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Abstract

We study the learnability of sets in Rn under the Gaussian distribution, taking Gaussian surface area
as the “complexity measure” of the sets being learned. Let CS denote the class of all (measurable) sets
with surface area at most S. We first show that the class CS is learnable to any constant accuracy in
time nO(S2), even in the arbitrary noise (“agnostic”) model. Complementing this, we also show that any
learning algorithm for CS information-theoretically requires 2Ω(S2) examples for learning to constant
accuracy. These results together show that Gaussian surface area essentially characterizes the computa-
tional complexity of learning under the Gaussian distribution.

Our approach yields several new learning results, including the following (all bounds are for learning
to any constant accuracy):

• The class of all convex sets can be agnostically learned in time 2Õ(
√

n) (and we prove a 2Ω(
√

n)

lower bound for noise-free learning). This is the first subexponential time algorithm for learning
general convex sets even in the noise-free (PAC) model.

• Intersections of k halfspaces can be agnostically learned in time nO(log k) (cf. Vempala’s nO(k)

time algorithm for learning in the noise-free model [Vem04]).

• Arbitrary cones (with apex centered at the origin), and spheres with arbitrary radius and center,
can be agnostically learned in time poly(n).

∗Supported in part by NSF award CCF-0347282 and by NSF award CCF-0523664.

0



1 Introduction
1.1 Motivation: What is the right measure of complexity for learning? The primary goal of compu-
tational learning theory is to understand how the resources required by learning algorithms (running time,
number of examples, etc.) scale with the complexity of the functions being learned. For sample complexity
our understanding is quite good: it has been known for nearly 20 years that for any class C of Boolean
functions, the Vapnik-Chervonenkis dimension of C gives essentially matching upper and lower bounds on
the number of examples needed for learning C with respect to an arbitrary (unknown) probability distribu-
tion over the space of examples [BEHW89, EHKV89]. Unfortunately, it has proved much more difficult
to characterize the computational complexity of learning problems. This difficulty is particularly acute in
distribution-independent learning models such as Valiant’s original PAC learning model [Val84]; as one
example of this, our current state of knowledge is consistent both with the possibility that learning an inter-
section of two n-dimensional halfspaces (under arbitrary distributions) can be done in O(n2) time, and with
the possibility that this learning problem requires time 2Ω(n). In general, research progress on computation-
ally efficient distribution-independent learning has been relatively slow, and for this reason many researchers
have considered learning with respect to specific natural distributions such as the uniform distribution on the
n-dimensional Boolean hypercube and the uniform distribution on the unit Euclidean sphere in Rn.

In this work we consider learning with respect to the standard Gaussian distribution on Rn. This is
arguably the most natural distribution on Rn, especially from a machine learning perspective [Bis06, LJ04,
RW06, ZGL03]. We note that the commonly studied scenario of learning with respect to the uniform dis-
tribution on the n-dimensional Euclidean sphere (see e.g. [BK97, Vem04, Lon94, Lon95, KKMS05]) is
essentially equivalent to learning under the standard Gaussian distribution when n is large. (As we shall see
in Section 4.5, almost all of our learning results actually hold for arbitrary Gaussian distributions on Rn).

As our main contribution, we propose a new and very natural complexity measure for geometric con-
cepts A ⊂ Rn, their Gaussian surface area, and show that this measure characterizes the computational
complexity of learning with respect to the Gaussian distribution in a rather strong sense. We do this by giv-
ing essentially matching upper bounds (via an explicit algorithm) and lower bounds (information-theoretic)
on the running time of algorithms for learning sets A ⊂ Rn in terms of their Gaussian surface area. Further-
more (and perhaps most importantly), this approach yields striking new applications for learning important
concept classes such as arbitrary convex sets and intersections of halfspaces.

1.2 The new complexity measure: Gaussian Surface Area. The formal definition of Gaussian surface
area is as follows:

Definition 1. For a Borel set A ⊂ Rn, its Gaussian surface area is

Γ(A)
def
= lim inf

δ→0

vol(Aδ \A)
δ

.

