual features and the categories. Second, se-

mantics provide much richer information beyond the membership information

given by the labels, in the form of inter-category and category-attribute dis-

tances, relations, and structures. Finally, the semantic knowledge scales well

as the relations between categories become larger with an increasing number

of categories.

My goal in this thesis is to learn discriminative models for categoriza-

tion that leverage semantic knowledge for object recognition, with a special

focus on the semantic relationships among different categories and concepts.

To this end, I explore three semantic sources, namely attributes, taxonomies,

and analogies, and I show how to incorporate them into the original discrim-

inative model as a form of structural regularization. In particular, for each

form of semantic knowledge I present a feature learning approach that defines

a semantic embedding to support the object categorization task. The regular-

ization penalizes the models that deviate from the known structures according

to the semantic knowledge provided.

The first semantic source I explore is attributes, which are human-
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describable semantic characteristics of an instance. While the existing work

treated them as mid-level features which did not introduce new information,

I focus on their potential as a means to better guide the learning of object

categories, by enforcing the object category classifiers to share features with

attribute classifiers, in a multitask feature learning framework. This approach

essentially discovers the common low-dimensional features that support pre-

dictions in both semantic spaces.

Then, I move on to the semantic taxonomy, which is another valuable

source of semantic knowledge. The merging and splitting criteria for the cat-

egories on a taxonomy are human-defined, and I aim to exploit this implicit

semantic knowledge. Specifically, I propose a tree of metrics (ToM) that learns

metrics that capture granularity-specific similarities at different nodes of a

given semantic taxonomy, and uses a regularizer to isolate granularity-specific

disjoint features. This approach captures the intuition that the features used

for the discrimination of the parent class should be different from the features

used for the children classes. Such learned metrics can be used for hierarchical

classification.

The use of a single taxonomy can be limited in that its structure is not

optimal for hierarchical classification, and there may exist no single optimal se-

mantic taxonomy that perfectly aligns with visual distributions. Thus, I next

propose a way to overcome this limitation by leveraging multiple taxonomies

as semantic sources to exploit, and combine the acquired complementary infor-

mation across multiple semantic views and granularities. This allows us, for
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example, to synthesize semantics from both ‘Biological’, and ‘Appearance’-

based taxonomies when learning the visual features.

Finally, as a further exploration of more complex semantic relations

different from the previous two pairwise similarity-based models, I exploit

analogies, which encode the relational similarities between two related pairs of

categories. Specifically, I use analogies to regularize a discriminatively learned

semantic embedding space for categorization, such that the displacements be-

tween the two category embeddings in both category pairs of the analogy are

enforced to be the same. Such a constraint allows for a more confusing pair of

categories to benefit from a clear separation in the matched pair of categories

that share the same relation.

All of these methods are evaluated on challenging public datasets, and

are shown to effectively improve the recognition accuracy over purely discrimi-

native models, while also guiding the recognition to be more semantic to human

perception. Further, the applications of the proposed methods are not limited

to visual object categorization in computer vision, but they can be applied to

any classification problems where there exists some domain knowledge about

the relationships or structures between the classes. Possible applications of my

methods outside the visual recognition domain include document classification

in natural language processing, and gene-based animal or protein classification

in computational biology.
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Chapter 1

Introduction

Humans have the natural ability to categorize objects. Objects in the

physical world are grouped into a category through the process of perception

and recognition. The goal of an automatic object category recognition system

is to implement the same ability on a machine.

Object categorization at the general level is different in nature from

recognition at the instance level, for instance, from recognizing the category

of concrete, homogeneous classes such as numbers or characters. In addition

to the fundamental difficulties of visual recognition due to the difficulties of

segmentation, variance in lighting and pose, clutter, and occlusion, there exists

another, and more difficult problem of how to generalize over heterogeneous

object instances. What makes us think of a chihuahua and a dalmatian as the

same general object category dog?

A baby or a member of an isolated tribe who has never seen either of

them may have no idea that the two animals belong to the same category at the

first sight. Gradually, they might learn that the two animals are similar in some

sense by first observing the characteristics of each instance, and identifying the

similarities between the observed characteristics of each instance, but still, the
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observation of the visual similarities is not sufficient to classify them into a

same category. Only after telling them that the two animals belong to the

same category dog, they can associate the general object category with the

commonalities that they observe. These common traits could be appearance-

based such as having some specific shape of the snout, or behavior-based, such

as being friendly and loyal to humans.

Most current supervised learning-based automatic visual object cate-

gory recognition systems work similarly, and use the category labels to learn

the recognition models with statistical machine learning techniques. First, the

features (characteristics) are extracted from an image, and are organized into

an image descriptor that best describes the given image (object). Then, a de-

cision function is learned to map the constructed descriptors to their category

labels. The learned decision function can be later used for the category pre-

diction of a novel test instance. Currently, discriminative learning approaches

dominate the literature due to their strong empirical performance.

Discriminative approaches have shown much success in object recogni-

tion for many years. Earlier methods such as logistic classifier [77], boosted

classifier [39, 106], and the neural network [46], have shown to be useful in

visual object recognition for specific objects such as faces [106], and charac-

ters [39]. For more challenging problem of general object category recogni-

tion, kernel methods such as support vector machine (SVM) [23] have shown

much success owing to kernel trick, which allows to find non-linear classifica-

tion boundaries in the original space by learning linear classifiers in a high-
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dimensional feature mapping space. The state of the art recognition results on

challenging datasets such as Caltech-101 and Caltech-256 [49] are obtained by

some of the kernel combination methods that learn both the classifiers and the

optimal combination of the kernels, such as multiple kernel learning [103], or

LP-Boost [42]. Latent SVM [36], a variant of SVM that models object parts

as latent variables, holds state-of-the art results in object detection.

After the introduction of large-scale visual recognition datasets such

as ImageNet [27], that involves the category recognition of nearly all exist-

ing general object categories, kernel methods became lackluster for their high

computation and space overhead. Still, the state-of-the art results on these

datasets are obtained from discriminative approaches, either by learning a

low-dimensional embedding along with hierarchical classifier [11], or improv-

ing the input image descriptor by discriminatively learning mappings from

each feature to codewords [117] while keeping the classifier relatively simple.

However, all of these are limited in that, the only information they

leverage is that ‘the instances that have the same category label are different

from the others with different labels’. They view the object categories as

independent, isolated entities that have no relation to others.

Some recent work treats the category space as interdependent—such

as in structured output learning [99] and multitask learning [17], and such a

structured output model have shown some success in object categorization [29].

However, important semantic information is still missing in these models.
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In this thesis, I consider an important question: how can external se-

mantic knowledge help better learn a discriminative recognition model for

object categorization?

1.1 The need for semantic knowledge in object catego-
rization

The most fundamental reason why external knowledge is critical in

the understanding of objects in the category level, is that the categories are

semantic entities defined and perceived by humans. As the correctness of the

categorization depends on the perceptual similarity of the recognition result,

performing object recognition on the semantic level is a more robust way. A

purely statistical model that only utilizes the class label information could

be misled into learning incorrect associations between visual features and the

category. For example, suppose that the model wants to recognize the category

horse, but all the images available are images of a horse jumping over a fence

with a person riding on it. With only image-level labels provided, the model

might learn to associate visual features describing people and fences to the

category horse. However, with semantic knowledge, we know that the horse is

a four-legged animal, with distinct physical features of the equine, which could

be all utilized to correctly associate the visual features describing horses.

However, this is not the only possible advantage of using external se-

mantic knowledge. Another advantage is that we can access much richer knowl-

edge about the world. We humans have good knowledge about the world we

4



live in, and we can make use of our knowledge by associating the categories

with the known concepts, unlike the traditional object recognition system that

has to make decisions based only on the provided training examples. Suppose

that we want the system to recognize the class hawk, but it has only seen them

flying in the sky. Then, how would it recognize a hawk in a close distance?

The external knowledge about the category hawk provides much information

that is not present in the training set. We know that a hawk is a bird, a

bird has feathers, predator birds have strong beaks, and associate the visual

input to these known concepts, to recognize this animal we have never seen

as a hawk. This is possible because while the categories are discrete concepts,

the human semantic space they exist in is a continuous, interdependent space,

where each object category does not exist in isolation, but in relation to others.

Thus, an object category can be associated with other categories and semantic

concepts, whether they are observed in the training set or not.

Finally, relational semantic knowledge scales with the number of cate-

gories. This is the opposite situation to visual-only statistical models, for which

having a larger number of categories only means more confusions. The conven-

tional non-semantic categorization models have shown some success on small

scale datasets, as each object category is visually distinct, and there is less in-

formation between the classes. (Consider a dataset consisting of four classes,

car, pedestrian, monitor and keyboard). However, as the size of the dataset

grows larger and the categories become more fine-grained, the categorization

problem becomes more difficult as the visual space becomes more dense and
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crowded, and there exists more overlap in the visual feature space between the

categories. For example, categorizing different subspecies of birds [116] could

be difficult as all birds have beaks and wings. Yet, this densely populated fea-

ture space is beneficial with semantic knowledge leveraged, as it means having

more instances for higher-level concept learning, and being able to identify the

similarities and differences more clearly.

For example, suppose where we want to distinguish an otter from a

beaver. They are visually very confusing and if we do not know where to focus,

the classification of the two categories is difficult. Suppose, however, that we

are given new categories weasel and hamster, as well as knowledge that otters

and weasels are both musteline mammals, and beaver and hamster are both

rodents. This gives us a critical hint on where to focus by the identified common

features between the categories grouped as the same—the distinct body shape

of the musteline (long and sleek body) and the rodent (short body), rather

than the background, pose, and many others. Further, assume that all object

categories are related to each other. Then the set of all categories will form

a fully connected graph — adding a category will introduce the same number

of linkage to the number of existing categories. The number of linkage—

where the relational information lies—between the categories then will grow

in O(C2) where C is the number of categories, which can all contribute to

better discrimination.

To recap, the benefit of using external semantic knowledge in object

recognition, as opposed to the traditional vision-only model, is threefold.
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no relation among themselves. (b)-(e), The proposed semantic models relate cate-
gories and other semantic concepts in the semantic space.
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First, semantics help learn correct associations between the visual fea-

tures and the category membership. Second, the external semantic knowledge

enables to associate unobserved concepts that are crucial in the understanding

and the characterization of the categories to the observed. Third, a semantic

aware method can benefit from semantic relationships—such that increasing

number of categories would introduce more relationships for better learning,

in contrast to the traditional model which suffers from more confusion.

Overall, we can utilize the mass of knowledge about the known world—

as the semantic world is a continuous, interdependent space, the knowledge

could be exploited from, or transferred through their relations. Traditional

vision-only recognition model, on the contrary, is confined to the use of only

the instances provided for training.

The goal of this thesis is to explore how to exploit this external semantic

knowledge, to learn discriminative models for visual object recognition in the

object category level.

1.2 Learning discriminative object recognition models
with semantic regularization

In this section, I will give an overview of the entire thesis, while ad-

dressing what semantic knowledge to use, and how to incorporate them into

the learning of discriminative categorization models. I will first start by ex-

plaining how to incorporate general semantic knowledge into a discriminative

learning framework.
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The approach I take in leveraging the semantics in learning is a struc-

tural regularization method [122, 61]. I introduce a regularization term that

penalizes learning models that deviate from known structures defined by the

given type of semantic knowledge, to augment the discriminative learning ob-

jective. This allows to leverage the power of existing discriminative learning

methods while also learning semantically meaningful models that conform to

human knowledge about the world; thus, we will be able to obtain a model

that is discriminative yet semantic.

First, let us formally define the learning problem for object catego-

rization. Given N training instances composed of descriptor-label pairs, D =

{(xi, yi)}Nn=1, where x ∈ Rn is the image descriptor (or features) describing the

i-th visual instance, and category labels yi ∈ {1, . . . , C} where C is the maxi-

mum number of categories, the learning objective for each category model j is

to learn the parameter wj for the label prediction function f(x, wj), whose op-

timal value can be obtained by minimizing the classification loss ℓ(xi, yi, wj)

for each instance i defined by f(x, wj) over all N training instances. The

following shows a generic form of this categorization model learning problem.

(1.1) minimize
{wj}

N
∑

i

C
∑

j

ℓ(xi, yi, wj)

As aforementioned, this does not impose any relations between each

independent categorization model wj, and thus ignores vast human knowledge

to relate and group categories. The regularized discriminative learning model

9



I employ for imposing ‘semantics’ to this model has the following problem

formulation:

(1.2) minimize
{wj},φ

N
∑

i

C
∑

j

ℓ(φ(xi), yi, wj) + λΩ({wj})

The above differs from the basic categorization model learning problem

in Equation 1.1 in two aspects. 1) It contains a transformation φ(x), which

in most cases is learned alongside the classifier parameter w, that will trans-

form the instances in a low-level input feature space to a higher-level common

semantic space where the categories are associated to one another. 2) The

categorization model learning is regularized with a semantic structural reg-

ularizer Ω({wj}) on the set of parameters {wj}, where λ balances its effect

with the classification loss.

The desired outcomes of this regularized learning are discriminative

categorization models that minimize both the classification loss and penalty

defined on prior knowledge, as well as new features φ(x) from the learned

transformation φ. Due to the second aspect where the features are learned

as by-products of the categorization model learning, my methods can be also

viewed as feature learning methods. While the learned features are optimized

for the specific categorization model learned, they could be also treated as

stand-alone features, and can be used for tasks other than object categoriza-

tion, such as matching or retrieval.
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The key component in this model is the regularization term Ω({wj})

that provides structural constraints to the learned models and also to a learned

transformation φ(x), which vary depending on the specific type of the semantic

knowledge provided. Then, what kind of semantic knowledge is available for

us to exploit? The semantic knowledge can come in various forms. The form

could be either fixed such as groupings of the categories or arbitrary as in

natural language descriptions. In this thesis, I specifically exploit the types of

semantic knowledge that have fixed forms; that is, the structural constraints

from the models are consistent throughout different semantic instances.

I focus on semantic sources to augment the information provided with

the surface category labels. The first of these semantic sources is attributes

(Figure 1.1 (b)), which are semantic concepts that are shared by different ob-

ject categories. They are general concepts which can span through different

categories or instances, such as black, longleg, fast, or has wheels. The second

semantic source is a taxonomy (Figure 1.1 (c)) which groups leaf-level classes

into hierarchically inclusive groups. Further, as there exists no single taxon-

omy that is optimal, since the semantic relations among the categories differ

for each semantic perspective, we consider semantic taxonomies in multiple se-

mantic views (Figure 1.1,(d)). The last type of semantic knowledge visited in

this thesis is an analogy (Figure 1.1 (e)), which captures high-level relational

similarities between two pairs of categories with the equality constraint.

Figure 1.2 shows the overview of this thesis. I allocate separate chapters

for four pieces of work that have been published to major conferences [58, 55,
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Figure 1.2: The overview of the thesis work.

56, 57]. Each chapter shows how to exploit each type of semantic knowledge to

regularize a specific type of discriminative categorization model for improved

object categorization performance.

The validation of the proposed methods’ categorization performance on

several categorization datasets that include different types of categories such

as animal [65], scenes [79], and general objects [27], show that these different

types of semantic knowledge are indeed helpful in achieving better classification

performance over the state-of-the art discriminative learning methods. Thus,

the proposed methods can potentially be adopted to any visual recognition

systems where such discriminative learning methods are used internally, to
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improve upon their performance. The only requirement in using the proposed

models is the provision of some domain knowledge on the set of categories.

Such domain knowledge is usually inexpensive to obtain compared to per-

instance labels, as it requires defining the models on the set of categories,

which is not affected with the number of training instances. Also, semantic

sources such as attributes and taxonomies are abundant at least for general

object categories, further minimizing additional human effort.

In the next subsections, I will give a brief preview of each chapter.

1.2.1 Leveraging attributes to guide feature learning

The first type of semantic knowledge I exploit is semantic attributes.

An attribute is a human describable property of an object, that is either visual

such as spots and longleg, or semantic as domestic and fast. In the original

work of [65, 34] where semantic attributes are introduced and in most of the

follow-up works [63, 102, 109, 12, 86], attributes are mostly treated as mid-

level features that bridge the lower-level visual features and high-level classes,

and each attribute model is independently trained. However, this separation

of object class (category) classifiers and attribute classifier training does not

consider the fact that the object classifiers and attribute classifiers are trained

on the same set of visual features, and are inherently related to each other. I

instead propose to use attributes as a means to relate different object categories

through learning a common, low-dimensional representation that is shared

between object and attribute classifiers.
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The learning of the shared features between object and attributes clas-

sifiers is achieved through group sparsity regularization. The (2,1)-norm reg-

ularizer favors shared weights, by enforcing grouping between different clas-

sifiers with the ℓ2-norm regularization, and sparse feature selection with the

ℓ1-norm regularization within the same classifier. The resulting regularized

model learns a feature space that is more semantically meaningful and achieves

significant improvements over two challenging datasets of animals and outdoor

scenes.

1.2.2 Learning disjoint features on a taxonomy

Then, I move my attention to the second form of semantic knowledge,

taxonomy. A taxonomy a human-defined hierarchical grouping of object cat-

egories, and popular examples are Wordnet [35], and the phylogenetic tree

of life. Most previous work using semantic taxonomies focused either on

its hierarchical structure that enables efficient classification [72, 50, 11], or

on the explicit semantic information such as tree-hop distances between the

classes [113, 37]. Instead, I focus on information implicitly provided from the

parent-child relationships, specifically, the intuition that the features used to

characterize the parent-level category should be different from the features

used to characterize its children. For example, a wheel-shaped patch is useful

when discriminating between a ship and a wheeled vehicle, but is not useful

when discriminating between bicycle, car, and motocycle. The objective here

is to focus only on the features that are useful for the discrimination of the
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categories at a specific semantic granularity. To achieve this goal, we learn

metrics for each node of the taxonomy, and then perform disjoint regulariza-

tion between the metrics. We call this method tree of metrics (ToM).

I propose a novel disjoint regularizer that requires the metrics at a node

and its children to compete for features, by minimizing the ℓ2-norm of the sum

of the diagonals of two metrics, as it prevents the two metrics from having high

value for the same feature dimension. The competition results in the isolation

of the features that are discriminative for each semantic granularity. The

proposed method is evaluated on two challenging datasets containing animals

and vehicles. The resulting ToM model achieves better classification accuracy

with k-nearest neighbor method, compared to a single metric model or flat

multi-metric models. Also, the model with the proposed disjoint regularizer

outperforms non-regularized models.

1.2.3 Combining complementary information from multiple tax-
onomies

I further extend the scope of the external semantic sources to contain

multiple semantic views represented by the semantic taxonomies. The motiva-

tion of the idea is that there exists no single optimal taxonomy, as the utility

of the taxonomy depends on each task and view. For example, the taxonomy

defined on the biological origin would group the class dog and wolf into the

same superclass differentiated from the superclass containing cat and leopard,

while the taxonomy defined on tameness would group the classes dog and cat
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as the same. The idea is to exploit such complementary information present

in these taxonomies, to learn a better (combined) semantic representation.

To this end, I propose semantic kernel forests, which capture semantic

similarities between instances at different views and different semantic gran-

ularities, and use multiple kernel learning (MKL) to learn the optimal com-

bination of these feature spaces. In addition to the usual ℓ1-norm regularizer

for MKL to select only the useful kernels, I introduce a hierarchical regular-

izer based on the hinge loss, to favor upper-level metrics to select kernels that

capture more high-level semantic differences. The resulting regularized MKL

model outperforms the single kernel SVM, non-semantic MKL, perturbed tax-

onomy and single taxonomy MKL baselines, and the added hierarchical regu-

larizer results in improved classification accuracy.

1.2.4 Transferring knowledge between related category pairs with
analogies

Finally, I explore a new type of semantic knowledge, analogies. While

analogies have been explored to some extent in psychology and artificial in-

telligence [44, 45, 74, 75, 108], no prior work exploits them for categorization.

Analogies provide the relational similarities between two pairs of categories.

For example, in the analogy lion:tiger = horse:zebra, the common relationship

would be that the latter is the striped version of the former, without the mane.

I show how such a relational similarity can be interpreted into a geometrical

constraint in a hypothetical category space, such that the difference between
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the first pair of categories should be the same as the difference between the

second pair of categories. This equality constraint will result in a more con-

fused pair of categories benefiting from well-separated categories that share

the same relationship. I encode this into a regularization term to regularize

the geometry of the discriminatively learned category embedding space. The

resulting analogy-preserving semantic embedding (ASE) outperforms the em-

bedding that is discriminatively learned without any semantics or learned only

with class-similarity constraints encoded as distances. ASE also outperforms

others on the analogy completion task, where the task is to predict the object

class that sensibly completes an analogy based on the three given classes: p:q

= r:?.

In the next chapter, I will describe the related work in two perspectives

of how to utilize each type of semantic knowledge for object categorization, and

how to augment the learning methods to incorporate the obtained semantic

information. In later chapters, I will go over each method and also will describe

possible future research directions in the context of semantic approaches for

object categorization.
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Chapter 2

Related Work

My thesis work tackles two main issues. The first is what semantic

knowledge to use and in what sense, and the second is how to incorporate the

learned semantics in learning of a discriminative object recognition model. In

this chapter, I will describe related work in these two perspectives: utiliza-

tion of semantic knowledge in visual recognition, and discriminative learning

methods for categorization.

2.1 Semantic knowledge in object categorization

External semantics beyond object class labels are rarely used in today’s

object recognition systems, but recent work has begun to investigate new ways

to integrate richer knowledge, such as attributes and taxonomies. My work

introduced in the next three chapters focuses on exploiting these two types of

semantic knowledge.

