Hashing Hyperplane Queries to Near Points with Applications to Large-Scale Active Learning

Prateek Jain¹, Sudheendra Vijayanarasimhan², and Kristen Grauman² ¹Microsoft Research Lab, Bangalore, INDIA, ²University of Texas, Austin, TX, USA

Motivation

Goal: For large-scale active learning, want to repeatedly query annotators to label the most uncertain examples in a massive pool of unlabeled data \mathcal{U} .

Margin-based selection criterion for SVMs [Tong & Koller, 2000] selects points nearest to current deci-•x^(t+1) sion boundary:

 $\mathbf{x}^* = \operatorname{argmin} |\mathbf{w}^T \mathbf{x}_i|$

Problem: With massive unlabeled pool, cannot afford exhaustive linear scan.

Main Idea: Sub-linear Time Active Selection

Idea: We define two hash function families that are locality-sensitive for the *nearest* neighbor to a hyperplane query search problem. The two variants offer trade-offs in error bounds versus computational cost.

- for labeling.

Main contributions:

- Novel hash functions to map query hyperplane to near points in sub-linear time.
- Bounds for locality-sensitivity of hash families for perpendicular vectors.
- Large-scale pool-based active learning results for documents and images, with up to one million unlabeled points.

Background: Locality-Sensitive Hashing (LSH)

Let $d(\cdot, \cdot)$ be a distance function over items from a set S, and for any item $p \in S$, let B(p, r) denote the set of examples from S within radius r from p.

Definition 1. LSH functions [Gionis, Indyk, & Motwani, 1999]

Let $h_{\mathcal{H}}$ denote a random choice of a hash function from the family \mathcal{H} . The family \mathcal{H} is called $(r, r(1 + \epsilon), p_1, p_2)$ -sensitive for $d(\cdot, \cdot)$ when, for any $q, p \in S$, ▶ if $p \in B(q, r)$ then $\Pr[h_{\mathcal{H}}(q) = h_{\mathcal{H}}(p)] \ge p_1$, ▶ if $p \notin B(q, r(1 + \epsilon))$ then $\Pr[h_{\mathcal{H}}(q) = h_{\mathcal{H}}(p)] \leq p_2$.

- Compute k-bit hash keys for each point p_i : $\left| h_{\mathcal{H}}^{(1)}(p_i), h_{\mathcal{H}}^{(2)}(p_i), \dots, h_{\mathcal{H}}^{(k)}(p_i) \right|$. • Given a query q, search over examples in the *l* buckets to which q hashes.
- Use $I = N^{\rho}$ hash tables for N points, where $\rho = \frac{\log p_1}{\log p_2} \le \frac{1}{1+\epsilon}$,
- A $(1 + \epsilon)$ -approximate solution is retrieved in time $O(N^{\frac{1}{(1+\epsilon)}})$.

24th Annual Conference on Neural Information Processing Systems (NIPS 2010)

Offline: Hash unlabeled data into table.

Online: Hash current classifier as "query" to directly retrieve next examples

First Solution: Hyperplane Hash

Intuition: To retrieve those points for which $|\mathbf{w}^T \mathbf{x}|$ is small, we want collisions to be probable for vectors *perpendicular* to hyperplane normal (assuming normalized data).

Our idea: Generate two independent random vectors **u** and **v**: one to capture angle between w and x, and one to capture angle between -w and x.

$$u$$

$$\mathbf{x}_{j}$$

$$\mathbf{u}$$

ikely to split x_i and -w and w unlikely to collide

Definition 2. Hyperplane Hash (H-Hash) Functions

We define H-Hash function family \mathcal{H} as: $h_{\mathcal{H}}(\mathbf{z}) = \begin{cases} h_{\mathbf{u},\mathbf{v}}(\mathbf{z},\mathbf{z}), & \text{if } \mathbf{z} \text{ is a database point vector,} \\ h_{\mathbf{u},\mathbf{v}}(\mathbf{z},-\mathbf{z}), & \text{if } \mathbf{z} \text{ is a query hyperplane vector.} \end{cases}$ where $h_{u,v}(\mathbf{a}, \mathbf{b}) = [sign(\mathbf{u}^T \mathbf{a}), sign(\mathbf{v}^T \mathbf{b})]$, is a two-bit hash, and $\mathbf{u}, \mathbf{v} \sim \mathcal{N}(0, I)$.

Probability of collision between w and x $\mathsf{Pr}[h_{\mathcal{H}}(\mathbf{w}) = h_{\mathcal{H}}(\mathbf{x})] = rac{ heta_{\mathbf{x},\mathbf{w}}}{\pi} \left(\int_{\mathcal{H}} h_{\mathcal{H}}(\mathbf{x}) d\mathbf{x} \right)$ and we have $p_1 = \frac{1}{4} - \frac{1}{\pi^2},$ ► Hence, can return a point for which $(\theta_{x,w})$ — I $\rho = ----$

Second Solution: Embedded Hyperplane Hash

Intuition: Design Euclidean embedding after which minimizing distance is equivalent to minimizing $|\mathbf{w}^T \mathbf{x}|$, making existing approx. NN methods applicable.