Here Aδ denotes the δ-neighborhood of A, {x : dist(x,K) ≤ δ}, and vol(A) denotes the probability mass
of A with respect to the standard Gaussian distribution on Rn.

This is very similar to the usual formal definition of surface area, except that Gaussian measure replaces
Lebesgue measure. For most “nice” sets A we can take an equivalent definition (see [Naz03b]):

Definition 2. If A ⊂ Rn is sufficiently regular — e.g., has smooth boundary or is convex — then we have

Γ(A) =
∫

∂A
ϕn(x) dσ(x), (1)

where dσ(x) is the standard surface measure in Rn and

ϕn(x)
def
=

n∏
i=1

ϕ(xi), where ϕ(x) = ϕ1(x)
def
=

1√
2π

exp(−x2/2),
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is the standard n-dimensional Gaussian density function.

It is straightforward to see from Definition 1 that the Gaussian surface area of a set is smaller than its
usual surface area by at least an exponential factor:

Fact 3. If A ⊂ Rn is any measurable set and surf(A) denotes its usual surface area, then Γ(A) ≤
1

(2π)n/2 surf(A).

In fact, the Gaussian surface area of A is often far smaller even than this; many natural sets A have infinite
surf(A) but small finite Gaussian surface area Γ(A). The most notable example is that of halfspaces:

Fact 4. Every halfspace in Rn has Gaussian surface area at most ϕ(0) =
√

2/π ≈ 0.8.

This is a classical fact because of the “Gaussian isoperimetric inequality” [Bor75, ST78] (see also [Bob97]),
which states that halfspaces minimize Γ(A) among all sets A with fixed Gaussian volume.

In the remainder of this paper we will use the phrase “surface area” exclusively to mean Gaussian
surface area, Γ. The following table gives the surface area of some basic geometric sets:

Sets (Gaussian) Surface area upper bound Source

Halfspaces
√

2/π direct computation
Intersections of k halfspaces O(

√
log k) Nazarov [Naz03a] (see Section 4)

Arbitrary convex sets O(n1/4) K. Ball [Bal93]
Balls 1 Section 4

Cones with apex at the origin 1 Section 4

We believe that surface area is a very natural complexity measure for sets in Rn. First, it is a universal
measure: it assigns a complexity to all sets. Second, is a natural geometric notion befitting geometric sets.
Third, surface area seems to address the difficulty of learning sets in a fair way: if a set’s boundary is very
“wiggly”, it is reasonable that many examples will be needed to accurately delineate it. Finally, it is a very
stringent measure: as discussed above Gaussian surface area is in general very low.

1.3 Our main results. We give upper and lower bounds for learning sets of surface area S under the
Gaussian distribution on Rn. Our algorithmic result is an agnostic learning algorithm running in time nO(S2).
More precisely, the time is nO(S2/ε4) for agnostic learning to accuracy ε and time nO(S2/ε2) for PAC learning.
(Agnostic learning may be thought of as a challenging model of learning in the presence of noise.) We give
precise definitions of the learning models in Section 2.2, and precise statements of the algorithmic results as
Theorem 25 in Section 4.5.

Our lower bound is information-theoretic and applies even to PAC learning algorithms under the Gaus-
sian distribution (no noise) which have membership query access to the function being learned. We show
that there is a universal constant ε0 > 0 such that any algorithm for learning sets of surface area at most S to
accuracy ε0 requires at least 2Ω(S2) examples. This holds for any

√
log n/ε0 ≤ S ≤ ε0n

1/4, and is true even
if the sets are promised to be intersections of 2Θ(S2) halfspaces. We give this lower bound in Section 5.

We believe the main applications of our results are the following two algorithmic consequences, Theo-
rems 5 and 6:

Theorem 5. The class of all convex sets is agnostically learnable under any Gaussian distribution on Rn in
subexponential time: 2Õ(n1/2/ε4). Further, 2Ω(n1/2) examples and hence time is necessary.