2.1.1 Attributes in visual recognition

Attributes are human describable characteristics of an instance, which

could be either visual or semantic [65, 34, 38]. Recent work shows that at-
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tributes are useful in a variety of settings. First, they are independently useful

to describe familiar and unfamiliar things (e.g., the leopard is spotted and

furry, whether or not we know to call it a leopard [34, 38]), or to search

through large image/video collections in semantic terms [102]. Second, they

enable new zero-shot learning paradigms, where one can build an object model

on the fly [65]. Third, they can serve as mid-level features to an object classifi-

cation layer; having learned to predict the presence of each attribute, one can

build supervised object models on top of those predictions [63, 65, 34, 110].

Usually attribute-object associations are manually specified, but some work

explores ways to obtain them automatically [83, 109, 12, 86]. Notably, nearly

all models using attributes for recognition learn them independently.

On relating object and attributes, the “indirect attribute prediction”

model [65] offers a way to regularize attribute predictions based on object

predictions; however, the attribute-object connections are set by human-given

definitions, and so the two are not jointly learned. The novel multiple instance

learning (MIL) approach in [107] jointly trains attribute and object detectors

with weakly labeled data, with a constraint that both models should agree

on localization (e.g., if an image is tagged “blue cap”, both MIL classifiers

should prefer to select positive training instances from the same location). In

contrast, in my work (Chapter 3), I use the attributes to influence the feature

space construction, not training instance selection.

There is also some work that aims to use attributes to improve ob-

ject classification performance. The method in [110] integrates attribute- and
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object-based cues into a structured latent SVM model: the attribute labels

are left as latent variables on the training data, and the objective is to min-

imize object prediction loss. In contrast, I show the value in discovering a

single shared representation such that both attribute and object tasks can be

predicted well. Thus, while [110] implicitly discovers object-attribute rela-

tionships, my work exploits the two simultaneously as explicit tasks. Doubly

supervised latent Dirichlet allocation (DSLDA) [1], which is a recently pro-

posed generative topic model that has both supervised attributes and latent

shared features in the intermediate layer, is also highly relevant to my work.

Such a hybrid supervised-latent intermediate layer model can benefit from both

the explicit high-level semantic attributes as in [65] and learned shared latent

features that account for (possibly) non-semantic high-level topics. However,

DSLDA separates the latent shared feature learning from attributes, and does

not infuse semantic knowledge from attributes into the shared feature learning

as our model does. This limits its use as a feature learning method compared

to ours, which can produce semantic, shared features as outputs.

2.1.2 Taxonomies for multiclass object classification

Hierarchical taxonomies have natural appeal for object categorization,

and researchers have studied ways to discover such structure automatically [95,

10, 50, 69], or to integrate known structure to train classifiers at different lev-

els [72, 124]. The emphasis is generally on saving prediction time (by traversing

the tree from its root) or combining decisions, whereas we propose to influence

20



feature learning based on these semantics. While semantic structure need not

always translate into helping visual feature selection, the correlation between

WordNet semantics and visual confusions observed in [26] supports our use of

the knowledge base in this work. The machine learning community has also

long explored hierarchical classification (e.g., [62, 73, 16]). Of this work, our

goals most relate to [62] which focus on a very small set of features at each

node of a taxonomy, during the hierarchical classification process. However,

our focus is on learning features discriminatively and biasing toward a disjoint

feature set via regularization.

Most work in object recognition that leverages category hierarchy does

so for the sake of efficient classification [72, 50, 11, 28, 41]. Making coarse to

fine predictions along a tree of classifiers efficiently rules out unlikely classes at

an early stage. Since taxonomies need not be ideal structures for this goal, re-

cent work focuses on novel ways to optimize the tree structure itself [11, 28, 41],

while others consider splits based on initial inter-class confusions [50]. A par-

allel line of work explores unsupervised discovery of hierarchies for image orga-

nization and browsing, from images alone [95, 10] or from images and tags [68].

Whereas all such work exploits tree structures to improve efficiency (whether

in classification or browsing), my goal is for externally defined semantic hier-

archies to enhance recognition accuracy.

More related to the problem setting tackled in this thesis are techniques

that exploit the inter-class relationships in a taxonomy [71, 98, 37, 26, 105].

One idea is to combine the decisions of classifiers along the semantic hierar-
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chy [71, 124]. Alternatively, the semantic “distance” between nodes can be

used to penalize misclassifications more meaningfully [26], or to share labeled

exemplars between similar classes [37]. Metric learning and feature selection

can also benefit from an object hierarchy, either by using a taxonomy-induced

loss for structured sparsity [61], or by sharing parameters between metrics

along the same path [105].

My approaches to leveraging taxonomies (Chapter 4 and 5) are different

from the existing work in that I mainly focus on the exploitation of the implicit

information present in the parent-child relations, and learning a granularity-

specific feature space based on it.

2.1.3 Analogies in recognition

Some existing work in cognitive science and AI has explored analo-

gies in various contexts, different from my work in this thesis. Gentner et

al. [44] study analogies in light of human cognition. They define an analogy

as a relational similarity over two pairs of entities, and contrast it with the

more superficial similarity defined by attributes. Based on this intuition, they

suggest a conceptual structural mapping engine that enables analogical rea-

soning [45]. Recognizing that such generic analogies require high-level logical

reasoning that may be problematic for an automated prediction system, Miclet

et al. suggest focusing on the analogical dissimilarity between entities in the

same semantic universe [74]. They exploit analogical dissimilarity to do direct

logical inference when one of the entities is unknown. My work focuses on sim-
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ilarly scoped analogies—the semantic universe of object categories. In contrast

to their logical inference model, however, I propose geometric constraints to

enforce analogical proportions in a learned embedding.

While my main idea is to use analogies in an embedding, I also show how

to automatically discover categories that have analogical relationships using

their attribute descriptions. In this respect, there is a connection to structural

transfer learning work that discovers mappings between domains [75, 108].

However, while that work aims to associate distinct source and target do-

mains (e.g., computer viruses and human viruses), we aim to detect parallel

associations within the same domain, and then use those pairings to constrain

feature learning.

In graphics, inferring the filter relating two input images allows the

automatic creation of “image analogies” [53]; I deal with analogies on visual

data, but my idea of using them to regularize the representation is different

and original.

The idea of capturing higher-order relationships as vector differences in

a semantic space and using a learned space to answer an analogy question in

a recently published work [76] is similar to mine. However, my main objective

is on improving object categorization performance rather than on predicting

categories that form an analogy. Also, my method encodes the analogical re-

lationships between category pairs explicitly into the learned semantic embed-

ding space through regularization, while [76] does not present any means for

such supervised learning for analogical relationships and soley rely on inherent
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analogical relationships in the semantic space. Such an implicit unsupervised

model could be less powerful even for the analogy completion task they are

targeting.

2.1.4 Leveraging and combining information from multiple seman-
tic views

Combining information from multiple “views” of data is a well-researched

topic in the machine learning, multimedia, and computer vision communities.

In multi-view learning, the training data typically consists of paired exam-

ples coming from different modalities—e.g., text and images, or speech and

video; basic approaches include recovering the underlying shared latent space

for both views [52, 68], bootstrapping classifiers formed independently per

feature space [15, 21], or accounting for the view dependencies during cluster-

ing [30, 51]. When the classification tasks themselves are grouped, multi-task

learning methods leverage the parallel tasks to regularize parameters learned

for the individual classifiers or features (e.g., [5, 70, 58]).

Broadly speaking, the problem visited in Chapter 5 has a similar spirit

to such settings, since we want to leverage multiple parallel taxonomies over

the data; however, the goal of aggregating portions of the taxonomies during

feature learning is quite distinct. More specifically, while previous methods

attempt to find a single structure to accommodate both views, our method

seeks complementary information from the semantic views and assembles task-

specific discriminative features. The topic of multiple taxonomies was also
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visited in [91], but their focus was on the construction of multiple taxonomies

from the semantic attributes. In contrast, my focus is on exploiting predefined

multiple taxonomies, where the end product is a single discriminative feature

space targeted for categorization.

2.2 Discriminative learning methods and regularization

From the machine learning perspective, my proposed methods can be

viewed as structural regularization methods in learning discriminative models.

They build on several successful existing machine learning methods—namely

multitask learning, metric learning, multiple kernel learning, and large mar-

gin embedding—and augment the models with semantic knowledge through

the means of regularization. In this section, I give a brief overview on the

backgrounds of these discriminative learning and regularization methods.

2.2.1 Multitask learning for learning the structures between tasks

Multitask learning refers to a class of methods that exploits the task

structure among related classification tasks, to obtain better generalization

ability. In the original work of [17] where multitask learning is first introduced,

classifiers for different classification tasks were jointly learned by sharing the

hidden units in the neural network, which are activated similarly positive for

similar task outputs, and negatively for dissimilar task output. However, in

general, we can refer to any method that can relate different classifiers together

so that each classifier is affected by the others as multitask learning.
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There are two predominant directions to pursue mutltiask learning:

parameter sharing and feature sharing. Which sharing to use depends on the

task. For example, for multitask learning with class classifiers and attributes,

a plausible assumption is that there are invariant visual features tied to seman-

tics, which both object classifiers and attribute classifiers use, thus rendering

feature sharing as more sensible. For multiple kernel learning with taxonomies

that assign weights to each node that are shared by different categories, param-

eter sharing would make more sense. One could differentiate different tasks as

‘main’, and ‘auxiliary’, depending on which task is the main target. For most

object recognition methods, object category recognition is the main task, and

different data and tasks are used as auxiliary, such as text [84, 70] or pattern

matching [3]. My object-attribute feature sharing model is the first to explore

multitask learning with attributes, which (relative to other sources of auxil-

iary tasks) has potential advantages of intrinsic task relevance and supervision

“reuse”. Furthermore, I focus on “disjoint” sharing for the disjoint visual fea-

ture learning with taxonomies where the learners compete for features rather

than trying to share them.

2.2.2 Metric learning for learning discriminative features

Metric learning is an embedding method that learns the ‘metric’ space

that preserves certain distances among the training instances. It has been

a subject of extensive research in recent years, in both vision and learning.

Good visual metrics can be trained with boosting [92, 6], feature weight learn-
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ing [40], or Mahalanobis metric learning methods [64, 59, 111]. An array of

Mahalanobis metric learners has been developed in the machine learning lit-

erature [47, 25, 112]. In my work of Tree of Metrics [55] (Chapter 4), I learn

a discriminative local metric at each node on a taxonomy.

The idea of using multiple “local” metrics to cover a complex feature

space is not new [114, 85, 111, 20]; however, in contrast to ToM, existing meth-

ods resort to clustering or (flat) class labels to determine the partitioning of

training instances to metrics. Most methods treat the partitioning and metric

learning processes separately, but some recent work integrates the grouping

directly into the learning objective [6], or trains multiple metrics jointly across

tasks [82]. No previous work explores mapping the semantic hierarchy to a

ToM, nor couples metrics across the hierarchy levels, as we propose. To show

the impact, in experiments in Chapter 4, we directly compare to a state-of-

the-art approach for learning multiple metrics.

Previous metric learning work integrates feature learning and selection

via a regularizer for sparsity [119], as I exploit for the ToM approach here.

However, whereas prior work targets sparsity in the linear transformed space,

ours targets sparsity in the original feature space, and, most importantly, also

includes a disjoint sparsity regularizer. The advantage in doing so is that our

learner will be able to return both discriminative and interpretable feature

dimensions, as we demonstrate in our results. Transformed feature spaces—

while suitably flexible if only discriminative power is desired—add layers that

complicate interpretability, not only to models for individual classifiers but
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also (more seriously) to tease apart patterns across related categories (such as

parent-child).

2.2.3 Learning to combine features with multiple kernel learning

The support vector machine has shown much success in recent years

in many applications, including object recognition, thanks to the kernel trick

that enables learning of non-linear class boundaries by first transforming the

points in the original feature space to a high-dimensional space using some

function and learning a linear classifier in the resulting space [101]. While we

use the term ‘high’ dimensional space, most of the kernel methods actually

operate in the Hilbert space that preserves similarities between training in-

stances. This trait is also advantageous as it provides the flexibility as to how

to compute the similarities. One kernel (matrix) could be computed based on

similarities in the contour shape, and another kernel could be computed based

on the similarities in color. Then, the problem arises on how to combine the

kernels so that the combined kernel would optimally capture similarities in the

category space. The simplest way is to just average them. Or, the combina-

tion weights could be learned by cross-validation. Multiple kernel learning [8],

was originally proposed as the extension of the kernel-based support vector

machine to solve the kernel combination problem, by simultaneously learning

the classifier and the kernel combination, and it has shown much success in

visual object recognition [104, 42].

The predominant direction in the research of multiple kernel learning
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in machine learning has been on exploring the ways to efficiently optimize the

original additive kernels. How to generate the base kernels for combination has

been mostly a secondary issue. For effective combination, finding a non-linear

kernel combination has shown some progress in recent years, such as product of

kernels [104], polynomial kernels [22], and Hadamard product of kernels [66].

Still, how to generate the kernels remains as a domain-specific application

problem. Most kernels are generated by differentiating the parameters for

the radial basis function kernels, or computing on different features. The

proposed semantic kernel forest (Chapter 5) also employs a form of MKL, but

rather than pool kernels stemming from different low-level features or kernel

hyperparameters, it pools kernels stemming from different semantic sources.

Furthermore, it adds a novel regularizer that exploits the hierarchical structure

from which the kernels originate.

2.2.4 Embedding and manifold learning for object categorization

The analogy-preserving semantic embedding (ASE) I propose in Chap-

ter 6 is an instance of an embedding method whose objective is to learn a

representation that preserves certain topologies or properties in the original

topological object. Most existing embedding methods aim to preserve the

distances between data points, either globally [32] or locally [87, 115]. Label

embeddings learned for object or document categorization also aim to pre-

serve distances, but with further constraints to promote the discriminability

of labeled classes [113]. Recent embedding methods preserve not only the ge-
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ometry of local neighborhoods, but also higher-order properties like category

clusters [94] or graph structure [93]. In my analogy-based embedding method,

I also aim to preserve more far-reaching structures. However, my method is

distinct in that it enforces the relative distances between semantically related

pairs of instances.

2.2.5 Feature selection with regularization

Identifying and using ‘good’ features is critical to the robustness of a

classification model, and there has been extensive work in this direction in

machine learning. Regularization is a term for a general technique in statis-

tical machine learning to introduce additional constraints, or in other words,

‘penalty’ terms, in the learning model to avoid overfitting to the bias in the

training sample [97, 90]. A popular regularization method for learning clas-

sification or regression model is a sparsity-inducing norm regularization, that

enables to select features. Lasso [97] uses ℓ1-norm penalty term to favor sparse

solutions for the training of classifiers or regressors. This enables to select fea-

tures that are more useful and suppress noisy terms, resulting in a robust

classifier that better generalizes. Ridge regression [90] regularizes the coef-

ficient of the model using ℓ2-norm, suppressing the coefficient from growing

to infinite. It cannot zero-out the parameters to mathematical zeros as lasso

does, but can correlate feature dimensions by shrinking correlated features

simultaneously.

The elastic net [123] uses a convex combination of both ℓ1- and ℓ2-
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penalties, resulting in sparse solutions while also shrinking correlated factors

at the same time. This is called ‘group sparsity’, and further explored in the

mixed-norm regularization. A group lasso performs ℓ2-regularization along

the feature dimension, and performs ℓ1-regularization of these ℓ2-regularized

groups. This results in group sparsity, which makes correlated features drop

out together. In my multtiask learning method with semantic attributes, we

use this (2, 1)-norm as the objective (while solving the alternative problem

that is convex).

Most group-sparsity regularization works by promoting sharing among

the different learners. However, in some scenarios, making each learner to

compete instead of share could be beneficial. Exclusive lasso [122], aims to

minimize the ℓ2-norm of each dimension of the classifiers that are ℓ1-regularized

(lasso), making each classifier to compete for a feature dimension. The disjoint

regularizer used for the tree of metrics shares the same spirit, but promotes

competition between two metrics instead of two classifiers.

Taxonomy-based regularization also has gained some limited attention

recently. Tree-guided group lasso [61] uses the ℓ2-norm to identify shared parts,

and ℓ1-norm regularization to obtain sparse selection of its children. Orthog-

onal transfer [121] leverages the intuition that classification among subcate-

gories should not consider the factors that are already considered at upper

levels, by constraining the parent and children classifiers to be orthogonal to

each other. ToM is based on the same intuition but targets metric learning,

and enables true selection of features using sparsity regularization and a dis-
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joint regularizer that minimizes the ℓ2-norm of the diagonal. The proposed

semantic kernel forest also introduces a structured regularization is based on

the intuition that higher level classification should be considered as more im-

portant (as it is tied to more number of lower-level classification problems),

which is implemented into a hinge-loss regularizer.

The main novelty of my work in the machine learning, is in showing how

to translate the abstract external domain knowledge into concrete structural

constraints between classifiers, that sum up to regularizers to augment the

discriminative learning objective, to learn discriminative yet semantic models

(and features). This process is domain-agnostic as the requirement is only

on the structures of the knowledge. Thus not just visual recognition models,

but any classification models where such specific type of domain knowledge are

available, can benefit from my method; the augmented model will enable lever-

aging the power of the existing discriminative classification learning algorithms

while also utilizing the vast and complex domain knowledge that will guide

the learning into a more correct direction. They will also less overfit to the

training set biases compared to purely statistical approaches that rely only on

the labels, which will result in improved accuracy from better generalization.
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Chapter 3

Leveraging Attributes to Guide Feature

Learning

The first semantic source I explore is semantic attributes. Attributes are

human-understandable properties shared among object categories (e.g., glassy,

has legs), and they are a compelling way to introduce high-level semantic

knowledge into predictive models. As discussed in the previous chapter, recent

work shows that attributes are valuable in several interesting scenarios, ranging

from description of generic images or unfamiliar objects [38, 34, 102], to zero-

shot transfer learning [65], to intermediate features that aid in distinguishing

people, objects, and scenes [63, 65, 34, 110].

Existing approaches to attribute-based recognition assume that the at-

tributes’ role is primarily to focus learning effort on properties that will be

reusable for many categories of interest, and to elegantly integrate human

knowledge into discriminative models. As such, attribute classifiers are learned

independently from object classifiers, and then their predictions are treated as

“mid-level” features that bridge low-level image features and high-level object

classes. However, segregating supervision about attributes from supervision

about objects may restrict their impact. In particular, in conventional mod-
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Figure 3.1: In my object-attribute feature sharing model, object categories and their
human-defined visual attributes share a lower-dimensional representation (dashed
lines indicate zero-valued connections), thereby allowing the attribute-level super-
vision to regularize the learned object models.

els, even though attributes influence object predictions, the attribute-labeled

training data does not directly introduce new information when discrimina-

tively learning the objects.

I explore how learning visual attributes in concert with object cate-

gories can strengthen recognition. The assumption is that both types of pre-

diction tasks rely on some shared structure in the original image descriptor

space. In other words, patterns among those generic visual properties that

humans elect to name may reveal information about which low-level cues are

valuable to object recognition—in the most general case, whether the objects

of interest exhibit those attributes or not. Thus, rather than treat attributes

as intermediate features, I propose an approach to discover this structure and

learn a shared lower-dimensional representation amenable to discriminative
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models for either one (see Figure 6.1)1. In effect, I show how human-defined

semantics (as revealed by attributes) can regularize training for object classi-

fiers.

Given a low-level visual feature space together with attribute- and

object-labeled image data, my method learns a feature subspace for all labeling

tasks based on a joint loss function that favors common sparsity. The opti-

mization process alternates between regularizing towards shared features, and

retraining task-specific classifiers based on those features. Our technique di-

rectly builds on a multi-task feature learning algorithm developed in [2], where

it was applied to collaborative filtering of consumer data. To improve its scala-

bility, we provide a more efficient kernelized implementation and linear algebra

shortcuts for dealing with large matrices. Additionally, while in [2] all tasks

are assumed to have the same label space, our setting entails non-overlapping

label spaces (attributes, objects), for which feature-sharing is expected to be

more challenging.

It is well-known that the success of multi-task learning or feature shar-

ing hinges on the assumption that the input tasks are indeed related. Why

should the assumption hold in our case? What makes attributes “special” as

auxiliary tasks for object learning? Intuitively, their relation is intrinsic, since

attributes are by definition shared among object categories. Many object-level

distinctions can be made using a vocabulary of relevant properties, suggest-

1The work introduced in this chapter was published in [58].
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ing that a representation sufficient to distinguish the properties would also be

relevant for the objects (e.g., a child learning to discriminate cows from other

animals might focus on the visual properties a cow exclusively has but other

animals do not). In fact, in early visual processing, it is known that the hu-

man visual system discovers some sparse coding using a feature “vocabulary”

of low-level filters [80].

More abstractly, we expect that structure among a wide span of at-

tribute classifiers could reveal information about which low-level features are

valuable to human understanding of the visual world. That is, even attributes

that are not relevant to distinguishing a particular object may still help to

constrain the space of image descriptors suitable for higher-level recognition

problems. Finally, there is a practical incentive for treating attributes as aux-

iliary tasks regarding supervision cost: for many attributes, knowing the real

world object-attribute relationship is sufficient to transfer object-level image

labels to attribute-level labels (i.e., all buildings are manmade, so if we have

a labeled image of a building, it is also an image of the manmade attribute).2

In short, the contribution of this chapter is threefold: 1) design of a

method for feature sharing between object and attribute prediction tasks; 2)

validation of the method’s effectiveness with experiments on two datasets that

feature sharing can offer noted improvements in accuracy for target object

categorization tasks; and 3) exploration to what extent different attributes are

2This is the case for many binary attributes, but of course not all attributes (e.g., some
bicycles are red, some are blue).
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useful for a target task, and provide some initial ideas for automatic selection

of relevant attributes to limit training costs.

