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Problem Interactive Selection Examples of Real User Searches
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Find series of useful comparisons, a la relative 20 questions game. i i‘?' s your target image more or less...
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o Traditional relevance feedback methods focus on binary feedback. | | _ - Round 4 N | | Round 4
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o Attributes allow more precise semantic feedback. | =/
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14,658 images 2,688 images /72 iImages
“shinier than these” “more formal than these” o T QU antitative Results 10 attributes 6 attributes 11 attributes

o But on which images would attribute feedback be most informative? more or less? | more or less?
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o Select series of most informative visual comparisons that user Passive

should make to help deduce target. Probabilistic Model of Relevance i Active binary feedback 78 5 70; ' 75 -

o Use binary search trees in attribute space for rapid active selection | T Passive binary feedback Time for feedback Time for feedback Time for feedback
and to focus on useful comparisons. Relevance score for an image: P(y; = 1/1;, ) = » log P(Ski = 1]1;)
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Probabillity a constraint Is satisfied: satisfied? Our method correctly places

Are the shoes you seek % I
more or less feminine than ? P(A,,(I;) > A,,(L,)) ifr = “more” the target near the top of the |‘|
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>electing the Next Comparison Computational Efficiency

Entropy of system given current feedback: Active attribute pivots (Ours) — O(MN) 0.05 s 0.01s 0.01s

Attribute Trees N Our method is much faster than  Active attribute exhaustive — O(MN2)  656.27s 28.20s 3.42s
H(F)=-) : ) : P(y: = l|1;, F)log P(y; = ¢|I;, F) the traditional exhaustive active  Number of images (N) 14,658 2,688 772
Relative attributes = ~ i=1 ¢ approach that scans all images.  Number of attributes (M) 10 6 11

learned ranking functions . Choose pivot comparison that minimizes expected entropy:
5 Entropy given added feedback
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/6\ N — Ipm €P pm > Le;ja”y o Our method takes up to 11 fewer iterations per query, and saves the user 70 seconds.
/6\ /2>\ /6\ /Z>\ Most informative pivot  Likelihood that user responds with r o This retrieval speed-up is achieved at a low computational cost.