We view Theorem 5 as somewhat surprising, since the general class of convex sets is extremely broad.
(We recall that simple VC-dimension arguments can be used to show that for distribution-independent learn-
ing, no a priori running time bound — 2n, 22n

, etc. — can be given for learning arbitrary convex sets, see
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e.g. Chapter 4 of [KV94].) Theorem 5 is the first subexponential time algorithm for either agnostically or
PAC learning arbitrary convex sets with respect to a non-trivial class of high-dimensional distributions. We
note that Theorem 5 can be extended to learn non-convex concepts such as finite unions of convex sets; we
defer statements of these results to Section 4.

Theorem 6. Intersections of k halfspaces are agnostically learnable under any Gaussian distribution on
Rn in time nO(log k/ε4).

Theorem 6 should be compared with Vempala’s (n/ε)O(k) time PAC learning algorithm (under nearly-
uniform distributions on the sphere). Vempala’s dependence on ε is better than ours if log(1/ε) � log k,
but otherwise our algorithm has a much better dependence on n, and also works in the agnostic setting.

The fact that Theorems 5 and 6 hold for any Gaussian distribution, as opposed to just the standard one,
is an immediate easy consequence of the fact that convex sets and intersections of k halfspaces are closed
under linear transformations; see Section C. We give several other new learning results in Section 4 as well.

Uniform Distribution over {−1, 1}n. It is natural to ask whether our approach can be translated to the
Boolean setting with respect to the uniform distribution on the hypercube. We establish a general connection
between Boolean perimeter and learnability, and give tight bounds on the perimeter of Boolean halfspaces
(e.g., we show that Boolean halfspaces have Boolean perimeter Θ(

√
log n)). At this stage, however, this

approach does not (yet) lead to new learning results for any well-studied concept classes, so we defer this
discussion to Appendix E.

1.4 Our techniques. To broadly outline the proof of our main results, we begin with the result of Kalai et
al. [KKMS05], which uses a type of polynomial regression to give an agnostic learning algorithm for func-
tions that can be approximated well by low-degree polynomials. To use this result, we need to understand
how well sets in Rn can be approximated (in `2) by polynomials with respect to the Gaussian distribution.
This task can be separated into two parts:

First, we establish a new connection between the Hermite concentration of the characteristic function
of a set (which captures the approximability by low-degree polynomials) and the set’s Gaussian surface
area. This reduction from learning to bounding surface area makes use of some powerful tools in geometry;
especially, the use of semigroup tools in the study of isoperimetry.

Secondly, with this reduction in hand, we can translate bounds on Gaussian surface area to learning
results. For example, K. Ball [Bal93] (and subsequently F. Nazarov [Naz03b]) has shown that the surface
area of any convex set in n dimensions is at most O(n1/4). Ball’s result, combined with Theorem 25, gives
us Theorem 5. We also prove new results on Gaussian surface area for various classes (see the table above)
and obtain corresponding learning results for those classes.

Our lower bound is proved by analyzing geometric properties of intersections of randomly chosen half-
spaces via concentration inequalities and may be of independent interest.

1.5 Relationship with Fourier-Based Learning. Our main result can be viewed as a statement regarding
the approximability of characteristic functions of sets via low-degree orthogonal (Hermite) polynomials with
respect to Gaussian distributions. More specifically, we prove that every indicator function of a (Borel) set
with surface area S can be approximated (in `2) by a multivariate polynomial of degree O(S2). This result
may be of independent interest; for example, it appears to be useful for the release of privacy-preserving
databases [BLR08].

Since we are considering approximability in `2 with respect to a family of orthogonal polynomials, our
algorithm can be viewed as a Fourier-type algorithm over Rn. A relevant paper for comparison is the work
of Klivans et al. [KOS04], which also learned intersections of halfspaces — although with respect to the
uniform distribution over {−1, 1}n — by showing that these concepts can be approximated well (in `2) over
{−1, 1}n by low-degree polynomials.
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The Klivans et al. result [KOS04] bounds the Fourier concentration of a Boolean function (approxima-
bility by low-degree polynomials) in terms of the noise stability of that function. They then apply (simple)
bounds on the Boolean noise stability of halfspaces to obtain their main algorithmic results.