3.1 Approach

I describe in detail the approach we take to learn shared features be-

tween objects and their attributes. My work directly builds on a previous

approach [2]. Being mindful of desired large-scale learning settings, however,

we extend the method by providing faster and more scalable numerical tech-

niques. Additionally, we adapt the models to handle classification tasks where

the label sets are disparate.

I start by describing the basic setup for learning features from multiple

tasks, and then explain how the problem can be cast as convex optimiza-

tion for both linear and kernel classifiers. Finally, I discuss extensions and

improvements I have developed in order to apply the approach.

3.1.1 Basic setup and notation

There are two groups of classification tasks. We aim to improve object

classification accuracy; thus, we refer to the objects as the main task, and the

attribute classifiers as auxiliary tasks. Note that the two groups have different

sets of labels.

We use multi-class support vector machines (SVMs) for the main task [24].

Let M denote the number of object classes, xn ∈ R
D denote the n-th feature

vector in the training data and yn its class label. The multi-class SVM has M
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parameter vectors {w∗
m}Mm=1, one for each class. In the most basic setting, we

consider linear discriminants which are parameterized by wm ∈ R
D. Let W

denote the matrix whose columns are wm. To identify W , we minimize a loss

function that maximizes the discriminant wT
yn

xn,

W ∗ = arg min
∑

n

ℓ({wT
mxn}Mm=1, yn) + γ

∑

m

‖wm‖22

where γ ≥ 0 is a tradeoff parameter that regularizes the model complexity,

using the parameter’s 2-norm.

For learning A auxiliary tasks, we use yna to denote the label for the a-th

auxiliary task and wa for the corresponding model parameter. Our auxiliary

tasks are binary classification of attributes. We use the squared hinge loss for

these tasks. For simplicity, the notation assumes that both the main task and

auxiliary tasks are trained on the same feature vectors. However, this is not

mandatory, as we demonstrate in our results.

We use t ranging from 1 to T = (M + A) to index all parameter vectors

for the main and auxiliary tasks. To avoid unnecessary notation clutter, with

a slight abuse, we use
∑

M

t=1 ℓ(wT
t xn, ynt) in lieu of ℓ({wT

mxn}Mm=1, yn), namely,

the true object function for the main task.

3.1.2 Learning shared features via regularization

Conventionally, all T parameters {wm}Tt=1 are learned by independently

training (1+A) classifiers. For linear discriminants such as wT
mxn, the resulting

parameter often reveals how effective features are. For instance, a zero-valued
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element wmi indicates that the i-th feature of xn does not play a role in classi-

fying objects. Thus, intuitively, for related tasks, we expect their parameters

to reveal similar sparsity patterns. Furthermore, we hypothesize that shared

patterns will enable more effective parameter training—for example, reducing

feature space dimensionality, thus improving classification performance. How

can we identify such common patterns across tasks?

This desideratum is achieved in two steps. The first is to transform the

original features to a shared feature space UTxn ∈ U for all tasks [2, 4]. The

second step is to learn models in the space of U and promote a common sparsity

pattern in the new parameters. Concretely, we express the discriminant in {θt}

such that wt = Uθt. Analogously to W , we collect all θt in Θ ∈ R
D×T. We

jointly optimize all loss functions, but regularized with Θ’s (2, 1)-norm,

(3.1) Θ∗, U ∗ = arg min
∑

t

∑

n

ℓ(θT
t UTxn, ynt) + γ ‖Θ‖22,1

The norm is given by ‖Θ‖2,1 =
∑D

d=1

√
∑

t θ
2
td. An important property of this

norm is that it computes the 2-norm of parameter values in each dimension

across tasks. Consequently, for any dimension d, the regularization attains

the minimum if and only if the corresponding parameters are all zero: θtd = 0

for all t. Therefore, the regularization would choose the Θ with the smallest

number of non-zero rows.

The discriminant θT
t UTxn depends only on nonzero elements of θt.

Thus equation 3.1 yields solutions that use a subset of features that are com-

monly effective for all tasks. Similar ideas have also been explored in other
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settings [120, 78].

The optimization of Equation (3.1) is challenging due to the non-

smoothness of the regularization term. We next describe the alternating min-

imization algorithm proposed in [2].

3.1.3 Convex optimization

The optimization algorithm of [2] starts by identifying equation 3.1

with its equivalent form

W ∗, Ω∗ = arg min
∑

t

∑

n

ℓ(wT
t xn, ynt)

+ γ
∑

t

wT
t Ω−1wt + γǫ Trace(Ω−1),

(3.2)

where Ω ∈ R
D×D is constrained to be a positive definite matrix with bounded

trace Trace (Ω) = 1. ǫ ≪ 1 is a smoothing parameter for numerical stabil-

ity and benign convergence properties (cf. Theorem 3 in [2]). Ω’s role can

be understood more clearly by relating the solutions to the two problems in

equation 3.1 and equation 3.2:

(3.3) W ∗ = U ∗ Θ∗, Ω∗ = U ∗ Diag





{

‖Θd‖2
‖Θ‖2,1

}D

d=1



 U ∗T

where the operator Diag(· · · ) converts its D-element arguments as elements

of a diagonal matrix. ‖Θd‖2 is the 2-norm of Θ’s d-th row:
√
∑

t θ
2
td. Intu-

itively, the diagonal measures relatively how much each row of Θ is “non-zero”.

Therefore, the matrix Ω measures relative effectiveness of each feature dimen-

sion.
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Further insight could be gained by drawing an analogy to the maximum

a posteriori (MAP) estimator when the prior distribution for the parameter wt

is a Gaussian N(wt | 0;Σ−1). The regularization term of the MAP estimator

is in the form wT
t Σ−1wt. Therefore, intuitively, Ω functions as an estimator

of the covariance structure, computed from all parameters wt (or equivalently,

θt), over all tasks.

Equation 3.2 is computationally advantageous for it is a convex opti-

mization. To solve it, we alternatively minimize over {wt} and Ω while holding

the other fixed. When Ω is fixed, each wt can be identified as

(3.4) w∗
t = arg min

∑

n

ℓ(wT
t xn, ynt) + γwT

t Ω−1wt .

With two simple variable substitutions, the optimization takes the standard

form of ℓ2-norm regularization:

ŵ∗
t = arg min

∑

n

ℓ(ŵT
t zn, ynt) + γ ‖ŵt‖22 ,(3.5)

zn ← Ω1/2xn, ŵt ← Ω−1/2wt.(3.6)

When the parameters {w} are fixed, the optimal Ω that minimizes

equation 3.2 has a closed-form solution:

(3.7) Ω =
(WW T + ǫI)1/2

Trace [(WW T + ǫI)1/2]
.

The alternating minimization procedure monotonically decreases the

objective function until the optimum solution is reached. Algorithm 1 lists

the key steps. We set the hyperparameters γ and ǫ using a validation data set.
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Algorithm 1 Learning Shared Features for Linear Classifier [2]

Require: training data (xn, {ynt}), ǫ, γ
Ensure: W ∗, Ω∗

1: Initialize Ω with a scaled identity matrix 1
D

I

2: while W still changes between two iterations do

3: Compute transformed variables according to Equation (3.6)
4: Solve ŵt according to Equation (3.5)
5: Compute wt as wt = Ω1/2ŵt

6: Update Ω according to Equation (3.7)
7: end while

3.1.4 Extension to kernel classifiers

The feature learning framework can be extended to kernel-based non-

linear classifiers. We apply the kernel construction of [2]. Let K(xn, xn′)

denote the kernel function between two original feature vectors xn and xn′.

The kernel induces a nonlinear feature mapping φ(xn) ∈ H ⊂ R
H. We perform

feature learning in this new space H.

To “kernelize”, note that the optimal parameter W ∈ R
H×T for the

models is a linear combination of (training) feature vectors. This can be un-

derstood intuitively by observing that Equation (3.5) is the standard formula-

tion of an SVM; therefore the solution {ŵ∗
t } is a linear combination of feature

vectors. The same statement is also true for W , as the two are linearly related

as in Equation (3.6).

It is computationally convenient to express W using the basis V of

the feature space H: W = V α (we have adopted a slightly different notation

from [2] by adhering to the standard nomenclature in SVMs). We assume

the number of basis vectors in V is B < N where N is the total number of
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feature vectors. The matrix α is the linear combination matrix, each column

for a task. The basis V can be computed from the kernel matrix formed from

training feature vectors, for instance, through eigendecomposition or Gram-

Schmidt (G-S) orthogonalization. We use the latter technique for its slightly

lower computational overhead. Concretely, we randomly choose B training

feature vectors S and express the basis in the linear combination of those

features, V = ΦSB, where the matrix ΦS’s columns are the nonlinear features

computed from the chosen training instances. The matrix B ∈ R
B×B stores

the linear combination coefficients, computed by the G-S process.

The parameter W is also linearly represented, as W = ΦSBα. Anal-

ogous to Equation (3.2), the optimal α is then:

α, Ω∗ = arg min
∑

t

∑

n

ℓ(αT
t zn, ynt)

+ γ
∑

t

αT
t Ω−1αt + γǫ Trace(Ω−1).

(3.8)

where αt is the t-th column of α. zn = BTkS(xn) is the transformed data,

resulting from the linear discriminant in the feature space H,

(3.9) wT
t φ(xn) = (Bαt)

TΦT
S
φ(xn) = αT

t BTkS(xn),

where the vector kS(xn) ∈ R
B consists of the elements of the kernel function

k(xn, xb) = φ(xb)
Tφ(xn).

The optimization problem Equation (3.8) is now readily solvable using

techniques described previously. Key steps are given in Algorithm 2.
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Algorithm 2 Learning Features for a Kernel Classifier

Require: training data (xn, {ynt}), ǫ, γ, and B

Ensure: α∗, Ω∗, B

1: Formulate kernel matrix K

2: Compute the basis B,S← Gram-Schmidt(K,B)
3: Transform data according to Equation (3.9) and S

4: α∗,Ω∗ ← Algorithm 1((zn, {ynt}), ǫ, γ)

3.1.5 Other extensions

I propose several additional extensions, addressing issues that naturally

arise in our setting.

Modeling disparate sets of labels As opposed to [2], the main task and

auxiliary tasks here have different sets of labels and different types of loss

functions. Thus, we use two regularizers, one for each group. In the linear

classifier case, our optimization takes the form,

W ∗, Ω∗ = arg min
∑

t

∑

n

ℓ(wT
t xn, ynt) + ǫ Trace(Ω−1)

+

M
∑

t=1

γMwT
t Ω−1wt +

T
∑

t=M+1

γAwT
t Ω−1wt

(3.10)

where γM is used for the main task and γA for auxiliary tasks. When γA is set

to zero, the optimization learns shared features from parameters for all object

classes, without attributes. We term this setup as “Sharing-Obj”. When γM

is constrained to be the same as γA, we recover equation 3.2.

Handling high-dimensional features The alternating minimization algo-

rithm described in Section 3.1.3 depends on re-estimating Ω and computing its

44



square root Ω1/2 with equation 3.3 and equation 3.6. For the high-dimensional

features used in our setting, directly computing these quantities is costly. We

exploit the low-rank property of Ω to circumvent this challenge. Note that

the matrix W has T columns and D ≫ T rows. Thus, W can be factorized

with “thin” singular value decomposition: W = LSRT, where L ∈ R
D×T

and R ∈ R
T×T are W ’s (partial) left and right eigenvectors. The diagonal

matrix S ∈ R
T×T is composed of W ’s singular values {σi(W )}Ti=1. With some

algebraic manipulation, we identify the eigenvalues of Ω:

λi(W ) =

(

√

σ2
i (W ) + ǫ

)

/ρ, λ(ǫ) =
√

ǫ/ρ(3.11)

ρ =
T
∑

i=1

√

σ2(W ) + ǫ +
√

ǫ [D− T] .(3.12)

The eigenvectors in L and the subspace orthogonal to them span precisely Ω’s

column space. This yields,

(3.13) Ω = L Diag
(

{λi(W )}Ti=1

)

LT + λ(ǫ)(I −LLT).

The matrix Ω1/2 can be formulated similarly, replacing λi(W ) and λ(ǫ) with

their square roots.

Choosing the kernel basis For the kernelized version, one needs to choose

B basis vectors to expand the kernel feature space, as described in Section 3.1.4.

We use two simple heuristics. We choose B large enough such that the perfor-

mance of using the B basis vectors for individual task learning is close to the

performance of our baseline system’s. The individual task learning is set up as

45



antelope beaver cow dalmatian elephant german sheperd

horse lion persian cat polar bear rhinoceros zebra

white spots

Figure 3.2: Examples images for AwA (Animals with Attributes) dataset. Top two

rows: Object categories. Bottom row: Attributes.

a linear classifier using the transformed feature vectors Equation (3.9), while

the baseline system’s are kernel-based nonlinear classifiers using the original

features.

For the Gram-Schmidt process, we choose B/M feature vectors ran-

domly from each of M classes. This gives balanced coverage of different fea-

tures, and in practice works better than purely randomly selecting without

taking object class into consideration.

3.2 Results

I validate my approach against relevant baselines, and report results on

object categorization, the main target task.
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natural open diagonal-plane

Figure 3.3: Examples images for OSR (Outdoor Scene Recognition) dataset. Top

two rows: Object categories. Bottom row: Attributes.

Datasets We consider two datasets: the Animals with Attributes dataset

(AWA) [65], and the Outdoor Scene Recognition dataset (OSR) [79]. AWA

contains 30,475 images, 50 animal classes, and 85 attributes.3 Each image

is labeled by the animal and attributes present. OSR has 2,688 images, 8

scene classes, and 6 attributes as given in [79]: natural, open, perspective,

size, diagonal plane, and depth. See Figures 3.2 and 3.3. We asked another

vision researcher to make the assignment from attributes to scenes. We apply

random train-test splits, ensuring balance among object classes. Throughout,

we use “object” to refer to an animal or scene.

Baselines We consider two baselines:

• a traditional multi-class object recognition approach using an SVM with

3For all methods, we use the 59 attributes exceeding 70% accuracy as reported in [65],
since some are unpredictable from the given features.
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a χ2 kernel computed on image features, which we refer to as No sharing-

Object, or NSO.

• an approach that treats attributes as intermediate features, which we

call No sharing-Attribute, or NSA.

For NSA, we train SVMs on image features to predict attribute labels, and then

treat their outputs as features to a multi-class logistic regression classifier. This

baseline follows the basic direct attribute prediction (DAP) approach defined

in [65]. We use LIBSVM.

Image features All methods use the same original image features. For

AWA, we use the six (SIFT, rgSIFT, PHOG, SURF, LSS, RGB) provided

with the dataset, each up to 2688-D. For OSR we generate 512-D Gist and

45-D LAB color histograms. We average the kernels computed over multiple

feature types. Note that both datasets permit global descriptors, since there

is one primary object of interest per image. To test with multi-object images,

one would apply a window-based detector.

3.2.1 Impact of sharing features

First we evaluate the object recognition accuracy of our approach and

the baselines. Our approach gets the same training images for both the at-

tribute and object tasks. We form four training splits of increasing size (10% to

60%), and reserve the rest for validation and testing (20% each). We demon-

strate two variants of our approach: Sharing-Obj, where we learn a common
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50-class Animals Dataset
Method / % train data 10% 20% 40% 60%

No sharing-Obj. (NSO) 31.96 38.12 44.08 48.03
No sharing-Attr. (NSA) 31.03 35.61 41.12 43.59

Sharing-Obj. (Ours) 37.08 41.01 46.46 49.15
Sharing+Attr. (Ours) 36.73 42.60 47.70 50.94

% gain over NSO 14.92% 11.75% 8.21% 6.06%
% gain over NSA 18.37% 19.63% 16.00% 16.86%

Table 3.1: Accuracy on the 50-class animals dataset (AWA), as a function of training
set size. Learning shared representations with our approach significantly improves
generalization on the novel test set, and can be most pronounced when labeled
training data is limited.

representation for all object classes simultaneously, corresponding to γA = 0

in Equation (3.10), and Sharing+Attributes, where we learn the space for all

objects and attributes, corresponding to γA = γM .

Table 3.1 and Table 3.2 shows the results. Our feature sharing approach

offers significant improvements over both ‘No sharing’ baselines, and we obtain

the best results when jointly learning with both the objects and attributes. The

last two rows summarize gains of Sharing+Attributes over the baselines. Our

improvements over the NSO baseline are perhaps most informative, since the

general approach taken by NSO (multiple image features, kernel combination,

nonlinear SVM) is typical in state-of-the-art image recognition techniques.

While the margin between our Sharing-Object and Sharing+Attributes

variants is smaller than the margin between not sharing at all versus sharing,

the impact of attributes is clear and consistent. A one-tailed paired t-test on

the 60% training split confirms that the accuracy gain with attribute tasks
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8-class Scene Dataset
Method / % train data 10% 20% 40% 60%

No sharing-Obj. (NSO) 76.76 79.75 83.03 83.74
No sharing-Attr. (NSA) 57.77 58.98 60.50 60.78

Sharing-Obj. (Ours) 78.76 81.49 85.05 86.06
Sharing+Attr. (Ours) 78.09 81.62 85.89 87.01

% gain over NSO 1.73% 2.34% 3.44% 3.90%
% gain over NSA 35.17% 38.39% 41.97% 43.16%

Table 3.2: Object prediction accuracies of Sharing+Attributes and baselines on the
8-class scene dataset (OSR), as a function of training set size.
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Figure 3.4: Hinton diagram of the matrix Θ in the initial and last iterations of
Alg. 2. Each square is a matrix entry, and area reflects the entry’s magnitude. For
clarity only a partial matrix is shown, for the first 30 features (horizontally) and the
first 10 object classes (vertically). The matrix at the last iteration is much sparser.

is statistically significant (for α = 5% on AWA and α = 1% on OSR). By

separately tuning the γM and γA regularization weights, we expect even better

performance; we simply let them be equal to save computation time.

Interestingly, on the larger AWA set, the gain using our method are

largest for smaller labeled data pools, supporting our claim that attribute

feature sharing can have a beneficial regularization effect for object learning.

This is an encouraging result, particularly since obtaining attribute labels

on object-labeled data has minimal additional overhead for many attribute
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Figure 3.5: Accuracy on AWA (top) and OSR (bottom) classes. Our approach out-
performs methods that learn objects (No sharing-Object) or attributes (No sharing-
Attributes) independently.

types, as discussed previously. Figure 3.4 visualizes the shared features over

iterations, showing how we converge to a common sparse set.

Figure 3.5 breaks out the prediction accuracy per object category on

both datasets. We improve accuracy for 33 of the 50 AWA classes, and yield

correct predictions for some classes the baselines miss completely (e.g., beaver,

rat). On OSR, the absolute accuracy is higher overall, due to the smaller

multi-way decision. However, NSA suffers due to the insufficiency of the at-

tribute vocabulary; it happens that the scenes tallbuilding and insidecity

have exactly the same attribute definitions. In contrast, our approach accounts
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for attributes while still learning features sufficient to make the distinction.

One might ask whether some arbitrary grouping of object classes into

tasks might also have similar benefits. That is, are our gains due to the at-

tributes’ meaning, or could it be a sort of “error-correcting code” effect? To

analyze this, we test a baseline where each object’s attribute labels are ran-

domly reassigned to other attributes, and then apply our method (for five such

random assignments on the 60% training split). On OSR, we find this baseline

offers no improvement over Sharing-Object (decreasing accuracy by 0.06). On

AWA, the baseline improves over Sharing-Object (by 0.97 on average), but by

less than sharing with real attributes (which increases accuracy by 1.79). This

indicates the attribute semantics are indeed a factor in our method’s success.4

In the remaining text, I report the results using Sharing+Attributes,

and focus on the AWA data, since it is 11× larger and has a richer set of

attributes.

3.2.2 Impact of disjoint training images

Our model is flexible to the source of object- and attribute-labeled data,

and we can train the tasks on disjoint sets of images. This is relevant when

one has a large set of existing attribute-labeled data, and wants to use it to

regularize the training process for a new set of object models.

4Looking closely at the AWA data, we see that the baseline’s small gain made with
randomly assigned attribute labels may be misleading. Because the classes are fine-grained,
any random assignment of labels can overlap with meaningful attributes; the 85 attribute
labels in AWA are certainly not exhaustive for the 50 animals.
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Image source for attributes
Method Same Disjoint All

No sharing-Object (NSO) 72.99 72.99 72.99
Sharing+Attribute 76.40 76.32 77.05

% gain 4.67% 4.56% 5.56%

Table 3.3: [Object prediction accuracies for Sharing+Attributes and NSO, as a func-
tion of which image pool is used for the attribute tasks.]Object prediction accuracy
as a function of which image pool is used for the attribute tasks, on the 10-class
AWA subset.

Thus, we next examine the impact of which images are used as the

auxiliary attribute tasks to train the object classifiers. We select 10 classes

(the same as [65]) to train the object classifiers, and test three variations for

learning the attributes: 1) the same images used for the objects, 2) a disjoint

set of images containing object classes outside of the 10, and 3) all images, the

union of the previous two.

Table 3.3 shows the results. Interestingly, I see that our method per-

forms similarly whether the attribute data overlaps or not (see first two columns).

This suggests that the value of the attributes is not simply having deeper/stronger

labels on the very same training examples; rather, it is the fact that we identify

a common space where both types of labels are well predicted. The table also

indicates that more attribute-labeled images is helpful (cf. last column).

3.2.3 Selecting relevant attributes

Having tested the impact of which images have attribute labels, next

we consider the impact of which attribute classes are leveraged as auxiliary
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tasks. Presumably, not all attributes will benefit feature sharing, and—as

usual in multi-task learning—some may be detrimental. Even if all attributes

were relevant to some degree, we may want to be selective to save training

costs.

Thus, I explore a simple form of automatic attribute selection in which

we rank all attributes by their mutual information (MI) with the 10 animals5.

