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Motivation

Goal: For large-scale active learning, want to repeatedly query annotators to label
the most uncertain examples in a massive pool of unlabeled data U .
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Margin-based selection criterion for SVMs [Tong &
Koller, 2000] selects points nearest to current deci-
sion boundary:

x∗ = argmin
xi∈U

|wTxi|

Problem: With massive unlabeled pool, cannot afford exhaustive linear scan.

Main Idea: Sub-linear Time Active Selection

Idea: We define two hash function families that are locality-sensitive for the nearest
neighbor to a hyperplane query search problem. The two variants offer trade-offs
in error bounds versus computational cost.
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I Offline: Hash unlabeled data into table.

I Online: Hash current classifier as
“query” to directly retrieve next examples
for labeling.

Main contributions:
I Novel hash functions to map query hyperplane to near points in sub-linear time.
I Bounds for locality-sensitivity of hash families for perpendicular vectors.
I Large-scale pool-based active learning results for documents and images, with up

to one million unlabeled points.

Background: Locality-Sensitive Hashing (LSH)

Let d(·, ·) be a distance function over items from a set S, and for any item p ∈ S, let
B(p, r ) denote the set of examples from S within radius r from p.

Definition 1. LSH functions [Gionis, Indyk, & Motwani, 1999]

Let hH denote a random choice of a hash function from the family H. The family
H is called (r , r (1 + ε), p1, p2)−sensitive for d(·, ·) when, for any q, p ∈ S,
I if p ∈ B(q, r ) then Pr[hH(q) = hH(p)] ≥ p1,
I if p /∈ B(q, r (1 + ε)) then Pr[hH(q) = hH(p)] ≤ p2.

I Compute k -bit hash keys for each point pi:
[
h(1)
H (pi), h(2)

H (pi), ... , h(k)
H (pi)

]
.

I Given a query q, search over examples in the l buckets to which q hashes.
I Use l = Nρ hash tables for N points, where ρ = log p1

log p2
≤ 1

1+ε,

I A (1 + ε)-approximate solution is retrieved in time O(N
1

(1+ε)).

First Solution: Hyperplane Hash

Intuition: To retrieve those points for which
|wTx| is small, we want collisions to be probable
for vectors perpendicular to hyperplane normal
(assuming normalized data).
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For u ∼ N (0, I), Pr[sign(uTw) 6= sign(uTx)] = 1
πθw,x [Goemans & Williamson, 1995].

Our idea: Generate two independent random vectors u and v: one to capture
angle between w and x, and one to capture angle between −w and x.

Unlikely to split xj and w
+

= xj and w unlikely to collide
Likely to split xj and -w

Unlikely to split x and w

= x and w likely to collide

Unlikely to split xj and w

Unlikely to split xj and -w
+

= xj and w likely to collide

Definition 2. Hyperplane Hash (H-Hash) Functions

We define H-Hash function family H as:

hH(z) =

{
hu,v(z, z), if z is a database point vector,
hu,v(z,−z), if z is a query hyperplane vector.

where hu,v(a, b) = [sign(uTa), sign(vTb)], is a two-bit hash, and u, v ∼ N (0, I).

I Probability of collision between w and x is given by

Pr[hH(w) = hH(x)] =
θx,w

π

(
1− θx,w

π

)
=

1
4
− 1
π2

(
θx,w −

π

2

)2

and we have
p1 =

1
4
− r
π2, p2 =

1
4
− r (1 + ε)

π2

I Hence, can return a point for which (θx,w − π
2)

2 ≤ r in sub-linear time O(Nρ).

ρ =
1− log(1− 4r

π2)

1 + ε

1+π2
4r log 4

< 1

Second Solution: Embedded Hyperplane Hash

Intuition: Design Euclidean embedding after which minimizing distance is
equivalent to minimizing |wTx|, making existing approx. NN methods applicable.

Definition 3. Embedded Hyperplane Hash (EH-Hash) Functions

We define EH-Hash function family E as:

hE(z) =

{
hu (V (z)) , if z is a database point vector,
hu (−V (z)) , if z is a query hyperplane vector,

where V (a) = vec(aaT ) =
[
a2

1, a1a2, ... , a1ad, a2
2, a2a3, ... , a2

d

]
gives the

embedding, and hu(b) = sign(uTb), with u ∈ <d2 sampled from N (0, I).

I Embedding inspired by [Basri et al., 2009]; we give LSH bounds for (θx,w − π/2)2.

Embedded Hyperplane Hash (continued)

I Since ||V (x)− (−V (w))||2 = 2 + 2(xTw)2, distance between embeddings of x and
w proportional to desired distance, so standard LSH function hu(·) applicable.

I Probability of collision between w and x is given by
Pr[hE(w) = hE(x)] = cos−1 (cos2(θx,w)

)
/π

and we have p1 = 1
π cos−1 sin2(

√
r ).

I Hence, sub-linear time search with about twice the p1 guaranteed by H-Hash.

I Issue: V (a) is d2-dimensional, higher hashing overhead.
I Solution: Compute hu(V (a)) approximately using randomized sampling:

Lemma 4. Sampling to Approximate Inner Product

Let v ∈ Rd, define pi = v2
i /‖v‖2. Construct ṽ ∈ Rd such that the i-th element is

vi with probability pi and is 0 otherwise. Select t such elements using sampling
with replacement. Then, for any y ∈ Rd, ε > 0, c ≥ 1, t ≥ c

ε′2
,

Pr[|ṽTy− vTy| ≤ ε′‖v‖2‖y‖2] > 1− 1/c

Trade-off: H-Hash has faster pre-processing, but EH-Hash has stronger bounds.
Accuracy Hashing insertion time

H-Hash: p1 = 1
4 −

r
π2 ∝ d

EH-Hash: p1 ≥ 2
(1

4 −
r
π2

)
∝ d2 (d with sampling)

Experimental Results

I Goal: Show that proposed algorithms can select examples nearly as well as the
exhaustive approach, but with substantially greater efficiency.
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(a) Newsgroups: 20K documents, bag-of-words features.
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(b) Tiny Images: 60K-1M images, Gist features.

I Accounting for both selection and labeling time, our approach performs better than
either random selection or exhaustive active selection.

I Trade-offs confirmed in practice: H-Hash faster, EH-Hash more accurate.
I In future work, we plan to explore extensions for non-linear kernels.
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