Similar to the strategy of Klivans et al., as one part of our framework here we bound the Hermite
concentration of the characteristic function of a set in Rn in terms of that function’s Gaussian noise stability.
In this work, however, we then face a significant stumbling block: we do not know how to directly bound
the Gaussian noise stability of any interesting classes of sets in Rn. (In contrast, [KOS04] gives direct
and elementary proofs of upper bounds on the Boolean noise stability of halfspaces and intersections of
halfspaces.) To get around this, we appeal to a powerful theorem from Gaussian geometry to show that
the Gaussian noise sensitivity of a set’s characteristic function can in fact be bounded by the set’s Gaussian
surface area. Moreover, some of the actual bounds on Gaussian surface area that we subsequently use are
highly non-trivial (e.g. [Bal93]). While we do not establish deep technical results in Gaussian geometry in
this paper, we do give the first bounds on Gaussian surface area for simple concept classes, such as balls,
that may be of independent interest. We also believe that the link we establish between Gaussian surface
area and learnability will likely lead to further algorithmic learning results beyond those presented in this
paper.

1.6 Comparison with Previous Results. Let us briefly discuss prior algorithmic results for the specific
learning problems we address. We note that learning intersections of halfspaces is one of the most well-
studied problems in computational learning theory, see e.g. [Bau90a, BK97, KP98, KOS04, KS04, KS06,
Vem04]. In particular, the work of Blum and Kannan [BK97] and subsequently Vempala [Vem04] specifi-
cally addressed the problem of PAC learning an intersection of k halfspaces to accuracy ε under the uniform
distribution on the n-dimensional Euclidean sphere (very similar to the spherical Gaussian distribution).
The algorithms of [BK97], [Vem04] are not known to work in the agnostic setting. Kalai et al. [KKMS05]
gave the first polynomial-time algorithm for agnostically learning a single halfspace with respect to any
Gaussian distribution in Rn. We note here that the Kalai et al. result follows easily from our framework and
the classical O(1) bound on the Gaussian surface area of a halfspace.

Learning general convex sets is well known to be a broad and difficult problem, and we are not aware of
any prior positive results for learning arbitrary convex sets in Rn. As far as we can tell, our result is the first
non-trivial algorithm for learning convex sets with respect to an interesting distribution. Baum [Bau90b]
gave a simple algorithm for learning convex subsets of the unit square [0, 1]2 under the uniform distribution
based on “gridding”; it is possible to extend this to an algorithm for learning convex subsets of [0, 1]n under
the uniform distribution, but the resulting algorithm has running time at least 2n.

It is straightforward to see that arbitrary balls (or even ellipsoids) in n dimensions can be PAC learned in
polynomial time. The problem of agnostically learning balls, however, is known to be NP-hard if the output
hypothesis must also be a ball (that is, the proper agnostic learning problem is NP-hard) [BDEL03, BB05].
We give the first polynomial-time algorithm for agnostically learning balls (of arbitrary radius and center);
our output hypothesis is the sign of a low-degree polynomial.

1.7 Organization. In Section 2 we review Fourier and Hermite analysis, learning models, and Gaussian
surface area. In Section 3 we establish a connection between Hermite concentration and Gaussian surface
area. In Section 4, we show how to bound the surface area of various convex sets and state our new learning
results. In Section 4.5 we extend our results to non-spherical Gaussians, and state our most general positive
result establishing agnostic learnability of a class of functions in terms of the surface area of the correspond-
ing sets. In Section 5, we prove our main lower bound which shows that several of our positive results are
essentially optimal. We give results on the Boolean setting in Appendix E.
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2 Preliminaries
2.1 Gaussian distributions, Hermite analysis, Ornstein-Uhlenbeck, Perimeter

Gaussian distributions. We will be working with Gaussian probability distributions on Rn. For the most
part we will restrict attention to the standard n-dimensional Gaussian distribution, N (0, In), with mean 0
and independent, variance-1 coordinates. This has density function ϕn(x) as defined in Section 1.2. As
discussed in Section 4.5, most of our results generalize to arbitrary n-variate Gaussian distributions, even
with singular covariance matrices. Unless otherwise specified, though, all integrals and expectations in this
paper are with respect to the standard distribution, which we abbreviate by N n.