Figure 3.6 (left) displays the computed MI, from the most informative at-

tributes (e.g., “spots”, which chimps and pigs lack, but leopards and pandas

have) to the least (e.g., none of the 10 animals “fly”).

Figure 3.6 (right) shows the impact of using the MI scores to select

attributes for sharing. Both dotted curves denote our method, but one uses

the k most informative attributes, and the other uses the k least informative

attributes.6 The most interesting cases are for lower values of k. (For higher

values of k, the “most” and “least” sets overlap more, and they are identical

at k = 85.)

The results show that using the 20 attributes with the highest MI yields

the best accuracy, while using the lowest 20 is slightly worse than using none

whatsoever. Further, we see that more attribute classes do not necessarily

always help. These findings plus the fact that training time increases linearly

with k (see solid green line, right axis), suggest it is practical to choose in-

5chimp, panda, leopard, persian cat, hippo, whale, raccoon, rat, seal
6Note, we simply fix the γ and ǫ parameters for all cases, in order to see the effect of the

attribute selection in isolation.
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Figure 3.7: Confusions made by the baseline (b) and our method (c) relative to
human-given object relationships (a).

telligently. This result also shows the potential for performing task selection

outside of the feature sharing learning procedure.

3.2.4 Semantically meaningful predictions

Finally, we analyze to what extent the semantics we introduce by jointly

training objects and attributes are manifest in our method’s predictions. Fig-

ure 3.7 compares the confusion matrices for our method (c) and NSO (b). To
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judge the “reasonableness” of their errors, in (a) we depict the true relation-

ships between all pairs of the 10 objects. To obtain this matrix, we use human

subjects’ ratings collected in [81] about the relative strength of association

between the 85 attributes and 50 objects in AWA. For each object, we create

a vector of its 85 property “strengths”, and then compute the pairwise χ2

kernel values between all such vectors. Brighter boxes indicate greater true

association in (a), and higher confusion in (b,c). Thus, if a method captures

semantics well, its confusion matrix will look more like (a).

First, we notice that our method boosts accuracy for most classes,

raising the mean diagonal from 66.9% to 68.9%. Second, we see that the pairs

for which our method most reduces confusions (e.g., pig vs. rat) are more

distinctive semantically. On the flip side, some closely related pairs become

confused by our method (e.g., raccoon vs. cat). Figure 3.8 shows example

animal category and attribute predictions, compared alongside NSO and NSA.

3.3 Discussion

In this chapter, I showed that by learning a common feature space

suitable to either attribute or object tasks, the classifiers can obtain notice-

ably stronger object recognition performance. I demonstrated the proposed

method’s improved generalization accuracy and its potential to make more

predictable errors in terms of human-defined semantics.
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Figure 3.8: Example predictions by our method (right column in each), No Sharing-
Attributes (NSA, middle columns), and No Sharing-Objects (NSO, object prediction
under each image). Attributes are those with 7 highest positive decision values, by
ours or NSA (red attributes incorrect). (a)-(d) illustrate good results, and (e)-
(f) show failure cases that highlight our method’s tendency to make semantically
meaningful errors.

The enforced sharing via mixed norm regularization results in discard-

ing features that are only specific to each category and keeping the ones that

are shared with attributes, which adds more semantics to the learned feature

space. This semantic guidance not only makes the category recognition model

more robust, but also leads to more semantically meaningful predictions. The
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(a) DAP (b) Ours (c) DSLDA

Figure 3.9: Conceptual graphical representations of direct attribute prediction
(DAP) [65], our feature sharing method, and doubly-supervised latent Dirichlet
allocation (DSLDA) [1]. Dark gray nodes denote observed nodes, light gray nodes
denote nodes observed only during training and inferred in test, and white nodes
denote latent nodes that are never observed. Further, M is the number of object
classes, A is the number of attributes, and K is the dimensionality of the shared
latent features.

introduction of attributes here could be viewed as introducing a layer of flat

higher-level semantic concepts that groups the categories as either having or

not having the desired semantic property.

While our method shows impressive results outperforming state-of-the

art methods, there still remains further room for improvement. In our model,

we treated the attributes as additional supervision to class labels in the output

layer, and the features associated with each attribute were indirectly learned

through the feature sharing. However, this indirect attribute-guided latent

shared feature learning does not guarantee that the features learned on the

latent space directly correspond to each attribute, especially when the at-

tribute describes high-level semantic properties such as fast or domestic. Con-

sequently, our model might result in learning less ‘semantic’ features compared

to explicit attributes modeling as in [65], while achieving more discrimination
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power (Figure 3.9 (a), (b)). Obtaining better discrimination power with a pos-

sible sacrifice of semantics is perfectly fine for the object categorization task

we are aiming at, but might be less optimal if the objective is to learn strictly

semantic models (or features).

Doubly-supervised latent Dirichlet allocation (DSLDA) [1], a recently

proposed hybrid supervised-latent topic model, suggests a way to take advan-

tage of both explicit attribute modeling and latent shared feature learning.

DSLDA has both supervised attributes and latent shared features in the in-

termediate layer, where the former accounts for attributes while the latter

accounts for high-level shared topics not included in the set of attributes (Fig-

ure 3.9 (c)). Still, DSLDA has its limitation that it cannot benefit from addi-

tional supervision from attributes when learning the shared latent features, as

our method does, due to the separate training of attributes and latent features.

The limitation common to all these models is that they only have a

single intermediate layer to represent attributes, while the attributes come

in diverse semantic granularities. Attributes such as longleg and lean can

be directly inferred from visual features, while fast might require an infer-

ence based on the previous lower-level attributes. This observation suggests

a possible multi-layer semantic model which improves upon our model, where

the category classifiers are essentially learned on latent shared features guided

with attributes as in our original problem formulation, where they have mul-

tiple layers of transformations instead of a single layer. In this multi-layer

model, different levels of attributes can be associated with feature learning at
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each layer. Section 7.2.2 will discuss more on high-level ideas for this deeper

semantic model.

The limitation of having a global, binary single intermediate layer, and

ignoring the difference in abstraction level between the semantic concepts and

groups can be viewed more as a limitation inherent to attributes themselves.

Some semantic concepts have more explicit subset relationships among them-

selves. For example, consider canine and carnivore. We can group animals

into canine and non-canine groups, and carnivore and non-carnivore groups

as with the attributes, but these have more obvious relation that the former

is a subset of the latter. A hierarchical model is more suitable to such cases

where we can define a clear subset relation between semantic concepts. In the

next chapter, I show how a taxonomy could be exploited to help learn object

category recognition.
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Chapter 4

Learning Disjoint Features on a Taxonomy

The binary attributes we explored in the previous chapter divide the

categories into two groups: those that have the attribute, and those that do

not. However, this introduction of a single layer of meta-categories is not

the only way to categorize basic level categories into larger groups. Instead,

we could merge categories into superclasses by their similarities, and split

a category into subcategories by the observed difference, or certain human-

designed criteria, in a hierarchical way. Such a semantic hierarchy is called a

taxonomy, and is the second type of external semantic knowledge I explore in

this thesis.

Well-known taxonomies employed for categorization include WordNet,

which groups words into sets of cognitive synonyms and their super-subordinate

relations [35], and the phylogenetic tree of life, which groups biological species

based on their physical or genetic properties. Critically, such trees implicitly

embed cues about human perception of categories, how they relate to one an-

other, and how those relationships vary at different granularities. Thus, in

the context of visual object recognition, such a structure has the potential to

guide the selection of meaningful low-level features, essentially augmenting the
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Captures the hierarchical structure of a taxonomy 
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Figure 4.1: Main Idea: Leveraging parent-child relationship in a given semantic
taxonomy, we learn a tree of metrics (ToM) that captures compact, discriminative
visual features for each level. Left: we learn a local metric at each node of a
taxonomy, that discriminates between its subclasses. Right: For the metrics that
are associated in an ancestor-descendants relationship, we want each metric to select
a set of features different from others, to identify exclusively informative features at
each semantic granularity.

standard supervision provided by image labels. Some initial steps have been

made based on this intuition, typically by leveraging the WordNet hierarchy

as a prior on inter-class visual similarity [124, 72, 98, 27, 37, 26, 105].

I propose a metric learning approach1 to learn discriminative visual rep-

resentations while also exploiting external knowledge about the target objects’

semantic similarity.2 We assume the external knowledge itself is available in

the form of a hierarchical taxonomy over the objects (e.g., from WordNet or

1The work introduced in this chapter is published in [55].
2“learned representation” and “learned metric” are used interchangeably, since we deal

with sparse Mahalanobis metrics, which are equivalent to selecting a subset of features and
applying a linear feature space transformation.

62



some other knowledge base). My approach exploits these semantics in two

novel ways.

First, we construct a tree of metrics (ToM) to directly capture the

hierarchical structure. In this tree, each metric is responsible for discriminating

among its immediate object subcategories. Specifically, we learn one metric

for each non-leaf node, and require it to satisfy (dis)similarity constraints

generated among its subtree members’ training instances. We use a variant

of the large-margin nearest neighbor objective [112], and augment it with a

regularizer for sparsity in order to unify Mahalanobis parameter learning with

a simple means of feature selection.

Second, rather than learn the metrics at each node independently, I

introduce a novel regularizer for disjoint sparsity that couples each metric

with those of its ancestors. This regularizer specifies that a disjoint set of

features should be selected for a given node and its ancestors, respectively. In-

tuitively, this represents that the visual features most useful to distinguish the

coarse-grained classes (e.g., motor vehicle vs. bicycle. See Figure 4.1) should

often be different than those cues most useful to distinguish their fine-grained

subclasses (e.g., bicycle for two vs. mountain bike). The resulting optimiza-

tion problem is convex, and can be optimized with a projected subgradient

approach. Figure 4.1 shows the overview of these two main ideas.

The ideas of exploiting label hierarchy and model sparsity are not com-

pletely new to computer vision and machine learning researchers. Hierarchical

classifiers are used to speed up classification time and alleviate data sparsity
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problems [72, 50, 62, 73, 16]. Parameter sparsity is increasingly used to derive

parsimonious models with informative features [67, 60, 117].

My novel contribution lies in the idea of ToM and disjoint sparsity

together as a new strategy for visual feature learning. My idea reaps the ben-

efits of both schools of thought. Rather than relying on learners to discover

both sparse features and a visual hierarchy fully automatically, we use exter-

nal “real-world” knowledge expressed in hierarchical structures to bias which

sparsity patterns we want the learned discriminative feature representations to

exhibit. Thus, our end-goal is not any sparsity pattern returned by learners,

but the patterns that are in concert with rich high-level semantics.

I validate my approach with the Animals with Attributes [65] and Im-

ageNet [27] datasets using the WordNet taxonomy. We demonstrate that

the proposed ToM outperforms both global and multiple-metric metric learn-

ing baselines that have similar objectives but lack the hierarchical structure

and proposed disjoint sparsity regularizer. In addition, we show that when

the dimensions of the original feature space are interpretable (nameable) vi-

sual attributes, the disjoint features selected for super- and sub-classes by my

method can be quite intuitive.

4.1 Approach

I review briefly the techniques for learning distance metrics. I then

describe an ℓ1-norm based regularization for selecting a sparse set of features in

the context of metric learning. Building on that, I proceed to describe our main
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algorithmic contribution, that is, the design of a metric learning algorithm that

prefers not only sparse but also disjoint features for discriminating different

categories.

4.1.1 Distance metric learning

Many learning algorithms depend on calculating distances between

samples, notably k-nearest neighbor classifiers or clustering. While the default

is to use the Euclidean distance, the more general Mahalanobis metric is often

more suitable. For two data points xi, xj ∈ R
D, their (squared) Mahalanobis

distance is given by

(4.1) d2
M(xi, xj) = (xi − xj)

TM(xi − xj),

where M is a positive semidefinite matrix M � 0. Arguably, the Mahalanobis

distance can better model complex data, as it considers correlations between

feature dimensions.

Learning the optimal M from labeled data has been an active research

topic (e.g., [25, 47, 112]). Most methods follow an intuitively appealing strat-

egy: a good metric M should pull data points belonging to the same class

closer and push away data points belonging to different classes. As an illus-

trative example, we describe the technique used in constructing large margin

nearest neighbor (LMNN) classifiers [112], to which our empirical studies ex-

tensively compare.

In LMNN, each point xi in the training set is associated with two sets
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of different data points in xi’s nearest neighbors (identified in the Euclidean

distance): the “targets” whose labels are the same as xi’s and the “impostors”

whose labels are different. Let x+
i denote the “target” and x−

i denote the

“impostor” sets, respectively. LMNN identifies the optimal M as the solution

to,

(4.2)

min
M�0

ℓ(M) =
∑

i

∑

j∈x
+

i

d2
M(xi, xj) + γ

∑

ijl

ξijl

subject to 1 + d2
M(xi, xj)− d2

M(xi, xl) ≤ ξijl; ξijl ≥ 0 .∀ j ∈ x+
i , l ∈ x−

i

where the objective function ℓ(M) balances two forces: pulling the target

towards xi and pushing the impostor away. The latter is characterized by the

constraint composed of a triplet of data points: the distance to an impostor

should be greater than the distance to a target by at least a margin of 1,

possibly with the help of a slack variable ξijl. The minimization of equation 4.2

is a convex optimization problem with semidefinite constraints on M � 0, and

is tractable with standard techniques.

My approach extends previous work on metric learning in two aspects:

1) We apply a sparsity-based regularization to identify informative features

(Section 4.1.2); 2) at the same time, we seek metrics that rely on disjoint sub-

sets of features for categories at different semantic granularities (Section 4.1.3).

4.1.2 Sparse feature selection for metric learning

How can we learn a metric such that only a sparse set of features are rel-

evant? Examining the definition of the Mahalanobis distance in equation 4.1,

66



we deduce that if the d-th feature of x is not to be used, it is sufficient and

necessary for the d-th diagonal element of M be zero.

Therefore, analogous to the use of ℓ1-norm by the popular LASSO tech-

nique [97],we add the ℓ1-norm of M ’s diagonal elements to the large margin

metric learning criterion ℓ(M) in equation 4.2,

(4.3)
min
M�0

∑

i

∑

j∈x
+

i

d2
M(xi, xj) + γ

∑

ijl

ξijl + λTrace[M ],

where we have omitted the constraints as they are not changed. λ and γ are

nonnegative (hyper)parameters trading off the sparsity of the model and the

other parts in the objective. Note that since the matrix trace Trace[·] is a

linear function of its argument, this sparse feature metric learning problem

remains a convex optimization.

4.1.3 Learning a tree of metrics (ToM) with disjoint visual features

How can we learn a tree of metrics so each metric uses features disjoint

from its ancestors’?

Using disjoint features To characterize the “disjointness” between

two metrics Mt and Mt′, we use the vectors of their nonnegative diagonal

elements vt and vt′ as proxies to which features are (more heavily) used. This

is a reasonable choice as we use the sparsity-inducing ℓ1-norm in learning the

metrics. We measure their degree of “competition” for common features,

(4.4) C(Mt, Mt′) = ‖vt + vt′‖22 .

Intuitively, if a feature dimension is not used by either metric, the competition
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for that feature is low. If a feature dimension is used by both metrics heavily,

then the competition is high. Consequently, minimizing eq. (4.4) as a regu-

larization term will encourage different metrics to use disjoint features. Note

that the measure is a convex function of vt and vt′ , hence also convex in Mt

and Mt′.

Learning a tree of metrics Formally, assume we have a tree T where

each node corresponds to a category. Let t index the T non-leaf or internal

nodes. We learn a metric Mt to differentiate its children categories c(t). For

any node t, we use D(t) to denote those training samples whose labeled cat-

egories are offspring of t, and a(t) to denote the nodes on the path from the

root to t.

To learn our metrics {Mt}Tt=1, we apply similar strategies of learning

metrics for large-margin nearest neighbor classifiers. We cast it as a convex

optimization problem:

(4.5)

min
{Mt}�0

∑

t

∑

c∈c(t)

∑

i,j∈D(c)

d2
Mt

(xi, xj) + γ
∑

t,c,r,ijl

ξtcrijl +
∑

t

λtTrace[Mt]

+
∑

t

∑

a∈a(t)

γtaC(Mt, Ma)

subject to ∀ t, ∀ c ∈ c(t), ∀ r ∈ c(t)− {c}, ∀ xi, xj ∈ D(c), xl ∈ D(r)

1 + d2
Mt

(xi, xj)− d2
Mt

(xi, xl) ≤ ξtcrijl; ξtcrijl ≥ 0 .

In short, there are T learning (sub)problems, one for each metric. Each metric

learning problem is in the style of the sparse feature metric learning eq. (4.3).

However, more importantly, these metric learning problems are coupled to-
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gether through the disjoint regularization. Our disjoint regularization encour-

ages a metric Mt to use different sets of features from its super -categories—

categories on the tree path from the root.

Numerical optimization The optimization problem in Equation (4.5)

is convex, though nonsmooth due to the nonnegative slack variables. We use

the subgradient method, previously used for similar problems [112]. For prob-

lems with a large taxonomy, learning all the regularization coefficients λt and

γta is prohibitive, as the number of coefficient combinations is O(kT), where

T is the number of nodes and k is the number of values a coefficient can

take. Thus, for the large-scale problems we focus on, we use a simpler and

computationally more efficient strategy of Sequential Optimization (SO) by

sequentially optimizing one metric at a time. Specifically, we optimize the

metric at the root node and then its children, assuming the metric at the

root is fixed. We then recursively (in breadth-first-search) optimize the rest

of the metrics, always treating the metrics at the higher level of the hierar-

chy as fixed. This strategy has a significantly reduced computational cost of

O(kT). In addition, the SO procedure allows each metric to be optimized with

different parameters and prevents a badly-learned low-level metric from influ-

encing upper-level ones through the disjoint regularization terms. (This can

also be achieved by adjusting all regularization coefficients in parallel through

extensive cross-validation, but at a much higher computational expense.)

Using a tree of metrics for classification Once the metrics at all

nodes are learned, they can be used for several classification tasks (e.g., with
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k-NN or as a kernel to a SVM). In this work, we study two tasks in particular:

1) We consider “per-node classification”, where the metric at each node is used

to discriminate its sub-categories. Since decisions at higher-level nodes must

span a variety of object sub-categories, these generic decisions are interesting

to test the learned features in a broader context. 2) We consider hierarchical

classification [33], a natural way to use the full ToM. In this case, we examine

the recognition accuracy for the finest-level categories only. We classify an

object from the root node down; the leaf node that terminates the path is the

predicted label.

I stress that our metric learning criterion of Equation (4.5) aims to

minimize classification errors at each node. Thus, improvement in per-node

accuracy is more directly indicative of whether the learning has resulted in

useful metrics. Understanding the relation between per-node and full multi-

class accuracy has been a challenging research problem in building hierarchical

classifiers [16, 72].

Relationship to orthogonal transfer Our work shares a similar

spirit to the “orthogonal transfer” idea explored in [121]. The authors there

use non-overlapping features to construct multiple SVM classifiers for hierar-

chical classification of text documents. Concretely, they propose an orthogonal

regularizer
∑

ij Kij|wT
i wj| where wi and wj are the SVM parameters. Mini-

mizing it will reduce the similarity of the parameter vectors and make them

“orthogonal” to each other. However, orthogonality does not necessarily imply

disjoint features. This can be seen with a contrived two-dimensional counterex-
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ample where wi = [1 − 1]T and wj = [−1 − 1]T. Both features are used, yet

the two parameter vectors are orthogonal. In contrast, our disjoint regularizer

Equation (4.4) is more indicative of true disjointness. Specifically, when our

regularizer attains its minimum value of zero, we are guaranteed that features

are non-overlapping as our vi and vj are nonnegative diagonal elements of pos-

itive semidefinite matrices. Our regularizer is also guaranteed to be convex,

whereas the convexity of the regularizer in [121] depends critically on tuning

Kij .

4.2 Results

We validate our ToM approach on several datasets, and consider three

baselines:

• Euclidean: Euclidean distance in the original feature space

• Global LMNN: a single global metric for all classes learned with the

LMNN algorithm [112]

• Multi-Metric LMNN: one metric learned per class using the multiple

metric LMNN variant [112].

We chose these baselines to show the advantage of learning a tree of

feature spaces over a global feature space, or a set of category-specific feature

spaces. Note that our method learns features represented as metrics, instead

of classifiers, and can be couple with any classifiers (e.g. SVM) other than
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the k-nearest neighbor (kNN) classifier we use for the experiments. Thus,

our method is not directly comparable to other hierarchical methods tied to

specific classifiers such as [62, 73, 16], since our focus is not on showing the

advantage of using a kNN classifier over other classifiers.

We use the code provided by the authors. To evaluate the influence of

each aspect of our method, we test it under three variants:

• ToM: ToM learning without any regularization terms

• ToM+Sparsity: ToM learning with the sparsity regularization term

• ToM+Disjoint: ToM learning with the disjoint regularization term.

For all experiments, we test with five random data splits of 60%/20%/20%

for train/validation/test. We use the validation data to set the regulariza-

tion parameters λ and γ among candidate values {0, 1, 10, 100, 1000}, and we

generate 500 (xi, xj, xl) training triplets per class.

4.2.1 Proof of concept on synthetic dataset

First we use synthetic data to clearly illustrate disjoint sparsity regular-

ization. We generate data with precisely the property that coarser categories

are distinguishable using feature dimensions distinct from those needed to dis-

criminate their subclasses. Specifically, we sample 2000 points from each of

four 4D Gaussians, giving four leaf classes {a, b, c, d}. They are grouped into

two superclasses A = {a, b} and B = {c, d}. The first two dimensions of all
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Figure 4.2: Synthetic dataset example. Our disjoint regularizer yields a sparse
metric that only considers the feature dimension(s) necessary for discrimination at
that given level.

points are specific to the superclass decision (A vs. B), while the last two are

specific to the subclasses. See Fig. 5.1 (a) and (b).