Definition 3. Embedded Hyperplane Hash (EH-Hash) Functions

We define EH-Hash function family \mathcal{E} as: $h_{\mathcal{E}}(\mathbf{z}) = \begin{cases} h_{\mathbf{u}}(V(\mathbf{z})), & \text{if } \mathbf{z} \text{ is a database point vector,} \\ h_{\mathbf{u}}(-V(\mathbf{z})), & \text{if } \mathbf{z} \text{ is a query hyperplane vector,} \end{cases}$ where $V(\mathbf{a}) = vec(\mathbf{a}\mathbf{a}^{T}) = [a_1^2, a_1a_2, ..., a_1a_d, a_2^2, a_2a_3, ..., a_d^2]$ gives the

• Embedding inspired by [Basri et al., 2009]; we give LSH bounds for $(\theta_{x,w} - \pi/2)^2$.

- For $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, I)$, $\Pr[sign(\mathbf{u}^T \mathbf{w}) \neq sign(\mathbf{u}^T \mathbf{x})] = \frac{1}{\pi} \theta_{\mathbf{w}, \mathbf{x}}$ [Goemans & Williamson, 1995].

Unlikely to split x_i and -w $= x_i$ and w likely to collide

$$\begin{array}{l} \textbf{x} \text{ is given by} \\ 1 - \frac{\theta_{\textbf{x},\textbf{w}}}{\pi} \end{array} = \frac{1}{4} - \frac{1}{\pi^2} \left(\theta_{\textbf{x},\textbf{w}} - \frac{\pi}{2} \right)^2 \\ p_2 = \frac{1}{4} - \frac{r(1+\epsilon)}{\pi^2} \\ \textbf{w} - \frac{\pi}{2} \right)^2 \leq r \text{ in sub-linear time } O(N^\rho) \\ \frac{Og(1 - \frac{4r}{\pi^2})}{1 + \frac{\kappa^2}{4r} \log 4} < 1 \end{array}$$

embedding, and $h_{\mathbf{u}}(\mathbf{b}) = \operatorname{sign}(\mathbf{u}^T \mathbf{b})$, with $\mathbf{u} \in \Re^{d^2}$ sampled from $\mathcal{N}(0, I)$.

Embedded Hyperplane Hash (continued)

and we have $p_1 =$

Experimental Results

Since $||V(\mathbf{x}) - (-V(\mathbf{w}))||^2 = 2 + 2(\mathbf{x}^T \mathbf{w})^2$, distance between embeddings of **x** and **w** proportional to desired distance, so standard LSH function $h_{u}(\cdot)$ applicable. Probability of collision between w and x is given by

$$\Pr[h_{\mathcal{E}}(\mathbf{w}) = h_{\mathcal{E}}(\mathbf{x})] = \cos^{-1}\left(\cos^{2}(\theta_{\mathbf{x},\mathbf{w}})\right)/\pi$$

$$\frac{1}{\pi}\cos^{-1}\sin^2(\sqrt{r}).$$

▶ Hence, sub-linear time search with about twice the p_1 guaranteed by H-Hash.

▶ Issue: $V(\mathbf{a})$ is d^2 -dimensional, higher hashing overhead. Solution: Compute $h_{u}(V(a))$ approximately using randomized sampling:

Lemma 4. Sampling to Approximate Inner Product

Let $\mathbf{v} \in \mathbb{R}^d$, define $p_i = v_i^2 / \|\mathbf{v}\|^2$. Construct $\tilde{\mathbf{v}} \in \mathbb{R}^d$ such that the *i*-th element is v_i with probability p_i and is 0 otherwise. Select t such elements using sampling with replacement. Then, for any $\mathbf{y} \in \mathbb{R}^d$, $\epsilon > 0$, $c \ge 1$, $t \ge \frac{c}{c^2}$,

$$\Pr[|\tilde{\mathbf{v}}^{\mathsf{T}}\mathbf{y} - \mathbf{v}^{\mathsf{T}}\mathbf{y}| \le \epsilon' \|\mathbf{v}\|^2 \|\mathbf{y}\|^2] > 1 - 1/c$$

Goal: Show that proposed algorithms can select examples nearly as well as the exhaustive approach, but with substantially greater efficiency.

either random selection *or* exhaustive active selection.

► Trade-offs confirmed in practice: H-Hash faster, EH-Hash more accurate. ▶ In future work, we plan to explore extensions for non-linear kernels.