Hermite analysis. We will work within L2(Rn,N n), the vector space of all functions f : Rn → R such
that E[f2] < ∞. This is an inner product space under the inner product 〈f, g〉 = Ex∼Nn [f(x)g(x)]. This
inner product space has a complete orthonormal basis given by the Hermite polynomials. In the case n = 1,
these are the polynomials h0(x) = 1, h1(x) = x, h2(x) = x2−1√

2
, h3(x) = x3−3x√

6
, . . .

For general n, the basis for L2(Rn,N n) is formed by all products of these polynomials, one for each
coordinate. I.e., for each n-tuple S ∈ Nn we define the n-variate Hermite polynomial HS : Rn → R
by HS(x) =

∏n
i=1 hSi(xi); then the collection (HS)S∈Nn is a complete orthonormal basis for the inner

product space. All of the “standard” facts of Fourier analysis hold here: every function f ∈ L2 can be

written uniquely as
∑

S∈Nn f̂(S)HS(x) and we have limd→∞E
[(

f(x)−
∑

|S|≤d f̂(S)HS(x)
)2
]

= 0

(here |S| =
∑

i Si is the total degree of HS(x) as a polynomial). Each coefficient, f̂(S), is the Fourier
or Hermite coefficient of f and is equal to Ex∼Nn [f(x)HS(x)]. We also have Parseval’s and Plancherel’s
identity. For a few more details see Appendix A.

Ornstein-Uhlenbeck. For each 0 ≤ t ≤ ∞ one can define a (bounded) linear operator Pt on L2(Rn,N n),
the Ornstein-Uhlenbeck operator. These operators map a function f : Rn → R to another function Ptf :
Rn → R via

(Ptf)(x) def= Ey∼Nn [f(e−tx +
√

1− e−2ty)].

The parameterization here with e−t is traditionally chosen so that the operators form a semigroup: Pt1 ◦
Pt2 = Pt1+t2 . Since we will not use this property, we prefer to redefine the operators as follows: For
ρ ∈ [0, 1],

(Tρf)(x) def= Ey∼Nn [f(ρx +
√

1− ρ2y)].

We thus have Pt = Te−r . Alternately stated, Tρf(x) is the average value of f under the shifted and scaled
Gaussian distributionN (ρx,

√
1− ρ2In). The fact that Tρ is a linear operator — i.e., Tρ(f+g) = Tρf+Tρg

— follows immediately from linearity of expectation.
A key property of Tρ that we will use is how it operates with respect to the Hermite expansion. Specifi-

cally, it can be shown that TρHS = ρ|S|HS , and hence (by linearity)

Tρf =
∑

S∈Nn

ρ|S|f̂(S)HS . (2)

For proofs and more details on Hermite analysis and the Ornstein-Uhlenbeck operators, the reader may
consult the books of Bakry [Bak94], Janson [Jan97] or Ledoux and Talagrand [LT91].

Gaussian surface area. Given a (Borel) set K ⊆ Rn, the Gaussian volume of K is defined to be simply

vol(K) = Pr
x∼Nn

[x ∈ K] = E
x∼Nn

[1x∈K ].
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We will be especially interested in the Gaussian surface area of K, sometimes referred to as Gaussian
perimeter, which was defined in Section 1.2. In this paper we will work exclusively with sets K satisfying
vol(∂K) = 0, where ∂K denotes the boundary of K. We may then make the convenient assumption that
our sets K are also always closed; this is no restriction since K and K have the same boundary and hence
surface area.

2.2 Learning Models We now describe the framework of agnostically learning a class C with respect to a
fixed distribution D over Rn. In this scenario there is an unknown distribution D′ over Rn×{−1, 1} whose

marginal distribution over Rn is D. Let opt
def= inff∈C Pr(x,y)∼D′ [f(x) 6= y]; i.e. opt is the minimum error

of any function from C in predicting the labels y. The learner must output a hypothesis whose error is within
ε of opt:

Definition 7. Let D′ be an arbitrary distribution on Rn × {−1, 1} whose marginal over Rn is D, and let
C be a class of Boolean functions f : Rn → {−1, 1}. We say that algorithm B is an agnostic learning
algorithm for C with respect to D if the following holds: for any D′ as described above, if B is given access
to a set of labeled examples (x, y) drawn from D′, then with probability at least 1− δ algorithm B outputs
a hypothesis h : Rn → {−1, 1} such that Pr(x,y)∼D′ [h(x) 6= y] ≤ opt + ε.