We run hierarchical k-nearest neighbor classification (k = 3) on the test

set. ToM+Sparsity increases the recognition rate by 0.90%, while ToM+Disjoint

increases it by 4.05%. Thus, as expected, disjoint sparsity does best, since it

selects different features for the super- and sub-classes. Accordingly, in the

learned Mahalanobis matrices for each node (Fig. 5.1(c)-(e)), we see disjoint

sparsity zeros out the unneeded features for the upper-level metric, showed as

black squares in the figure (e). In contrast, the ToM+Sparsity features are

sub-optimal and fit to some noise in the data (d).
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4.2.2 Visual recognition experiments

Next we demonstrate our approach on challenging visual recognition

tasks.

Datasets and implementation details We validate with three datasets

drawn from two publicly available image collections: Animals with Attributes

(AWA) [65] and ImageNet [27, 26]. Both are well-suited for our scenario, since

they consist of fine-grained categories that can be grouped into more general

object categories. From the AWA (Figure 3.2) that contains 30,475 images and

50 animal classes, and ImageNet image collections, we form three datasets for

empirical validation.

• AWA-PCA, which uses the features provided from the dataset in [65]

(SIFT, rgSIFT, PHOG, SURF, LSS, RGB), concatenated, standardized,

and PCA-reduced to 50 dimensions.

• AWA-ATTR, which uses 85-dimensional attribute predictions as the

original feature space, formed by concatenating the outputs of 85 lin-

ear SVMs trained to predict the presence/absence of the 85 nameable

properties annotated by [65], e.g., furry, white, quadrupedal, etc.

• VEHICLE-20, which uses 20 vehicle classes and 26,624 images from

ImageNet, and apply PCA to reduce the authors’ provided visual word

features [26] to 50 dimensions per image3.

3This is the dimensionality that worked best for the Global LMNN baseline.
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Figure 4.3: Examples images for VEHICLE-20 dataset.

We use WordNet to generate the semantic hierarchies for all datasets.

We retrieve all nodes in WordNet that contain any of the object class names

on their word lists. In the case of homonyms, we manually disambiguate the

word sense. Then, we build a compact partial hierarchy over those nodes by

1) pruning out any node that has only one child (i.e., removing superfluous

nodes), and 2) resolving any instances of multiple parentship by choosing the

path from the leaf to root having the most overlap with other classes. See

Figures 4.4 and 4.5 for the resulting AWA and VEHICLE trees.

Throughout, we evaluate classification accuracy using k-nearest neigh-

bors (k-NN). For ToM, at node n we use k = 2ln−1 +1, where ln is the level of

the node, and ln = 1 for leaf nodes. This means we use a larger k at the higher

nodes in the tree where there is larger intra-class variation, in an effort to be

more robust to outliers. For the Euclidean and LMNN baselines, which lack

a hierarchy, we simply use k=3. Note that ToM’s setting at the final decision

nodes (just above a leaf) is also k = 3, comparable to the baselines.
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4.2.2.1 Per-node accuracy and analysis of the learned representa-
tions

Since our algorithm optimizes the metrics at every node, we first exam-

ine the resulting per-node decisions. That is, how accurately can we predict

the correct subcategory at any given node? The bar charts in Figures 4.4

and 4.5 show the results, in terms of raw k-NN accuracy improvements over

the Euclidean baseline. For reference, we also show the Global LMNN base-

line. Multi-Metric LMNN is omitted here, since its metrics are only learned

for the leaf node classes. We observe a good increase for most classes, as well

as a clear advantage relative to LMNN. Furthermore, our results are usually

strongest when including the novel disjoint sparsity regularizer. This result

supports our basic claim about the potential advantage of exploiting external

semantics in ToM.

We find that absolute gains are similar in either the PCA or ATTR

feature spaces for AWA, though exact gains per class differ. While the ATTR

variant exposes the semantic features directly to the learner, the PCA variant

encapsulates an array of low-level descriptors into its dimensions. Thus, while

we can better interpret the meaning of disjoint sparsity on the attributes, our

positive result on raw image features assures that disjoint feature selection is

also amenable in the more general case.
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Figure 4.4: Semantic hierarchy for AWA (top row) and the per-node accuracy im-
provements relative to Euclidean distance, for the AWA-PCA (middle row) and
AWA-ATTR (bottom row) datasets. Numbers in legends denote average improve-
ment over all nodes. We generally achieve a sizable accuracy gain relative to the
Global LMNN baseline (dark left bar for each class), showing the advantage of
exploiting external semantics with our ToM approach.
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Figure 4.5: Semantic hierarchy for VEHICLE-20 and the per-node accuracy gains,
plotted as above.

To look more closely at this, Table 4.1 displays representative super-

classes from AWA-ATTR together with the attributes that ToM+Disjoint se-

lects as discriminative for their subclasses. The attributes shown are those

with nonzero weights in the learned metrics. Intuitively, we see that often

the selected attributes are indeed useful for discriminating the child classes.

For example, tusks and plankton attributes help distinguish common dolphins
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Superclass Subclasses Attributes selected

whale dolphin,
baleen
whale

black, white, blue, gray, toughskin, chew-
teeth, strainteeth, smelly, slow, muscle, ac-
tive, fish, hunter, skimmer, oldworld, arc-
tic. . .

dolphin common
dolphin,
killer
whale

tusks, plankton, blue, gray, red, patches,
slow, muscle, active, insects

odd-
toed
ungulate

equine,
rhinoceros

fast, longneck, hairless, black, white, yellow,
patches, spots, bulbous, longleg, buckteeth,
horns, tusks, smelly. . .

equine horse,
zebra

stripes, domestic, orange, red, yellow, tough-
skin, newworld, arctic, bush

Table 4.1: Attributes selected by ToM+Disjoint for various superclass objects in
AWA. See text.

from killer whales, whereas stripes and domestic help distinguish zebras from

horses. At the same time, as desired, we see that the attributes useful for

coarser-level categories are distinct from those employed to discriminate the

finer-level objects. For example, fast, longneck, or hairless are used to differ-

entiate equine from rhino, but are excluded when differentiating horses from

zebras (equine’s subclasses).

4.2.2.2 Hierarchical multi-class classification accuracy

Next we evaluate the complete multi-class classification accuracy, where

we use all the learned ToM metrics together to predict the leaf-node label of the

test points. This is a 50-way task for AWA, and a 20-way task for VEHICLES.
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AWA-ATTR
Method Correct label Semantic similarity

Euclidean 32.36± 0.21 53.60± 0.26
Global LMNN 32.49± 0.42 53.93± 0.88

Multi-metric LMNN 32.34± 0.35 53.73± 0.71
ToM 36.79± 0.27 58.36± 0.09

ToM + Sparsity 37.58± 0.32 59.29± 0.58
ToM + Disjoint 38.29± 0.61 59.72± 0.62

AWA-PCA
Method Correct label Semantic similarity

Euclidean 17.54± 0.38 38.11± 0.58
Global LMNN 19.62± 0.51 40.34± 0.32

Multi-metric LMNN 17.61± 0.33 38.94± 0.31
ToM 18.70± 0.41 43.44± 0.43

ToM + Sparsity 18.79± 0.46 43.38± 0.34
ToM + Disjoint 19.00± 0.30 43.59± 0.19

Table 4.2: Multi-class hierarchical classification accuracy and semantic similarity on
the AWA-ATTR and AWA-PCA datasets. Numbers are averages over 5 splits,
and standard errors for 95% confidence interval. Our method outperforms the base-
lines in almost all cases, and notably provides more semantically close predictions.
See text.

VEHICLE-20
Method Correct label Semantic similarity

Euclidean 28.51± 0.56 56.10± 0.41
Global LMNN 29.65± 0.44 57.57± 0.45

Multi-metric LMNN 30.00± 0.51 57.91± 0.54
ToM 31.23± 0.67 60.72± 0.54

ToM + Sparsity 32.09± 0.18 62.66± 0.26
ToM + Disjoint 32.77± 0.32 63.01± 0.21

Table 4.3: Multi-class hierarchical classification accuracy and semantic similarity on
the VEHICLE-20 dataset.
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Table 4.2 and 4.3 shows the results.

We score accuracy in two ways: Correct label records the percent-

age of examples assigned the correct (leaf) label, while Semantic similarity

records the semantic similarity between the predicted and true labels. For

both, higher is better. The former is standard recognition accuracy, while the

latter gives a more nuanced view of the “semantic magnitude” of the classi-

fiers’ errors. Specifically, we calculate the semantic similarity between classes

(nodes) i and j using the metric defined in [37], which counts the number of

nodes shared by their two parent branches, divided by the length of the longest

of the two branches. In the spirit of other recent evaluations [9, 26, 37], this

metric reflects that some errors are worse than others; for example, calling a

Persian cat a Siamese cat is a less glaring error than calling a Persian cat a

horse. This is especially relevant in our case, since our key motivation is to

instill external semantics into the feature learning process.

In terms of pure label correctness, ToM improves over the strong LMNN

baselines for both AWA-ATTR and VEHICLE-20. Further, in all cases, we see

that disjoint sparsity is an important addition to ToM. However, in AWA-PCA,

Global LMNN produces the best results by a statistically insignificant margin.

We did not find a clear rationale for this one case. For AWA-ATTR, however,

our method is substantially better than Global LMNN, perhaps due to our

method’s strength in exploiting semantic features. While we initially expected

Multi-Metric LMNN to outperform Global LMNN, we suspect it struggles

with clusters that are too close together. For all cases when ToM+Disjoint
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outperforms the LMNN or Euclidean baselines, the improvement is statistically

significant.

In terms of semantic similarity, ToM is better than all baselines on all

datasets. This is a very encouraging result, since it suggests our approach is in

fact leveraging semantics in a useful way. In practice, the ability to make such

“reasonable” errors is likely to be increasingly important as the community

tackles larger and larger multi-class recognition problems.

4.3 Discussion

I presented a new metric learning approach for visual recognition that

integrates external semantics about object hierarchy. Experiments with chal-

lenging datasets indicate its promise, and support our hypothesis that outside

knowledge about how objects relate is valuable for feature learning.

Instead of learning a discriminative metric that considers each cate-

gory as a separate, independent entity, the proposed ToM learns metrics that

preserve the distances between each group of categories at different semantic

levels. Further, the added disjoint regularizer forces feature spaces that form

ancestor-descendants relationships to compete for the features, which is shown

to be effective in isolating features for each semantic granularity. The true se-

lection of features and the convexity is what makes our method superior to

the existing exclusive regularization methods based on competition [122, 121].

Both the hierarchical modeling and the isolation of the feature spaces were

shown to be useful for hierarchical classification. However, it could still suf-
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fer from the problem known as the semantic gap — the discrepancy between

the semantic and the visual space, which could limit the classification perfor-

mance at the abstract high-level. This in turn could limit the performance

of the whole model, due to the error propagating nature of the hierarchical

classification model.

There could be multiple possible solutions to this problem. The first is

to construct a hierarchy that can account for both semantics and visual distri-

butions. This could be done by either collapsing or splitting the nodes of the

existing semantic taxonomy such that the taxonomy aligns better with the vi-

sual distribution, or constructing a hierarchy from the scratch while accounting

for both semantic and visual similarities between categories. However, doing

so might result in less semantic information being exploited, since our main

idea was to exploit human criteria in grouping or splitting of the categories,

where a large amount of useful semantic information comes from higher-level

nodes representing abstract classes such as vehicle or carnivore. These high-

level nodes usually contain visually diverse subcategories but are nonetheless

informative. Empirical results from [18] show that even an evaluation scheme

that considers the whole path and holds off from making a hard decision at

each node might not cope well with such abstract high-level semantic nodes.

In addition to this semantic gap problem, there exists another problem:

no single semantic taxonomy is perfect, and learning an optimal one is infea-

sible since different applications and views would prefer different groupings.

How can we then overcome this inevitable limitation with a single semantic
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taxonomy? The next chapter will explore this question.
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Chapter 5

Combining Complementary Information in

Multiple Taxonomies

In the previous chapter, we have seen how a semantic taxonomy can be

used to help category recognition by providing information to isolate granularity-

specific features, and to hierarchically classify objects. Two fundamental is-

sues, however, complicate its use. First, a given taxonomy may offer hints

about visual relatedness, but its structure need not entirely align with useful

splits for recognition. (For example, monkey and dog are fairly distant se-

mantically according to WordNet, yet they share a number of visual features.

An apple and applesauce are semantically close, yet are easily separable with

basic visual features.) Thus, the hierarchical structure provided by a semantic

taxonomy is often non-optimal for hierarchical classification. Second, given

the complexity of visual objects, it is highly unlikely that some single optimal

semantic taxonomy exists to lend insight for recognition. While previous work

relies on a single taxonomy out of convenience, in reality objects can be orga-

nized along many semantic dimensions or “views”. (For example, a Dalmatian

belongs to the same group as the wolf according to a biological taxonomy, as

both are canines. However, in terms of visual attributes, it can be grouped

with the leopard, as both are spotted; in terms of habitat, it can be grouped
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Figure 5.1: Main idea: For a given set of classes, we assume multiple semantic
taxonomies exist, each one representing a different “view” of the inter-class semantic
relationships. Rather than commit to a single taxonomy—which may or may not
align well with discriminative visual features—we learn a tree of kernels for each
taxonomy that captures the granularity-specific similarity at each node. Then we
show how to exploit the inter-taxonomic structure when learning a combination of
these kernels from multiple taxonomies (i.e., a “kernel forest”) to best serve the
object recognition tasks.

with the Siamese cat, as both are domestic. See Figure 5.1.)

Motivated by these issues, I next present a discriminative feature learn-

ing approach that leverages multiple taxonomies capturing different semantic

views of the object categories1. The key insight here is that some combination

of the semantic views will be most informative to distinguish a given visual

category. Continuing with the sketch in Figure 5.1, that might mean that the

first taxonomy helps learn dog- and cat-like features, while the second taxon-

omy helps elucidate spots and pointy corner features, while the last reveals

context cues such as proximity to humans or indoor scene features. While

each view differs in its implicit human-designed splitting criterion, all separate

1The work introduced in this chapter is published in [56].
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some classes from others, thereby lending (often complementary) discrimina-

tive cues. Thus, rather than commit to a single representation, we aim to

inject pieces of the various taxonomies as needed.

To this end, I propose semantic kernel forests. This novel kernel learn-

ing method takes as input training images labeled according to their object

category, as well as a series of taxonomies, each of which hierarchically parti-

tions those same labels (object classes) by a different semantic view. For each

taxonomy, we first learn a tree of semantic kernels: each node in a tree has a

Mahalanobis-based kernel optimized to distinguish between the classes in its

children nodes. Following on ToM approach from the previous chapter, the

kernels in one tree isolate image features useful at a range of category granular-

ities. Then, using the resulting semantic kernel forest from all taxonomies, we

apply a form of multiple kernel learning (MKL) to obtain class-specific kernel

combinations, in order to select only those relationships relevant to recognize

each object class. We introduce a novel hierarchical regularization term into

the MKL objective that further exploits the taxonomies’ structure. The out-

put of the method is one learned kernel per object class, which we can then

deploy for one-versus-all multi-class classification on novel images.

The main contribution of the work introduced in this chapter is to si-

multaneously exploit multiple semantic taxonomies for visual feature learning.

Whereas past work focuses on building object hierarchies for scalable classifi-

cation [113, 28] or using WordNet to gauge semantic distance [71, 98, 37, 26],

we learn discriminative kernels that capitalize on the cues in diverse taxonomy
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views, leading to better recognition accuracy. The primary technical contribu-

tions are i) an approach to generate semantic base kernels across taxonomies,

ii) a method to integrate the complementary cues from multiple suboptimal

taxonomies, and iii) a novel regularizer for multiple kernel learning that ex-

ploits hierarchical structure from the taxonomy, allowing kernel selection to

benefit from semantic knowledge of the problem domain.

I demonstrate my approach with challenging images from the Animals

with Attributes and ImageNet datasets [65, 27] together with taxonomies span-

ning cognitive synsets, visual attributes, behavior, and habitats. The results

show that the taxonomies can indeed boost feature learning, letting us ben-

efit from humans’ perceived distinctions as implicitly embedded in the trees.

Furthermore, I show that interleaving the forest of multiple taxonomic views

leads to the best performance, particularly when coupled with the proposed

novel regularization.

5.1 Approach

I cast the problem of learning semantic features from multiple tax-

onomies as learning to combine kernels. The base kernels capture features

specific to individual taxonomies and granularities within those taxonomies,

and they are combined discriminatively to improve classification, weighing each

taxonomy and granularity only to the extent useful for the target classification

task.

I describe the two main components of the approach in turn: construct-
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ing the base kernels from the learned tree of metrics on each taxonomy—which

we call a semantic kernel forest (Sec. 5.1.1), and learning their combination

across taxonomies (Sec. 5.1.2), where we devise a new hierarchical regularizer

for MKL.

In what follows, we assume that we are given a labeled dataset D =

{(xi, yi)}Nn=1 where (xi, yi) stands for the ith instance (feature vector) and

its class label is yi, as well as a set of tree-structured taxonomies {Tt}Tt=1.

Each taxonomy Tt is a collection of nodes. The leaf nodes correspond to class

labels, and the inner nodes correspond to superclasses—or, more generally,

semantically meaningful groupings of categories. We index those nodes with

double subscripts tn, where t refers to the tth taxonomy and n to the nth node

in that taxonomy. Without loss of generality, we assign the leaf nodes (i.e.,

the class nodes) a number between 1 and C, where C is the number of class

labels.

5.1.1 Learning a semantic kernel forest

The first step is to learn a forest of base kernels. These kernels are

granularity- and view-specific; that is, they are tuned to similarities implied

by the given taxonomies. While base kernels are learned independently per

taxonomy, they are learned jointly within each taxonomy, as we describe next.

Formally, for each taxonomy Tt, we learn a set of Gaussian kernels for

the superclass at every internal node tn for which n ≥ C + 1. The Gaussian
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kernels are parameterized as

(5.1)

Ktn(xi, xj) = exp{−γtnd2
Mtn

(xi, xj)} = exp{−γtn(xi − xj)
TMtn(xi − xj)},

where the Mahalanobis distance metric Mtn is used in lieu of the conventional

Euclidean metric. Note that for leaf nodes where n ≤ C, we do not learn base

kernels.

We want the base kernels to encode similarity between examples using

features that reflect their respective granularity in the taxonomy. Certainly,

the kernel Ktn should home in on features that are helpful to distinguish

the node tn’s subclasses. Beyond that, however, we specifically want it to use

features that are as different as possible from the features used by its ancestors.

Doing so ensures that the subsequent combination step can choose a sparse

set of “disconnected” features.

To that end, we apply our Tree of Metrics (ToM) technique introduced

in the previous chapter to learn the Mahalanobis parameters Mtn. To recap,

In ToM, metrics are learned by balancing two forces: i) discriminative power

and ii) a preference for different features to be chosen between parent and child

nodes. The latter exploits the taxonomy semantics, based on the intuition that

features used to distinguish more abstract classes (dog vs. cat) should differ

from those used for finer-grained ones (Siamese vs. Persian cat).

Briefly, for each node tn, the training data is reduced to Dn = {(xi, yin)},

where yin is the label of n’s child xi. If xi’s class label yi is not a descendant
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of the superclass at the node n, then xi is excluded from Dn. The metrics

are learned jointly, with each node mutually encouraging the others to use

non-overlapping features. ToM achieves this by augmenting a large margin

nearest neighbor [112] loss function
∑

n ℓ(Dn; Mtn) with the following disjoint

sparsity regularizer :

(5.2) Ωd(M) = λ
∑

n≥C+1

Trace[Mtn] +µ
∑

n≥C+1

∑

m∼n

‖diag(Mtn)+ diag(Mtm)‖22,

where m ∼ n denotes that node m is either an ancestor or descendant of n. The

first part of the regularizer encourages sparsity in the diagonal elements of Mtn,

and the second part incurs a penalty when two different metrics “compete”

for the same diagonal element, i.e., to use the same feature dimension. The

resulting optimization problem is convex and can be solved efficiently [55].

After learning the metrics {Mtn} in each taxonomy, we construct base

kernels as in eq. (5.1). The bandwidths γtn are set as the average distances

on training data. We call the collection F = {Ktn} of all base kernels the

semantic kernel forest. Figure 5.1 shows an illustrative example.

While ToM has shown promising results in learning metrics in a single

taxonomy, its reliance on linear Mahalanobis metrics is inherently limited. A

straightforward convex combination of ToMs would result in yet another linear

mapping, incapable of capturing nonlinear inter-taxonomic interactions. In

contrast, our kernel approach retains ToM’s granularity-specific features but

also enables nontrivial (nonlinear) combinations, especially when coupled with

a novel hierarchical regularizer, which I will define next.
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5.1.2 Learning class-specific kernels across taxonomies

Base kernels in the semantic kernel forest are learned jointly within

each taxonomy but independently across taxonomies. To leverage multiple

taxonomies and to capture different semantic views of the object categories,

we next combine them discriminatively to improve classification.

In the following, I first describe a basic form of combining. I then de-

scribe our novel hierarchical regularization to incorporate semantic and struc-

tural knowledge in the combining process.

Basic setting To learn class-specific features (or kernels), we com-

pose a one-versus-rest supervised learning problem. Additionally, instead of

combining all the base kernels in the forest F, we pre-select a subset of them

based on the taxonomy structure.

