Goal: For large-scale active learning, want to repeatedly query annotators to label
the most uncertain examples in a massive pool of unlabeled data /.

Margin-based selection criterion for SVMs [Tong &
Koller, 2000] selects points nearest to current deci-
sion boundary:

x* = argmin |w’x;
X,eU

Problem: With massive unlabeled pool, cannot afford exhaustive linear scan.

Main Idea: Sub-linear Time Active Selection

Idea: We define two hash function families that are locality-sensitive for the nearest
neighbor to a hyperplane query search problem. The two variants offer trade-offs
In error bounds versus computational cost.

Current [¢ data _ _
hyperplane s » Offline: Hash unlabeled data into table.

Hyperplane
hash functions

Unlabeled T -J coe N\
data l10/eeee o — Annotator
Point hash Selected

o —
o o°° |01 eecee examples

» Online: Hash current classifier as
“‘query” to directly retrieve next examples
for labeling.

PY functions

Main contributions:
» Novel hash functions to map query hyperplane to near points in sub-linear time.

» Bounds for locality-sensitivity of hash families for perpendicular vectors.

» Large-scale pool-based active learning results for documents and images, with up
to one million unlabeled points.

111 000

Hash table

Background: Locality-Sensitive Hashing (LSH)

Let d(-, -) be a distance function over items from a set S, and for any item p € S, let
B(p, r) denote the set of examples from S within radius r from p.

Definition 1. LSH functions [Gionis, Indyk, & Motwani, 1999]

Let hy, denote a random choice of a hash function from the family H. The family
H is called (r, r(1 + €), py, p2)—sensitive for d(-, -) when, for any q,p € S,

~ if p € B(q, r) then Pr[hx(q) = hu(p)] = pr,
-1t p & B(q, r(1+ ¢)) then Prlhy(q) = hu(p)] < p2.

. Compute k-bit hash keys for each point p;; {hg)(p,-), K2 (D), ..., h§§>(p,-)}.

» Given a query g, search over examples in the / buckets to which g hashes.

» Use [= N” hash tables for N points, where p = :88—5; < %ﬂ
1

» A (1 + ¢)-approximate solution is retrieved in time O(N©+).

First Solution: Hyperplane Hash

Embedded Hyperplane Hash (continued)

» Since || V(x) — (—V(w))||?2 = 2 + 2(x"w)?, distance between embeddings of x and
w proportional to desired distance, so standard LSH function hy(-) applicable.

» Probabillity of collision between w and x is given by
Prihe(w) = he(X)] = cos™' (cos?(Oxw)) /m
and we have p; = 1 cos™" sin®(\/7).
» Hence, sub-linear time search with about twice the p; guaranteed by H-Hash.

Intuition: To retrieve those points for which
'w’x| is small, we want collisions to be probable
for vectors perpendicular to hyperplane normal
(assuming normalized data).

For u ~ N(0, /), Pr[sign(u’w) # sign(u’x)] = 16 x [Goemans & Williamson, 1995].

Our idea: Generate two independent random vectors u and v: one to capture
angle between w and X, and one to capture angle between —w and x.

-

» Issue: V(a) is d*-dimensional, higher hashing overhead.
» Solution: Compute hy(V(a)) approximately using randomized sampling:

~

4 N

Unlikely to split x; and w
+

Unlikely to split x; and -w

Unlikely to split x; and w
+

Likely to split x, and -w Lemma 4. Sampling to Approximate Inner Product

= and w unlikely to collide, =X and wlikely to collide)

Let v € RY, define p; = v2/||v||°>. Construct Vv € R such that the i-th element is

v; with probability p; and is 0 otherwise. Select t such elements using sampling
with replacement. Then, foranyy € R?%, e >0,c>1,t> 5,

We define H-Hash function family ‘H as:

{hu,\,(z, Z),

huv(Z, —2),

Priv’y —v'y| < €|v|?|lylIF] > 1 —1/c

If z Is a database point vector,
If Z Is a query hyperplane vector.

Trade-off: H-Hash has faster pre-processing, but EH-Hash has stronger bounds.
Accuracy Hashing insertion time
H-Hash: pi=;—5% x d

EH-Hash: p; > 2 (; — %) o d? (d with sampling)

Experimental Results

where hy y(a,b) = [sign(u’a), sign(v’b)], is a two-bit hash, and u, v ~ N(0, /).

N

» Probability of collision between w and x is given by

Prlhx(w) = hy(X)] = P (1 9);“,) N l 7:2 (9x,w N g)z

-
and we have .
1 1 r(1+4¢) » Goal: Show that proposed algorithms can select examples nearly as well as the
P = 4 72’ P2 = 4 2 exhaustive approach, but with substantially greater efficiency.
O Learning curves oo Selection time O Accounting for all costs
O © O
(Y WEH-Hash O o d
?E s A H-Hash g - ?E <
< | Exhausive £ B =S
= i - c _ ~—EH-Hash
e © R e » cS -a-H-Hash
- > S = - S =e=-random
Second Solution: Embedded Hyperplane Hash 2 2 B | e S ¥ | exaustive
£ 100 200 300 = 3 S € 0 100 200 300 400 500
Selection iterations Y & & Selection+labeling time

Intuition: Design Euclidean embedding after which minimizing distance is (a) Newsgroups: 20K documents, bag-of-words features.

: C e : C : L ' ion ti A ting for all t
equivalent to minimizing |w’x|, making existing approx. NN methods applicable. § [eaming CUVes e Selection time : é ccounting for all costs
= mg . - <DE ?\po i By % E <DE OO\O I
Definition 3. Embedded Hyperplane Hash (EH-Hash) Functions £ i s~ /
S ol . | »‘E ——EH-Hash
qE) ’ § - = GE) f}o, ¥ N -4-H-Hash
We define EH-Hash function family £ as: S o P E_ S A ~-random
Q. F = a . = |- exhaustive
. . . = - & &
If Z IS a database pOInt VeCtOrJ __D'O% 5|0 1[|)0 150 260 250 300 - }‘2" X & g 0 2000 4000

Selection iterations Selection+labeling time

(b) Tiny Images: 60K-1M images, Gist features.

(h(V(@),
e {hu(— V(z).

where V(a) = vec(aa’) = |&, aiap, ..., a1dq, @, @as,..., a;| gives the
embedding, and hy(b) = sign(u’b), with u € R sampled from A/(0, /).

If ZIs a query hyperplane vector,

» Accounting for both selection and labeling time, our approach performs better than
either random selection or exhaustive active selection.

» Trade-offs confirmed in practice: H-Hash faster, EH-Hash more accurate.

~ Embedding inspired by [Basri et al., 2009]; we give LSH bounds for (0xw — 7/2)*. | . In future work, we plan to explore extensions for non-linear kernels.