Specifically, from each taxonomy, we select base kernels that correspond

to the nodes on the path from the root to the leaf node class. For example, in

the Biological taxonomy of Figure 5.1, for the category Dalmatian, this path

includes the nodes (superclasses) canine and animal. Thus, for class c, the

linearly combined kernel is given by

(5.3) Fc(xi, xj) =
∑

t

∑

n∼c

βctnKtn(xi, xj),

where n ∼ c indexes the nodes that are ancestors of c, which is a leaf node

(recall that the first C nodes in every taxonomy are reserved for leaf class

nodes). The combination coefficients βctn are constrained to be nonnegative

to ensure the positive semidefiniteness of the resulting kernel Fc(·, ·).
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We apply the kernel Fc(·, ·) to construct the one-versus-rest binary clas-

sifier to distinguish instances from class c from all other classes. We then opti-

mize βc = {βctn} such that the classifier attains the lowest empirical misclassi-

fication risk. The resulting optimization (in its dual formulation) is analogous

to standard multiple kernel learning [8]:

(5.4)

min
βc

max
αc

∑

i

αci −
1

2

∑

i

∑

j

αciαcjqciqcjFc(xi, xj)

s.t.
∑

i

αciqci = 0, 0 ≤ αci ≤ C, ∀ i,

where αc is the Lagrange multipliers for the binary SVM classifier, C is the

regularizer for the SVM’s hinge loss function, and qci = ±1 is the indicator

variable of whether or not xi’s label is c.

Hierarchical regularization Next, we extend the basic setting to in-

corporate richer modeling assumptions. We hypothesize that kernels at higher-

level nodes should be preferred to lower-level nodes. Intuitively, higher-level

kernels relate to more classes, thus are likely essential to reduce loss.

We leverage this intuition and knowledge about the relative priority of

the kernels from each taxonomy’s hierarchical structure. We design a novel

structured regularization that prefers larger weights for a parent node com-

pared to its children. Formally, the proposed MKL-H regularizer is given by:

(5.5) Ω(βc) = λ
∑

t,n∼c

βctn + µ
∑

t,n∼c

max(0, βctn − βctpn
+ 1).

The first part prefers a sparse set of kernels. The second part (in the form of

hinge loss) encodes our desire to have the weight assigned to a node n be less
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than the weight assigned to the node’s parent pn. We also introduce a margin

of 1 to further increase the difference between the two weights.

Hierarchical regularization was previously explored in [7], where a mixed

(1, 2)-norm is used to regularize the relative sizes between the parent and the

children. The main idea there is to discard children nodes if the parent is not

selected. Our regularizer is somewhat similar in spirit, but we devise a sim-

pler and more computationally efficient formulation. (Despite our complexity

advantage, preliminary results do not indicate [7] has any empirical advantage

over ours.)

5.1.3 Numerical optimization

The learning problem is cast as a convex optimization that balances

the discriminative loss in equation 5.4 and the regularizer in equation 5.5:

(5.6) min
βc

f(βc) = g(βc) + Ω(βc), s.t. βc ≥ 0,

where we use the function g(β) to encapsulate the inner maximization problem

over αc in equation 5.4.

We use the projected subgradient method to solve eq. (5.6), for its ease

of implementation and practical effectiveness [13]. Specifically, at iteration t,

let βt
c be the current value of β. We compute f(βc)’s subgradient st, then

perform the following update,

(5.7) βt+1
c ← max

(

0, βt
c − αtst

)

,
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where the max( ) function implements the projection operation such that the

update does not fall outside of the feasible region βc ≥ 0. For step size αt, we

use the modified Polyak step size rule.

Subgradient Update Rule g(βc) encapsulates the inner maximiza-

tion problem over αc in eq.(5.4), and is a differentiable function of βc where

∂g is given as follows:

(5.8)
∂g

∂βctn
= −1

2

∑

ij

αciαcjqciqcjFctn(xi, xj)

The computation of ∂g/∂βctn only depends on the the α, which is the

solution of Eq.(5.4), that could be obtained using an off-the shelf SVM solver.

We solve this using LIBSVM [19]. The second term of f(βc), Ω(βc) is non-

differentiable but convex. Thus, its subgradients with respect to βc exist, and

defined as,

(5.9) ∂Ω(βctn) = λ + µ



rctnp(n) −
∑

k∈C(tn)

rctkn





,where C(tn) is the set of children node of tn. rctij = 1 if βcti ≥ βctj − 1 and

0 otherwise. From the subgradient rule ∂f = ∂g + ∂Ω is a subgradient for

f . After obtaining the subgradient ∂f , we could use the following update rule

using the modified Polyak’s stepsize rule to minimize f to its direction.
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(5.10) βt+1
c ← max

(

0, βt
c −

f(βt
c)− f̂t + δ

‖∂f(βc)t‖22
∂f(βc)t

)

where the max( ) function implements the projection operation such that the

update does not fall outside of the feasible region βc ≥ 0. f̂t is an estimate of

the optimal value of the objective function and is defined as

(5.11) f̂t = min
0≤j≤t

f(βj
c)

The variable δ is a constant controlling how close the update rule con-

verges to the optimum. We set it such that in about 500 iterations, the update

converges.

5.2 Experiments

We validate our approach on multiple image datasets, and compare to

several informative baselines.

5.2.1 Image datasets

We use three datasets taken from two publicly available image collec-

tions: Animals with Attributes (AWA) [65] and ImageNet [27]2. We form two

datasets from AWA (Figure 3.2). The first consists of the four classes shown in

2attributes.kyb.tuebingen.mpg.de/ and image-net.org/challenges/LSVRC/2011/
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bridge feather boa strawberry acorn bonsai

daisy sunflower basketball bathtub comb

police van lamp pool table rule buckle

Figure 5.2: Example images for ImageNet-20 dataset

Fig. 5.1, and totals 2, 228 images; the second contains the ten classes in [65],

and totals 6, 180 images. We refer to them as AWA-4 and AWA-10, re-

spectively. The third dataset, ImageNet-20 (Figure 5.2), consists of 28, 957

total images spanning 20 classes from ILSVRC2010. We chose classes that are

non-animals (to avoid overlap with AWA) and that have attribute labels [88].

5.2.2 Taxonomies

To obtain multiple taxonomies per dataset, we use attribute labels and

WordNet. As discussed above, attributes are human understandable properties

shared among object classes, e.g., furry, flat, carnivorous [65]. AWA and

ImageNet have 85 and 25 attribute labels, respectively. To form semantic

taxonomies based on attributes, we first manually divide the attribute labels

into subsets according to their mutual semantic relevance (e.g., furry and
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Figure 5.3: Taxonomies for the AWA-10 (a-d) and ImageNet-20 (e-g) datasets.98



shiny are attributes relevant for an Appearance taxonomy, while land-dwelling

and aquatic are relevant for a Habitat taxonomy.). Then, for each subset of

attributes, we perform agglomerative clustering using Euclidean distance on

vectors of the training images’ real-valued attributes. We restrict the tree

height (6 for ImageNet and 3 for AWA) to ensure that the branching factor at

the root is not too high. To extract a WordNet taxonomy, we find all nodes

in WordNet that contain the object class names on their word lists, and then

build a hierarchy by pruning nodes with only one child and resolving multiple

parentship.

For AWA-10, we use 4 taxonomies: one from WordNet, and three based

on attribute subsets reflecting Appearance, Behavior, and Habitat ties. For

ImageNet-20, we use 3 taxonomies: one from WordNet, one reflecting Ap-

pearance as found by hierarchical clustering on the visual features, and one

reflecting Attributes using annotations from [88]. For the AWA-4 taxonomies,

we simply generate all 3 possible 2-level binary trees, which, based on manual

observation, yield taxonomies reflecting Biological, Appearance, and Habitat

ties between the animals. See Figures 5.1 and 5.3.

I stress that these taxonomies are created externally with human knowl-

edge, and thus they inject perceived object relationships into the feature learn-

ing problem. This is in stark contrast to prior work that focuses on optimizing

hierarchies for efficiency, without requiring interpretability of the trees them-

selves [50, 113, 28, 41].

The two image datasets we employ are annotated with both object la-

99



Dataset Group Name Attributes

AWA-10
Appearance black, white, blue, brown, gray, orange, red,

yellow, patches, spots, stripes, furry, hairless,
toughskin, big, small, bulbous, lean, flippers,
hands, hooves, pads, paws, longleg, long-
neck, tail, chewteeth, meatteeth, buckteeth,
strainteeth, horns, claws, tusks

Behavior smelly, flys, hops, swims, tunnels, walks,
fast, slow, strong, weak, muscle, bipedal,
quadrupedal, active, inactive, nocturnal, hi-
bernate, agility, fish, meat, plankton, vege-
tation, insects, forager, grazer, hunter, scav-
enger, skimmer, stalker

Habitat newworld, oldworld, arctic, coastal, desert,
bush, plains, forest, fields, jungle, ocean,
ground, water, tree, cave

ImageNet-20 - black, blue, brown, furry, gray, green,
long, metallic, orange, pink, rectangular,
red, rough, round, shiny, smooth, spot-
ted, square, striped, vegetation, violet, wet,
white, wooden, yellow

Table 5.1: Attribute groups used to build each taxonomy for AWA-10 and ImageNet-
20. These groups are manually defined based on the available attribute labels and
their semantic relationships.
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bels and attribute labels. For every image, we have the real-valued attribute

presence prediction for each attribute in the vocabulary. That is, for M total

attributes, each image has an M-length vector recording the likelihood that

each attribute is present in it. Because these attributes are semantically mean-

ingful, we can use them to create a variety of semantic taxonomies. We do

this by manually forming subsets of related attributes and then hierarchically

clustering the data according to only those (fewer than M) selected attribute

dimensions. Each group/subset generates one taxonomy.

To generate the attribute-based taxonomies on the AWA-10 dataset, we

manually group M=78 of the total attributes provided with the AWA datset

as shown in Table 5.1, and perform agglomerative clustering as discussed in

the main text to form the semantic hierarchies.

For ImageNet-20, we perform agglomerative clustering on all 25 at-

tributes shown in the bottom row of Table 5.1. As the attributes for ImageNet-

20 are binary, we use ℓ1-distance when grouping them, and limit the tree height

to 6 to avoid having too many branches at the root.

5.2.3 Baseline methods for comparison

We compare our method to three key baselines:

• Raw feature kernel: an RBF kernel computed on the original image

features, with the γ parameter set to the inverse of the mean Euclidean

distance d among training instances.
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• Raw feature kernel + MKL: MKL combination of multiple such

RBF kernels constructed by varying γ, which is a traditional approach

to generate base kernels (e.g., [8]). For this baseline, we generate the

same number N of base kernels as in the semantic kernel forest, with

γ = σ
d
, for σ = {21−m, . . . , 2N−m}, where m = N

2
.

• Perturbed semantic kernel tree: a semantic kernel tree trained with

taxonomies that have randomly swapped leaves.

The first two baselines will show the accuracy attainable using the same im-

age features and basic classification tools (SVM, MKL) as our approach, but

lacking the taxonomy insights. The last baseline will test if weakening the

semantics in the taxonomy has a negative impact on accuracy.

I evaluate several variants of my approach, in order to analyze the

impact of each component:

• Semantic kernel tree + Avg: an equal-weight average of the semantic

kernels from one taxonomy.

• Semantic kernel tree + MKL: the same kernels, but combined with

MKL using sparsity regularization only (i.e., µ = 0 in eq. 5.5).

• Semantic kernel tree + MKL-H: the same as previous, but adding

the proposed hierarchical regularization (eq. 5.5).

• Semantic kernel forest + MKL: semantic forest kernels from multiple

taxonomies combined with MKL.
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• Semantic kernel forest + MKL-H: the same as previous, but adding

our hierarchical regularizer.

5.2.4 Implementation details

For all results, we use 30/30/30 images per class for training/validation/testing,

and generate 5 such random splits. We report average multi-class recognition

accuracy and standard errors for 95% confidence interval. For single taxon-

omy results, we report the average over all individual taxonomies. For all

methods, the raw image features are bag-of-words histograms obtained on

SIFT, provided with the datasets. We reduce their dimensionality to 100

with PCA to speed up the ToM training, following [55]. To train ToM, we

sample 400 random constraints and cross-validate the regularization param-

eters λ, γ ∈ {0.1, 1, 10}. For MKL/MKL-H, we use C = 1000 for the C-

SVM parameter, and cross-validate the sparsity and hierarchical parameters

λ, µ ∈ {0, 0.1, 1, 10}.

5.2.5 Results

Quantitative results Table 5.2 shows the multi-class classification accu-

racy on all three datasets. Our semantic kernel forests approach significantly

outperforms all three baselines. It improves accuracy for 9 of the 10 AWA-10

classes, and 16 of the 20 classes in ImageNet-20 (see Figure 5.4). These gains

clearly show the impact of injecting semantics into discriminative feature learn-

ing. The forests’ advantage over the individual trees supports our core claim
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AWA-4 AWA-10 ImageNet-20
Raw feature kernel 47.67 ± 2.22 30.80 ± 1.36 28.20 ± 1.45

Raw feature kernel + MKL 48.50 ± 1.89 31.13 ± 2.81 27.67 ± 1.50
Perturbed semantic kernel tree N/A 31.53 ± 2.07 28.20 ± 2.02

Semantic kernel tree + Avg 47.17 ± 2.40 31.92 ± 1.21 28.97 ± 1.61
Semantic kernel tree + MKL 48.89 ± 1.06 32.43 ± 1.93 29.74 ± 1.26

Semantic kernel tree + MKL-H 50.06 ± 1.12 32.68 ± 1.79 29.90 ± 0.70
Semantic kernel forest + MKL 49.67 ± 1.11 34.60 ± 1.78 30.97 ± 1.14

Semantic kernel forest + MKL-H 52.83 ± 1.68 35.87 ± 1.22 32.30 ± 1.00

Table 5.2: Multi-class classification accuracy on all datasets, across 5 train/test
splits. (The perturbed semantic kernel tree baseline is not applicable for AWA-4,
since all possible groupings are present in the taxonomies.)

regarding the value of interleaving semantic cues from multiple taxonomies.

Further, the proposed hierarchical regularization (MKL-H) outperforms the

generic MKL, particularly for the multiple taxonomy forests.

I stress that semantic kernel forests’ success is not simply due to having

access to a variety of kernels, as we can see by comparing our method to both

the raw feature MKL and perturbed tree results—all of which use the same

number of kernels. Instead, the advantage is leveraging the implicit discrimi-

native criteria embedded in the external semantic groupings. Interestingly, the

perturbed taxonomies show some improvement over the raw feature kernel on

AWA-10, but not on ImageNet-20. We attribute this difference to the fact that

for fine-grained classes like those in AWA-10 (all animals), almost any group-

ing of labels may have some semantic meaning, whereas for sparser classes like

those in ImageNet-20 (from bridge to acorn), arbitrary perturbations are often

meaningless. Thus, the baseline’s semantics are weakened more noticeably in
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the latter case.

MKL-H has the most impact for the multiple taxonomy forests, and

relatively little on the single kernel tree. This makes sense. For a single

taxonomy, a single kernel is solely responsible for discriminating a class from

the others, making all kernels similarly useful. In contrast, in the forest, two

classes are related at multiple different nodes, making it necessary to select

out useful views; here, the hierarchical regularizer plays the role of favoring

kernels at higher levels, which might have more generalization power due to

the training set size and number of classes involved.

The per-class and per-taxonomy comparisons in Figure 5.4 further elu-

cidate the advantage of using multiple complementary taxonomies. A single se-

mantic kernel tree often improves accuracy on some classes, but at the expense

of reduced accuracy on others. This illustrates that the structure of an indi-

vidual taxonomy is often suboptimal. For example, the Habitat taxonomy on

AWA-10 helps distinguish humpback whale well from the others—it branches

early from the other animals due to its distinctive “oceanic” background—

but it hurts accuracy for giant panda. The WordNet taxonomy does exactly

the opposite, improving giant panda via the Biological taxonomy, but hurting

humpback whale. The semantic kernel forest takes the best of both through its

learned combination. The only cases in which it fails are when the majority

of the taxonomies strongly degrade performance, as to be expected given the

linear MKL combination (e.g., see the class marimba and rule).

105



−4

−2

0

2

4

6

8

10

A
c
c
u
ra

c
y
 i
m

p
ro

v
e
m

e
n
t

AWA−10

 

 

s
e
a
l

h
. 
w

h
a
le

P
. 
c
a
t

h
ip

p
o

ra
c
c
o
o
n

p
ig

c
h
im

p

p
a
n
d
a

le
o
p
a
rd ra

t

Wordnet (1.73)

Appearance (1.00)

Behavior (2.53)

Habitat (2.27)

All (5.07)

−10

−5

0

5

10

15

A
c
c
u

ra
c
y
 i
m

p
ro

v
e

m
e

n
t

Imagenet−20

 

 

fe
rr

is
w

h
e

e
l

s
tr

a
w

b
e

rr
y

b
ri
d

g
e

b
a

th
tu

b

fe
a

th
e

rb
o

a

c
o

m
b

la
m

p

b
a

s
k
e

tb
a

ll

b
u

tt
o

n

d
ru

m

s
u

n
fl
o

w
e

r

p
o

lic
e

v
a

n

p
o

o
lt
a

b
le

b
o

n
s
a

i

d
a

is
y

r.
 c

o
a

s
te

r

a
c
o

rn

b
u

c
k
le

m
a

ri
m

b
a

ru
le

Wordnet (0.73)

Visual (1.97)

Attributes (2.40)

All (4.10)

Figure 5.4: Per-class accuracy improvements of each individual taxonomy and the
semantic kernel forest (“All”) over the raw feature kernel baseline. Numbers in
legends denote mean improvement. Best viewed in color.

Further qualitative analysis Figure 5.5 (a-d) shows the confusion matri-

ces for AWA-4 using only the root level kernels. We see how each taxonomy

specializes the features, exactly in the manner sketched in the chapter intro-

duction. The combination of all taxonomies achieves the highest accuracy

(55.00), better than the maximally performing individual taxonomy (Appear-
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Figure 5.5: (a-d): AWA-4 confusion matrices for individual taxonomies (a-c) and
the combined taxonomies (d). Y-axis shows true classes; x-axis shows predicted
classes.
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Figure 5.6: Example βk’s to show the characteristics of the two regularizers. Each
entry is a learned kernel weight (brighter=higher weight). Y-axis shows object
classes; x-axis shows kernel node names.

Figure 5.6 shows the learned kernel combination weights βk for each

class k in AWA-10, using the two different regularizers. In Figure 5.6 (a), the

ℓ1 regularizer selects a sparse set of useful kernels. For example, the humpback

whale drops the kernels belonging to the whole Behavior taxonomy block, and

gives the strongest weight to “hairless”, and “habitat”. However, by failing to
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select some of the upper-level nodes, it focuses only on the most confusing fine-

grained problems. In contrast, with the proposed regularization Figure 5.6 (b),

we see more emphasis on the upper nodes (e.g., the “behavior” and “placental”

kernels), which helps accuracy.

5.3 Discussion

In this chapter, I proposed a semantic kernel forest approach to learn

discriminative visual features that leverage information from multiple semantic

taxonomies. The results show that it improves object recognition accuracy,

and they give good evidence that committing to a single external knowledge

source is insufficient.

The key novelty here is that the proposed method tackles the difficult

problem of merging complementary information in different semantic views, by

first isolating features at each granularity and then assembling the learned sub-

feature spaces in a single pool, with the sparsity and hierarchical regularization

to enable interleaving and enforce a structure among the features.

The remaining problems are on how to better combine the kernels, as

the current additive kernel combination might not capture the strong similar-

ity in a single view. While the proposed MKL method with the hierarchical

regularizers is shown to already significantly improve the classification perfor-

mance, it could still potentially benefit from using a non-additive, non-linear

combination multiple kernel learning method.
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Until now, we have focused on semantic knowledge from attributes and

taxonomies, and I have shown how to leverage them in ways different from

existing models. In the next chapter, I will show how to exploit analogies, a

new type of semantic knowledge for visual recognition, to regularize a discrim-

inative categorization model.
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Chapter 6

Transferring Knowledge between Related

Category Pairs with Analogies

The attributes and taxonomies covered in earlier chapters provided

ways to relate categories, which provided structures in the learned catego-

rization models. However, information provided by both of these semantic

knowledge types are limited to pairwise class similarities, defined by sharing

or non-sharing of object properties. For example, two categories either share

some attributes [58], or two categories in different semantic levels in parent-

child relationship compete [55] for exclusive properties at each level. In other

words, these pairwise similarity-driven models can only provide information

on whether two categories are similar or dissimilar, and higher-order reason-

ing employed in the human recognition process is limited in these models.

In the final component of my thesis, I aim to move beyond per-class

semantic relatedness, and exploit higher-order relationships jointly involving

multiple classes. Specifically, I propose to model analogies between classes in

the form “p is to q, as r is to s” (or, in shorthand, p : q = r : s)1 . An analogy

encodes the relational similarity between two pairs of semantic concepts. By

1The work introduced in this chapter is published in [57].
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augmenting labeled data instances with a set of semantic analogies during

training, we aim to enrich the learned representation and thereby improve

generalization. Analogies can be defined with almost arbitrary abstraction,

ranging from “is-a” relationships (dog : canine = cat : feline), to contextual

dependencies (fish : water = bird : sky). To examine analogies most likely to

benefit visual learning, we restrict our focus to analogical proportions [74]—

analogies between pairs of concrete objects in the same semantic universe and

with similar abstraction level.

Before sketching my approach, I want to first motivate why this form of

analogy should offer new information to a learning algorithm. As any standard-

ized test-taker knows, analogies are used to gauge both vocabulary skills and

reasoning ability. Notably, the pairs of entities involved in an analogy need not

share properties. For example, in the analogy planet : sun = electron : nucleus,

the planet and electron do not have anything in common; rather, the relational

similarity (orbiter and center) is what makes us recognize the two pairs as par-

allel in meaning [44]. Furthermore, the common difference exhibited by the two

pairs in an analogy may encapsulate a combination of multiple properties—

and that combination need not have a succinct semantic name. For example,

in the analogy leopard : cat = wolf : dog, the common difference relating the

two pairs entails multiple low-level concepts; in both, the first class lives in

the wild, has fangs, and is more aggressive, etc. Thus, to master analogies,

one must not only estimate the similarity of words, but also infer the abstract

relationships implied by their pairings.
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Accordingly, we expect analogies to benefit a feature learning algorithm

in ways that semantic distance constraints alone cannot. Whereas existing

methods inject only “vocabulary skills” by requiring that semantically related

instances be close and semantically unrelated ones be far, our method will also

inject “reasoning ability” by requiring that the common differences implied by

analogies be reflected in the learned semantic feature space. Often, the higher-

order constraints may connect quite distant sets of categories. The analogies

can thus facilitate a form of transfer from class pairs that are more easily

discriminated in the original feature space to analogous class pairs that are

not. For example, suppose leopard and cat are often confused in the visual

space because the training set consists of only close-up images, whereas dog

and wolf are easily separable due to their distinct backgrounds. Enforcing the

analogy constraint leopard : cat = wolf : dog could make the separation in the

first pair clearer, by aligning it with the same hypothetical semantic axis of

differences (wild/fanged/aggressive) shared by the second (more distinctive)

pair.

I propose an Analogy-preserving Semantic Embedding (ASE), which

embeds features discriminatively with analogies-based structural regulariza-

tion. Given a set of analogies involving various object categories, we translate

each one into a geometric constraint called an analogical parallelogram. This

constraint states that the difference between the first pair of categories should

be the same as the that between the second pair, where each category is rep-

resented by a (learned) prototype vector in some hypothetical semantic space.
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leopard:cat = wolf:dog 

leopard:tiger = horse:zebra 

Visual feature space Analogies 

Semantic Embedding Space 

Regularization 

Figure 6.1: Concept of the analogy-preserving semantic embedding (ASE). I intro-
duce analogical parallelogram constraints to regularize a semantic embedding. By
learning from both labeled instances and analogies, the learned embedding space
preserves structural similarities between category pairs.

See Figure 6.1. We represent the constraints as a novel regularizer that aug-

ments a large-margin label embedding. Consequently, we obtain an embedding

where examples with the same label are mutually close (and far from differently

labeled points) and analogical parallelograms have nearly parallel sides.

The learned embedding can be used for recognition, automatic analogy

completion, visualization, and potentially other tasks. To use it for recogni-

tion, we project a novel image into the learned space, and predict its label

based on the nearest category prototype. We further show how to automati-

cally discover and prioritize useful analogies, which is valuable to concentrate
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on constraints that are influential for recognition.

Compared to traditional large-margin label embeddings [113, 11], our

approach preserves a new form of relational similarity. While the prior methods

also map to a space where semantic similarities are preserved, they risk learn-

ing spurious associations between features and labels. Our analogy-induced

regularizer mitigates such adverse effects by constraining the hypothesis space

with structural relations between category pairs, yielding robust models with

better generalization. Even constraints not in the axes of visual properties

can be helpful, as they shift the focus from brittle incidental correlations to

higher-order semantic ties.

6.1 Analogy-preserving Semantic Embedding (ASE)

In this section, I will present the analogy-preserving semantic embed-

ding for categorization, which learns to place category embeddings (proto-

types) in a low-dimensional semantic space, while also preserving the analog-

ical structure between matched category pairs in the analogies.

6.1.1 Encoding analogies

For each class c ∈ Y, uc ∈ R
M denotes its coordinates in the M-

dimensional semantic space. Each uc can be thought of as a prototype for

the category; we will explain how the prototypes are optimized jointly with

the data projection matrix W in Sec. 6.1.3.

An analogy involves four categories, and we represent the relationship
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with an ordered quadruplet (p, q, r, s) ∈ Y×Y×Y×Y. As we focus on analogical

proportions [74], the difference between p and q is equated with the difference

between r and s. Moreover, the difference between p and r also is equated

with the difference between q and s.

Analogical proportions naturally induce geometric constraints among

the embeddings of the four categories in the semantic space. In particular, the

geometry is characterized by a parallelogram; we will show how to exploit this

structure in our learning algorithm.

Analogy parallelogram We use the vector shift (uq − up) to represent the

difference between the two categories q and p in the semantic space. Note that

this difference is directed, that is, uq−up 6= up−uq. The analogical proportion

implied by (p, q, r, s) is thus encoded by the following pair of equalities:

(6.1) uq − up = us − ur, and ur − up = us − uq.

These constraints form a parallelogram in which each vertex is a cate-

gory, as illustrated in Figure 6.2.

Convex regularizer There are several ways of enforcing the analog-

ical proportion constraints in equation 6.1. A natural choice is to exploit the

parallel property of opposing sides. Specifically, the normalized inner prod-

ucts between opposing sides are the cosine of their intersection degree, which

should be 1 if perfectly parallel. Concretely, for an analogy α = (p, q, r, s), the

resulting parallelogram “score” would be defined as

(6.2) S(α) =
1

2

(

(uq − up)
T(ur − us)

‖uq − up‖ · ‖ur − us‖
+

(ur − up)
T(us − uq)

‖ur − up‖ · ‖us − uq‖

)

.
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Input space 

p:q = r:s 

Semantic space 

Figure 6.2: Geometry of ASE. Analogy constraints for the semantic category

embedding: The analogy quadruplet (p, q, r, s) forms a parallelogram in the se-
mantic embedding space, cf. eq. (6.1). Data embedding W : At the same time,
when projected onto the semantic space by W , the data point xi from class q should
be closer to its semantic category embedding uq, compared to any other category
embedding, by a large margin (see dotted circles).

While intuitive, maximizing the parallelogram score (or equivalently, minimiz-

ing its negative) is computationally inconvenient, since it is not convex in the

embeddings u. Thus, we use a relaxed version and compare the sides only in

their lengths. Specifically, our regularizer is defined as

(6.3)

R(α) =1/σ1‖(uq − up)− (ur − us)‖22 + 1/σ2‖(ur − up)− (us − uq)‖22,

where σ1 and σ2 are two scaling constants used to prevent either pair of sides

from dominating the other. We simply estimate them as the mean distances

between data instances from different classes.

R(α) is convex in the embedding coordinates. Moreover, it is straight-
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forward to kernelize as it depends only on the distances (and thus inner prod-

ucts).

6.1.2 Automatic discovery of analogies

Human knowledge is a natural source for harvesting analogy relation-

ships among categories. However, it is likely expensive to completely rely on

human assessment to acquire a sufficient number of analogies for training. To

address this issue, we use auxiliary semantic knowledge to identify candidate

analogies.

In the context of visual object recognition, visual attributes are an

appealing form of auxiliary semantic knowledge [65]. Attributes are binary

predicates shared among certain visual categories—for example, the category

panda has the “true” value for the spotted attribute and the “false” value

for the orange attribute. Supposing we have access to attribute descriptions

stating the typical attribute values for each category, we can automatically

discover plausible analogies.

I next define two strategies to do so. The first is independent of the

data instances, while the second exploits the instances to emphasize analogies

more likely to lend discriminative information.

Attribute-based analogy discovery Our first strategy is to view attributes

as a proxy to the embedding coordinates of the visual categories in the semantic

space we are trying to learn. In the attribute space, each category is encoded

with a binary vector, with bits set to one for attributes the class does possess,
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and bits set to zero for attributes the class does not possess. Note that this is

a class-level description—we have one binary vector per object class.

Imagine that we enumerate all quadruplets of visual categories. For

each quadruplet α, we compute its parallelogram score according to equa-

tion 6.2, using the categories’ attribute vectors as coordinates. We then select

top-scoring quadruplets as our candidate analogies.

Pragmatically, we can only score a subset of all possible analogies for

a large number of visual categories. Thus, to ensure good coverage, for each

randomly selected pivot category p, we select at most K triplets of other cat-

egories, where K is far fewer than the total number of possible ones. We also

remove equivalent analogies. For example, (p, q, r, s) is equivalent to (p, r, q, s)

or other shift-invariant forms.

We will use the highest-scoring analogies to augment the class-labeled

data when learning the embedding. We stress that while we discover analogies

based on parallelogram scores computed in the space of attribute descriptions,

we regularize the learned embedding according to parallelogram scores com-

puted in the learned embedding coordinates (cf. Sec. 6.1.3). Thus, external

semantics drive the “training” analogies, which in turn mold our learned se-

mantic space.

Discriminative analogy discovery The process described thus far has two

possible issues. First, it does not take the data instances into consideration.

While our goal is to find a joint embedding space for both data instances
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and category labels, analogies inferred purely from attributes do not neces-

sarily align the data and mid-level representations—they might even lead to

conflicting embedding preferences! Secondly, being fully unsupervised, this

procedure need not discover analogies directly useful to our classification task.

In particular, the extracted candidate analogies are not indicative of whether

two categories are easily distinguishable or confused.

I address both issues with an intuitive and empirically very effective

heuristic. Mindful of our goal (described in the introduction) of improving

discrimination for confusable categories by leveraging analogy relationships

connecting those confusing categories to easily distinguishable categories, we

first use baseline classifiers to estimate the pairwise confusability between cat-

egories. This step can be achieved easily with any off-the-shelf multi-way

classifier and visual features computed from the training instances. The con-

fusability between two categories p and q is defined in terms of the resulting

misclassification error:

Cpq = 0.5 [ǫp→q + ǫq→p] ,

where ǫp→q is the rate of misclassifying instances from the category p as the

category q, and likewise for ǫq→p.

Our next step is to refine the candidate analogies generated above by

finding those with unbalanced confusability. Specifically, for each analogy α =

(p, q, r, s), we compute its discrimination potential:

(6.4) P (α) = |log(1 + Cpq)− log(1 + Crs)| .
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Algorithm 3 Discriminative analogy generation

Require: Rc×Ns , S

Ensure: A set of analogies: A
1: Initialize A = φ.
2: while |A| ≤M do

3: Select random category p ∈ {1, . . . , c}
4: Generate K quadruplets ak = (p, qk, rk, sk), 1 ≤ k ≤ K
5: Compute P (ak) according to 6.4, for all k ∈ K.
6: Sort {a1, . . . , aK} by P (ak) → {as(1), . . . , as(K)}.
7: while A∗ ∩A = φ do

8: Find a∗k = arg max{C(S, as(1)), . . . , C(S, as(κ))} (κ≪ K).
9: Set A∗ as the all possible rotations of a∗k.

10: end while

11: A = A ∪ {ak∗}
12: end while

13: return A

This score attains its maximum when Cpq and Crs are drastically different—

that is, if one is 0 and the other is 1. We use this score to re-rank the K

candidate analogies generated for each category p. Intuitively, we seek the

quadruplet where one pair of categories is easily distinguishable (based on the

image data) while the other pair is difficult to differentiate. Precisely by enforc-

ing their analogy relationship, we expect the easy pair to assist discrimination

for the difficult one.

Algorithm 3 shows the details of this analogy generation considering

confusability.

To summarize, our automatic discovery of analogies is a two-phase

strategy. We first use an auxiliary semantic space to identify a set of candidate

analogies where the four categories are highly likely to form a parallelogram.
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Then, we analyze misclassification error patterns of these categories and use

the scoring function in equation 6.4 to determine the potential of each anal-

ogy in improving classification performance. We describe next how to use the

highest-scoring analogies to learn the joint embedding of both features and

categories.

6.1.3 Discriminative learning of the ASE

Next I explain how we regularize a discriminative embedding to account

for the analogies.

Large margin-based discrimination We aim to learn a projection matrix

W ∈ R
M×D to map each data instance (image example) xi into the semantic

space, giving its M-dimensional coordinates zi = Wxi.
2 The ideal projection

matrix W should make zi close to its corresponding label’s embedding uyi

and distant to all other labels’ embeddings [113]3. Specifically, we enforce the

large margin constraint for every training instance,

(6.5) ‖Wxi − uyi
‖22 + 1 ≤ ‖Wxi − uc‖22 + ξic, ∀ c 6= yi

where ξic ≥ 0 is a slack variable for satisfying the separation by the margin of

1.

Regularization To jointly embed both features and class labels, we regularize

2Nonlinear embeddings are possible via kernelization.
3We use 1 instead of the inter-class dissimilarity as the large margin to maximize class

separation.
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so that the class labels in the analogy set A form parallelograms as much as

possible. The regularizer is given by

(6.6) Rtotal(A) =
∑

a

ωaR(αa),

which is the weighted sum of the regularization defined in eq. (6.3) for each

analogy αa. If using the “raw” attribute-based analogies, the weight ωa =

S(αa), thus enforcing stricter regularization for category quadruplets whose

structure is closer to a “perfect” analogy. If using discriminatively discovered

analogies, the weight is instead ωa = P (αa), thus prioritizing those that are

more discriminative.

Additionally, we also constrain the parameters W and all uc with their

Frobenius norms: ‖W ‖2F and R(u) =
∑

c ‖uc−uprior
c ‖22. In particular, for the

class label embeddings, we constrain them to be close to our prior knowledge

on their locations uprior
c . The prior knowledge could be null such that we

set uprior
c to zeroes. Or, the class label embeddings could be computed from

auxiliary information, for example, the multi-dimensional embedding of class

labels where the dissimilarities between labels are measured with tree distances

from a taxonomy [113] or attributes. We consider both in the results.

6.1.4 Numerical optimization

Our learning problem is thus cast as the following optimization prob-

lem:

(6.7) min
W ,{uc}

∑

ic

ξic + λRtotal(A) + µ ‖W ‖F + τR(u)
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subject to both the large margin constraints in equation 6.5 and non-negativity

constraints on the slack variables ξic. The regularization coefficients λ, µ, and

τ are determined via cross-validation.

The optimization is nonconvex due to the quadratically-formed large

margin constraints. We have developed two methods for solving it. Our first

method uses stochastic (sub)gradient descent, where we update W and uc

according to their sub-gradients computed on a subset of instances. Despite

its simplicity, this method works well in practice and scales better to problems

with many categories.

We also consider a convex relaxation analogous to the procedure in [113].

Briefly, in equation 6.7, we hold {uc} fixed first and solve W in closed-form,

W = UQ where the matrix U is composed of {uc} as column vectors. The

matrix Q depends only on xi and is constant with respect to U or W . Sub-

stituting the solution of W into both the objective function equation 6.7 and

the large margin constraints equation 6.5, we can reformulate the optimiza-

tion in terms of UTU . In particular, the original non-convex large margin

constraints in U can be relaxed into convex if we reparameterize UTU as a

positive semidefinite matrix V . We then solve V and recover the solutions U

and W , respectively. For cases where D is much larger than the number of

categories, we expect this variant to optimize faster.

The details of the numerical optimization for the semidefinite program-

ming relaxation problem are provided in Algorithm 4. At each step, we update

the gradient by ηst, where η is a general learning rate and st is a step size
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Algorithm 4 ASE (Convex)

Require: training data (xn,yn), analogical quadruplets A
Ensure: Q, w

1: Initialize Q = I, and w by setting each element of w with 1/M
2: U = JXT (XXT + λI)−1

3: X̄ = UX

4: while t < T and ||Q|| > ǫ do

5: G
ξ
t = 1/N

∑N
i=1(x̄i − x̄j)(x̄i − x̄j)

T

6: Gmds
t = 2 ∗ (Q−Qmds)

7: Compute gradient Ga
t from equation 6.3.

8: Gt = G
ξ
t + µGmds

t + γGa
t

9: Qt+1 = Qt − ηstGt with stepsize st.
10: end while

11: return V = decomp(Q)
12: return W = V U

specified by some step size rule. We learn η on the validation set, and set st

according to Polyak’s step size rule.

6.2 Results

We validate three aspects: 1) the effectiveness of our analogy discovery

approach; 2) recognition accuracy when incorporating discovered analogies in

learning embeddings; and 3) “fill in the blank”—a Graduate Record Exami-

nation (GRE)-style prediction task of filling in the category that would form

a valid analogy.

Datasets and implementation details We use three datasets created from

two public image datasets: Animals with Attributes (AWA), which contains 50

animal classes [65] and ImageNet, which contains general object categories [27].

They were chosen due to their available attribute descriptions and their chal-
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lenging diverse content. From AWA, we create two datasets: AWA-10 of

6, 180 images from 10 classes [65], and the complete 50-class AWA-50 of

30, 475 images. From ImageNet, we use the 50-class ImageNet-50 with an-

notated attributes [88], totaling 70, 380 images.

We use the features provided by the authors, which consist of SIFT

and other texture and color descriptors. We use PCA to reduce the feature

dimensionality to D = 150 for efficient computation. Additionally, we augment

ImageNet-50 with attribute labels for colors, material, habitat, and behaviors

(e.g., big, round, feline), yielding 39 and 85 binary attributes for ImageNet and

AWA, respectively. We fix K = 10, 000. We use the convex relaxation, since

the dimensionality is much greater than the number of classes; accordingly,

the semantic space dimensionality M equals the number of categories (10 or

50).

6.2.1 Automatic discovery of analogies

In real-world settings, acquiring all analogies from manual input may

be costly and impractical. Thus, we first examine the analogies discovered

by our method (Sec. 6.1.2), which assumes only that attribute-labeled object

classes are available.

Figure 6.3 displays several examples for AWA-50 and ImageNet-50.

Most analogies are intuitive to understand. For example, in the second row of

collie:dalmatian = lion:leopard, the categories collie and lion are both furry

and brown, while the categories dalmatian and leopard are both spotted and
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AWA-50 Imagenet-50

: = : : = :
antelope lion zebra tiger comb button bridge ferriswheel

: = : : = :
collie dalmatian lion leopard comb marimba macaque gorilla

Figure 6.3: Example analogies discovered from attributes.

lean. We also see that the analogies can be largely visual (e.g., the third row),

an upshot of the many visually relevant attributes offered with the datasets.

6.2.2 Visual recognition with ASE

We compare the classification performance of our Analogy-preserving

Semantic Embedding (ASE) to the following baselines, all of which lack analo-

gies:

(1) SVM-RBF: Multiclass SVM with RBF kernel.

(2) Large margin embedding (LME): The existing technique of [113] with-

out the taxonomy prior regularizer, which is also a special case of our approach

where we disable both the attributes prior and analogy regularizers by setting

τ = 0 and λ = 0 in eq. (6.7). For this baseline, the class label embeddings are

constrained only to satisfy the large margin separation criterion of eq. (6.5);

(3) Large margin embedding with attributes prior (LMEprior): This

baseline adds the prior regularizer to LME, where we adjust τ for eq. (6.7) via

cross-validation. In particular, we use the multi-dimensional scaling (MDS)
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embedding of class labels where the pairwise dissimilarity is the Euclidean

distance between the attribute vectors of two classes. The contrast between

LME and LMEprior reveals how useful attributes as auxiliary semantic infor-

mation are in yielding discriminative embeddings, separating out the impact

of attributes from the impact of analogies.4

All embedding methods classify novel images according to the nearest

category uc in the embedding space.

For our method, we include two variants, differentiated only by how the

analogies are discovered, cf. Sec. 6.1.2. In ASE-A, the analogies are derived

solely from attributes, aiming to preserve parallelograms as much as possible.

In ASE-C, the analogies are derived from the discrimination-based discovery,

aiming to use distinct categories to assist confusable categories. The confus-

ability among categories is measured using the baseline LME classifier on the

validation set.

In our experiments, all hyperparameters (regularization coefficients,

kernel function parameters) are tuned via cross-validation. We use 30 ex-

amples per class for both training and testing, and use another 30 images as

a validation set to learn the parameters. We report the average results over 5

such random splits.

How do analogies affect recognition accuracy? We first validate our

method on multiclass classification. Since the analogies help preserve the in-

4We also tested LME using WordNet class distances as a prior as in [113], but found it
inferior to the attribute prior.
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Dataset AWA-10 AWA-50 ImageNet-50
#. analogies 5 50 50

SVM-RBF 43.00 ± 1.94 19.32±0.57 15.37±0.93
LME 44.40±2.83 19.65±0.90 16.52±1.10

LMEprior 44.93 ± 3.57 20.12±1.03 16.59±0.39
ASE-A (ours) 45.47±3.10 20.60±0.93 17.08±0.36
ASE-C (ours) 45.93±2.90 21.05±0.82 17.24±0.62

Table 6.1: Multiclass classification accuracy. The numbers denote mean and the
standard error over 5 runs.

trinsic semantic structure among objects, we expect the learned space to show

better generalization power, and hence improved object categorization.

Table 6.1 shows the results.5 We report the optimal number of analo-

gies selected from preliminary experiments, though the results were in general

insensitive to the number of analogies. On all three datasets, we observe clear

improvement using our analogy-preserving embedding variants over both LME

variants.

We see that the difference in accuracy for LME and LMEprior is in gen-

eral smaller than the improvement from LME to ASE. This suggests that us-

ing attribute distances alone as a prior to constrain embeddings (as LMEprior

does) is not sufficient. In contrast, in ASE, the prior and the analogy con-

straints work together, leading to a noticeable improvement.

Which types of analogies should we use? We also observe that our

5Attribute-based categorization [65] underperforms all baselines (AWA-10: 28.80± 1.51,
AWA-50: 17.80± 0.90, ImageNet-50: 11.14± 0.80).
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ASE-C variant outperforms ASE-A. This coincides with our intuition that the

analogies would be much more helpful for discrimination if a pair of easily

confusable categories can leverage a pair of easily distinguishable categories.

Detailed analysis supports this intuition even more strongly. Figure 6.4

compares the amount of reduction in confusability among the 10 classes of

AWA-10, from LMEprior to either ASE-A (left) or ASE-C (right). We observe

that for ASE-A, the improvement is made on pairs that are not included in

the analogies; in contrast, for ASE-C, the improvements are mostly made on

pairs that are included in analogies. This noticeable correlation between the

category pairs selected for analogies, and the pairs whose confusion is reduced

(for ASE-C) suggests that our consideration of the pairwise confusion is indeed

the reason ASE-C outperforms ASE-A, whose analogies do not care about the

data distribution.

Figure 6.5 shows projections of AWA-50 categories to a 2D space using

different embedding methods. We see that the quadrilaterals formed by the

four categories projected by ASE involved in each analogy do indeed show

distinct parallelogram shape. In contrast, the existing LME approach variants

do not maintain the desired relational similarity.

6.2.3 Completing a visual analogy

Finally, we subject our method to a GRE test. Given p : q = r :?,

how well can our method fill in the blank, based on its representation of the

three other classes? In this analogical reasoning task, which is performed by
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Figure 6.4: Confusion reduction. Left: CLME − CASE-A, Right: CLME − CASE-C.
The numbers and colors at each entry show the reduction in confusion (red:↑, blue:↓).
Outlined entries are pairs that appear in the training analogies. Positive off-diagonal
entries indicate reduced confusion. ASE-C focuses on initially confused classes.
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Figure 6.5: AWA-50 categories projected to the 2D space using each embedding
method. We show only three analogies for ease of viewing: 1) dalmatian:siamese

cat=killer whale:dolphin, 2) lion:chihuahua = humpbackwhale:bluewhale, and 3)
chimp:gorilla = persian cat:walrus.
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Dataset AWA-10 AWA-50 Imagenet-50
k 1 3 1 3 1 3

Chance 14.29 42.86 2.13 6.38 2.13 6.38
LME 36.00 52.00 4.80 12.40 1.60 7.20

LMEprior 52.00 68.00 5.60 14.40 0.80 6.80
ASE-A 64.00 88.00 8.40 20.80 2.80 6.40
ASE-C 60.00 80.00 5.20 15.60 3.20 8.80

Table 6.2: Top-k class prediction accuracy, given an analogy with an unknown class
in the form p:q=r:?

Analogy question LME LMEprior ASE-A
AWA-50

leopard:lion = dalmatian:? bobcat s. monkey fox
horse:g.shepherd = sheep:? weasel antelope collie
skunk:mouse = killerwhale:? fox bluewhale dolphine

Imagenet-50
badger:skunk = button:? g.spider bathtub buckle
marimba:rule = baboon:? kitfox orangutan patas

b.ball:bathtub = r.coaster:? jaguar pooltable bridge

Table 6.3: Sample analogy completion results

virtually every graduate school applicant, the learning algorithm is given a set

of complete analogies Atrain. Then it is given a disjoint test set of analogies

Atest, each of which has its fourth category missing. No analogies overlap

in (p, q, r) between the two sets. To fill in the blank with ASE or LME, we

simply rank each category according to its parallelogram score when its uc is

used as the fourth category. The more parallelogram-like, the more it appears

to be the right answer. The ground truth answer is the class maximizing the

parallelogram score according to the auxiliary attribute ground truth.
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Our hypothesis is that by learning to discriminate categories in con-

junction with preserving the analogy constraints in Atrain, the learned seman-

tic embedding will generalize well to complete the novel analogies, without

resorting to auxiliary information.

Table 6.2 strongly supports our hypothesis. We report the prediction

accuracy averaged over 5 random trials, where we take the classes with the top

k parallelogram scores as guesses. ASE-A achieves the best accuracy, followed

by ASE-C. They both outperform the LME methods, which lack analogical

constraints. On AWA-10, we predict the right completion in the first guess

(k = 1) 64% of the time. There is clearly room for improvement, though, as

accuracy decreases substantially for all methods on the larger 50-class datasets.

Table 6.3 shows example completed analogies for AWA-50. Compared to LME,

ASE selects more intuitive classes to fill in the missing values.

6.3 Discussion

In this chapter, I introduced a novel semantic embedding method for

visual data that preserves structural similarities in the form of analogies. In

addition to formulating a novel regularizer suitable for our goal, I also explored

ways to systematically discover plausible analogies from auxiliary attribute

information. The proposed method improves recognition accuracy over an

existing “distance-only” embedding approach, thanks to its ability to preserve

higher-order structures and facilitate transfer between easier and harder pairs

of objects. Beyond benefiting recognition, I showed that it also allows analogy
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completion—a high-level reasoning task.

As this is the first work on using analogies in the context of categoriza-

tion, there remains some issues to be addressed. First, in this work, I explored

a specific and popularly recognized form of analogy that is defined between two

pairs of categories (A:B = C:D). However, in more general sense, an analogy

could exist between sets of entities where the relation between the elements

in the first set is the same as the relation between the elements in the second

set; for example, we can have an analogy between sets of parts in a human

and a car, as in eye:ear:leg = headlight:side mirror:wheel. This suggests the

possibility of using of a more general form of analogy, where an analogy exists

between subgraphs containing multiple elements, to which we might be able

to apply similar geometric constraints as we used in this work.

Another issue is that the current model works on the static set of analo-

gies already provided by humans, but the acquisition of the analogies could

be done dynamically, in an active learning framework. The active learning

criterion in this case might consider selecting confusing category pair and we

might ask the users to provide a category pair that best aligns with the selected

category pair.

I believe that this exploitation of higher-order semantic knowledge is

a meaningful step in the research of the semantic models for categorization.

However, at the same time, this is also just a first step into the relatively

unexplored world of human reasoning, in the context of machine learning and

visual categorization. In the next section, I will discuss more about the possible
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research topics and ideas in this direction.
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Chapter 7

Future Work

My thesis work opens up a number of interesting future directions. One

possible direction is to pursue a unified framework that can incorporate all pro-

posed semantic models, to benefit from complementary information provided

by each model. Another possible direction is to explore more complex seman-

tic relations. I have already covered one such semantic type, the analogy, but

there could be much more arbitrarily complex relations between the categories

and semantic concepts. Further, the current semantic models are rather shal-

low regardless of the complexity of the original semantic knowledge; that is,

the category recognition process does not involve any deep reasoning. This

also suggests a viable future research direction—increasing the complexity of

the semantic models. Finally, we could explore ways of tackling scalability

issues with the semantic models. While my focus is not on the scalability or

the efficiency in training or recognition, most of the proposed models in this

thesis are already scalable to some degree, and can be further improved with

the introduction of efficient optimization schemes and parallelization. How-

ever, what I am more interested in is a semantic categorization model that

targets directly to reduced complexity. In the following sections, I will briefly

mention issues and challenges with each of these possible directions, and will
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sketch some rough ideas.

7.1 Unified framework for different types of semantic

knowledge

Until now, the target discriminative categorization models we aimed

to improve using the semantic information took slightly different forms: I

used an SVM for the object-attribute feature sharing idea, metric learning

for the tree of metrics, metric learning and multiple kernel learning for the

semantic kernel forests, and a large margin embedding method for the analogy-

preserving semantic embedding. While all can be seen as models for feature

learning, their specific differences stem from practical considerations about the

optimal learning model for each type of semantic knowledge. For attributes,

the most suitable categorization model is a binary classifiers as attributes

are binary. For semantic taxonomies with arbitrary branching factors, which

makes learning 1-vs-all classifier less scalable, a class-agnostic model such as a

metric learning is more suitable. For analogies, a large margin embedding was

the most suitable, as such a shared common subspace model allows to impose

geometrical constraints among the categories.

However, it is a viable question to ask what might happen when all these

different semantic models are combined into a single categorization model. One

important aspect of the semantic models proposed so far suggests a possib-

lity of designing a unified semantic model, which is that regardless of what

semantic knowledge is used, the learning problem can be expressed as the
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generic regularized learning problem (Equation 1.2). This generic model re-

quires the learning of a shared feature space regularized by the semantic knowl-

edge. Thus, the objective of learning a semantic space is common throughout

the different semantic methods, where the only difference between them being

what to preserve in the learned space. As the different types of semantic knowl-

edge provide complementary information from one another, my expectation is

that a unified model might outperform each of the separate semantic models

proposed. However, there remains some pragmatic challenges in building such

a unified model.

The first challenge is to how to generalize over the different types of

semantic knowledge. A careful observation on the types of semantic knowledge

we have dealt with so far reveals some relations among them. An attribute can

be viewed and modeled as a three-level taxonomy where the root contains two

supercategories as its children, one having the attribute and the other not. On

a taxonomy, the semantic criteria to split or group the categories at each node

could be thought of attributes, or further, each superclass could be thought of

an attribute in a general sense. In an analogy, the relational similarity, or the

common displacements between the two category pairs could be a combination

of attributes. These observations suggest the possibility of having a unified

model for different types of semantic knowledge. A general model in logical

forms might be able to incorporate all these different types of relations.

The second challenge is to decide which discriminative learning model

to use for the unified semantic model, as transferring the structural constraints
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from one learning model to anther is not straightforward. For example, it is

not clear how the feature sharing behavior in object-attribute feature sharing

model might transfer well to a hierarchical metric learning model, nor how the

parallelogram constraints in the analogy-preserving semantic embedding can

be applied to a hierarchical metric learning model.

Addressing these challenges in theory and practice will be an interesting

future work.

7.2 Learning from more complex semantic relations

Other directions I aim to pursue in the research of semantic models are:

1) further exploring more complex relations beyond analogies, and 2) exploring

a better way to model the semantics, which could possibly result in complex

models.

Attributes and taxonomies are two types of semantic relations, that is

either proprietary (A car has wheels, i.e. attributes), or inclusive (A car is

also a vehicle, i.e. taxonomy), where the inferred implicit relations from these

semantic sources are modeled either as the regularization term that promotes

feature sharing, or competition. However, there could be even more complex

relations among the categories and semantic concepts that could be exploited,

as well as better means to model the interactions.

The last chapter on analogy showed the first work to explore a higher-

order relation, which are relational similarities between two pairs of categories.
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However, there could be arbitrarily complex semantic relations between cate-

gories and concepts, such as causal, anti-causal, contextual, and so on, which

all influence the human recognition process of the categories. In the next

subsections, I suggest some ideas to move further in that direction.

7.2.1 Exploiting first-order logical formulas

The proprietary and inclusive relations we have sought, and even ana-

logical relations, could be viewed as special instances of a more general logical

relation between semantic entities. For example, for attributes, some abstract,

high-level attributes such as fast, predator, plankton can be only be inferred

from more visual and lower level concepts such as longleg (fast), meatteath,

claws (predator), and oceanic (plankton), and there certainly exist some re-

lations between these semantic concepts. Modeling such complex semantic

relations has potential advantages for object categorization. While mostly

ignored in the field of statistical machine learning where most object recog-

nition method rely on, many AI researchers have focused on the logical rela-

tion [100, 43], as it is a key factor in the human intelligence [14]. Humans

can recognize objects by inferring from the relations of the observation to the

known semantic knowledge.

Then how should we learn such arbitrarily complex relations? One idea

is to focus on the first-order logic as a means to model such relations. Suppose

that we are given a set of logical formulas where each category and attribute

is a variable in the first order formula. For example, consider examples of
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the class dalmatian. A dalmatian is also a dog, and it has spots. Also, a

dog is not wild. This could be expressed as ∀x(dalmatian(x) → dog(x)),

∀x(dalmatian(x) → spots(x)), and ∀x(dog(x) → wild(x)) with a first order

formula. The relation between visual attributes associated in a first-order-

logic formula is different from a simple correlation in that is asymmetric. Not

all that have feathers and beak can fly (ostrich, penguin) but a flying animal

will definitely have feathers and beak. Not all animals that are spotted are

dalmatians, but all dalmatians are spotted. Further, instead of all attributes

having some correlation to each other, the first order logic only describes the

relation between a lower level visual, concrete attributes (longleg) and a higher-

level attributes (fast), and the lower level attributes are only associated by the

high-level attributes. This allows for more accurate modeling of semantics

than a correlation model.

The scenario where such logical relation would work best, is in a trans-

ductive, or semi-supervised learning case, where only partial observations are

available. Instead of working with fully annotated datasets, we could use the

image tags to infer unobserved attributes from the observed attributes through

the predefined logical relationships. For image annotation, where the focus is

on generating semantics based on the inference on the other semantics [89], it

has shown some success. This gives us a straightforward way to make use of

such learned logical formula. We first learn a logical formula to make them

to generate new semantic labels, and use the augmented labels to learn the

mappings from the visual feature space, and the label space to the semantic
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space, and then can learn the classifier on the projected semantic space to

classify the instances by their category label.

However, a better way might be to enforce the first-order logical re-

lationship into the learned model directly, in a form of a regularization term

that puts penalty based on the categorization models for each attributes and

classes involved in the logical relations, which still needs more research.

7.2.2 A deeper semantic model

Due to the success of the large-margin methods such as support vec-

tor machine in classification with the support of theoretically well-established

kernel methods, categorization models have remained relatively simple, as sim-

ple as learning linear separating hyperplanes, and most of the research efforts

were made on designing the representations. This strategy works well when

the category set is small in number of categories and is sparse, that is, when

the distribution of categories has little overlap. However, as the size of the

dataset increases to hundreds of millions and the focus of the categorization

is moving to a fine-grained categorization where there is often much overlap

between categories, this simple approach is no longer optimal and the needs

for more complex models arise.

What the current models lack is reasoning, based either on the known

knowledge of the world or in the given scene context. For example, recognizing

that an object is a cup as it contains some liquid, which a person is drinking.

Such reasoning requires additional layers over the recognition of the simple
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visual attributes. The semantic models such as attributes-based categoriza-

tion models and my other models that employs transformation (metric, linear

embedding), can be understood as providing one layer on top of the original

visual feature space. However, this simple one-layer approach might not suffice

to model layers of thought that a human semantic model might possess.

The recently spotlighted deep learning approach [54] which goes back

to the layered neural network models of the eighties, has gained some success

on many of computer vision tasks, including category-level classification. The

power of the model comes from more expressive power generated from the

layers of non-linear functions, and which can be applied even to the feature

learning stage. However, the limitation of this deep learning model is that what

is learned in these models does not necessarily mimic the human reasoning

process, and thus the what is learned on the models might not be meaningful

to humans. Also, there is no explicit ways to incorporate logical inference, or

the external semantic knowledge of the world into the deep learning model.

My goal is to come up with a model that overcome the limitations

of these two successful approaches. The model I am picturing is a layered

semantic model, where each internal unit (or a function) in the network has

some semantic meaning, and leads to more abstract concepts as it goes up

to higher layers. With this semantic layered model, we might have better

understanding of the internal process, and also may have better control of each

unit to guide the learning of the model to a desired direction, which I hope will

learn a model that is closer to the hypothetical human perception/reasoning
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model. How to build such deeper semantic model in detail is an open question,

but we might gain some insights from the previous research effort in artificial

intelligence, cognitive science, and natural language processing.

7.3 Scalable approaches to object categorization

All of the proposed models are readily applicable to a large-scale prob-

lem as they were modeled with scalability in mind, as with the hierarchical

model in tree of metrics (ToM) and low-dimensional linear projection in the

analogy-preserving semantic embedding (ASE). Other models can be also par-

allelized with little effort, as the learning of each independent model can be

parallelized without any effort, and the only bottleneck is the regularization

part. This is a typical problem well-fitted for the popular map-reduce system

for large-scale systems; we can take care of the independent model learning at

the map step, and the regularization at the reduce step.

However, a better approach would be having an explicit mechanism to

reduce the inherent complexity of the problem, by taking advantage of the se-

mantics. One thing to notice is that the human perception/recognition system

is fairly scalable. The key is in that the humans understand the categories with

some abstraction—either with generic semantic qualities that spans multiple

categories (attributes), or with some layers of abstraction (taxonomies); both

are scalable and generalizable to large number of categories.
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7.3.1 Approximating the whole category space with few categories

As mentioned previously, the power of the semantic models in object

categorization comes from the fact that they provide some generic semantic el-

ements that spans multiple categories. These generic semantic elements could

be thought of the bases that span the whole category space. The semantic

space for categorization then can be modeled using the semantic bases. An-

other interesting future challenge would be to find few categories that can be

used as such semantic bases. In other words, I want to find representative

categories that can shape the entire category space. This process could be

conceptually similar to the Nyström approximation [31] where a large posi-

tive semidefinite matrix is approximated with few random columns, but with

columns (categories) chosen with some human-defined criteria instead of ran-

dom sampling.

One example of such criteria might be the ‘commonness’ of an ob-

ject category, that is, either how many instances of each object category are

available on the web, or how common they are to humans. Another possible

criterion could be how iconic an object category is. For example, tiger might

represent predators, while dog might represent pets, and so on. Being able

to approximate the entire category with few would mean having to train the

model only on these few categories, which provides much efficiency in training

and also scalability in terms of number of categories.
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7.3.2 Iterative, incremental learning of the categories

Humans do not suddenly learn all the categories in the world on one

day. Rather, they gradually expand their knowledge of the world throughout

their entire lives. First they learn few categories, and then gradually learn

more and more categories. Here, we do not try to learn the novel categories

entirely from the scratch, but in the context of, and in relation to the already

known categories, through abstraction and correcting the previous learned

knowledge if necessary. Such process could be also adopted to the learning of

the object categories. We can start from few categories, and learn to place

the novel categories in relation to the already learned categories, with some

known similarity and structure between the categories. Here, we can start

from easy and reliable categories and gradually add harder categories. This

could overcome the limitations of the current regularization models, since the

regularization will not be symmetric in this way of learning, thus minimizing

the effect of unreliable category models influencing a more reliable one.

Prior work in visual recognition also explored iterative category learning

either in an unsupervised category discovery setting [48], or for supervised

dynamic categorization model learning [118]; however, none of the prior work

leveraged external semantics in the process. Using semantic knowledge might

give us better hint on which category models to learn next, as each category

has different semantic relation to already learned categories.

In machine learning perspective, this potential learning framework would

be an instance of lifelong learning [96] where the learner learns from a continu-
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ous stream of training examples and tasks, while transferring knowledge from

the previous steps to later steps. In my semantic-regularized learning frame-

work, the knowledge transfer could be modeled as asymmetric regularization

of the newly learned models according to their semantic relationships to the

categorization models learned in previous steps.

Both incremental learning of new categories and modeling asymmet-

ric regularizations in the process are interesting and challenging problems for

future work.
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Chapter 8

Conclusion

In this thesis, I proposed series of ideas to exploit external semantic

knowledge to regularize the learning of discriminative models for object cat-

egorization. Specifically, I exploited semantic knowledge such as attributes,

taxonomies, and analogies, that inform about the relations between categories,

in a way that the relations are encoded as structural regularizations between

the independent learning models for each category.

I first started with the exploitation of attributes and taxonomies. I

used the attributes to guide the feature learning for category classifiers, by

enforcing the category classifiers to share features with the attributes classi-

fiers. As a result, the category classifier, when discriminatively learned, used

the semantic features which were also used by the attributes, and obtained

improved classification performance while making semantic predictions.

As for taxonomy, I used it to learn exclusively discriminative feature for

each semantic level, by learning a hierarchical tree of metrics (ToM) while reg-

ularizing the metrics in parent-child relationship to compete for the features,

and to be sparse. The learned models resulted in selecting few informative

features that are useful for the classification subproblem at each branch of the
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taxonomy, and improved hierarchical classification performance.

Then, I moved on to the problem of working with multiple taxonomies,

based on the intuition that there could be multiple semantic taxonomies de-

pending on different semantic views. Using multiple taxonomies, we isolated

different semantic features at each node of multiple semantic taxonomies. As

hierarchical classification is not straightforward with the multiple taxonomies,

I provided a non-hierarchical multiple kernel learning (MKL) approach to com-

bine the learned features, while also considering the hierarchical structure

among the features through a hierarchical regularization. The resulting multi-

ple semantic taxonomy MKL model outperformed the single-taxonomy model

and the MKL with conventional multi-bandwith basis kernels.

Finally, as a first step in exploring more complex semantic knowledge,

I further explored a novel type of semantic source, an analogy, which informs

about the relational similarities between pairs of categories. I used the analogy

to regularize the structure of a discriminatively learned category embedding

space, by translating the high-level relational similarity constraints into geo-

metric constraints. The resulting model benefited from the knowledge transfer

happening between related pairs of categories, which resulted in improved cat-

egorization performance.

In summary, my thesis showed how to seamlessly incorporate the se-

mantic information from the human knowledge about the world, into a learning

model, starting from the popular semantic knowledge types, to completely new

forms and types of the semantic knowledge. This semantics-regularized learn-
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ing approach benefits from the power of the state-of-the-art discriminative

learning models for categorization, while also benefiting from better general-

ization power provided by the semantic guidance using the information about

the relationships, which effectively prevents the model from overfitting to the

training set biases. As a result, my proposed models obtained improved accura-

cies over the those of state-of-the art methods, while also making semantically

meaningful predictions.

As the proposed method is domain-agnostic that does not assume any

domain specific information about the input features, the semantic regulariza-

tion models proposed in this thesis is not only limited to the application to

visual object recognition problem, but also can be applied to any classification

problems in other domains that have established domain knowledge over re-

lations between classes. A few possible applications are text-based document

classification in natural language processing, or gene-based animal and protein

classification problem in computational biology.

I believe that with these completed work, I made an important step

forward from the existing semantic approaches which did not result in the

improved categorization performance, and worked on conventional types of se-

mantic knowledge such attributes or a single taxonomy. However, at the same

time this is only the first step in the venture into the vast human knowledge.

The next step will include the exploration of more complex semantic relations

between categories and concepts such as logical relations, and also the work on

a deeper, layered semantic models that would enable more complex reasoning
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to happen. Obtaining practical performance on very large-scale datasets is

also essential and I think the abstraction, generalization and analogical rea-

soning of the human knowledge will be necessary ingredients to solving the

problem.

I feel hopeful to have chosen this problem of exploring human knowledge

for recognition as my thesis topic, and made some contribution to it, which

I believe is the key and the right path to ultimately solving the category

recognition problem. Many challenges awaits us, but I believe that time and

continuous effort of many will eventually take us to our goal of guiding machine

to recognize the world as we humans do.
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