Agnostic learning is a challenging model for which, until recently, few nontrivial learning algorithms
were known. Intuitively one can think of the unknown distribution D′ over labeled examples as corre-
sponding to an unknown function f ∈ C whose outputs are adversarially corrupted with overall probability
opt.

The usual (noise-free) model of PAC learning with respect to a distribution D is the special case of the
above definition in which we require that opt = 0, i.e. there is an unknown target function f ∈ C such that
all examples are labeled according to f.

Agnostic Learning via Hermite Concentration. Here we explain how to learn concept classes that can
be approximated well by low-degree polynomials.

Definition 8. Let α(ε, n) be a function α : (0, 1/2) × N → N. We say that a class of functions C over Rn

has a Hermite concentration bound of α(ε, n) if, for all n ≥ 1, all 0 < ε < 1
2 , and all f ∈ C we have∑

|S|≥α(ε,n) f̂(S)2 ≤ ε.

Our main tool for agnostic learning under N n is the L1 polynomial regression algorithm of Kalai et
al. [KKMS05]. To agnostically learn a concept class C, their algorithm approximately minimizes E(x,y)∼D[|p(x)−
y|] over all multivariate polynomials p of degree d and outputs a thresholded polynomial as its hypothesis.
The algorithm runs in time nO(d) where d is chosen according to the Hermite concentration of the concept
class C:

Theorem 9 ([KKMS05]). Let C be a class of functions over Rn with Hermite concentration bound α(ε, n).
The L1 polynomial regression algorithm is an agnostic learning algorithm for C with respect to N n. It runs
in time poly(nα(ε2/2,n), 1

ε , log 1
δ ) to learn to accuracy ε with confidence 1− δ.

PAC Learning via Hermite Concentration. The following theorem is implicit in [KKMS05]:

Theorem 10. Let C be a class of ±1-valued functions over Rn with Hermite concentration bound α(ε, n).
Then there exists an algorithm for learning C given data labeled according to f and drawn from the standard
Gaussian distribution N n on Rn that runs in time poly(nα(ε/2,n), 1

ε , log 1
δ ) and outputs, with probability at

least 1− δ, a polynomial p of degree at most α(ε/2, n) such that Prx∼Nn [sgn(p(x)) 6= f(x)] ≤ ε.

6



The algorithm of this theorem performs L2 polynomial regression, i.e. it approximately minimizes
E(x,y)∼D[(p(x)−y)2] over all multivariate polynomials p of degree d and outputs a thresholded polynomial
as its hypothesis.

To summarize, a concept class C can be both PAC and agnostically learned in time exponential in the
Hermite concentration bounds α(ε/2, n) and α(ε2/2, n) respectively.

3 Bounding Hermite Concentration in Terms of Surface Area
In this section we give our main connection between Hermite concentration and Surface Area.

Definition 11. We define Sρ(f, g)
def
= 〈f, Tρg〉 = 〈Tρf, g〉. In the special case f = g we write Sρ(f)

def
=

〈f, Tρf〉 and call this the “noise stability of f at ρ.”

It is easy to check that the above definition is symmetric in f and g; i.e., Sρ(f, g) = Sρ(g, f). Further,
by combining (2) with Plancherel’s identity, we have

Sρ(f, g) =
∑

S∈Nn

ρ|S|f̂(S)ĝ(S). (3)

We are particularly interested in functions which are indicators of sets K ⊆ Rn; as is usual in learning
theory, we use ±1 indicators. For notational simplicity, we identify a set with its indicator; i.e.,

K(x) def=

{
+1 if x ∈ K, the “positive region”,
−1 if x ∈ Kc, the “negative region”.

In this case, we define:

Definition 12. Given K ⊆ Rn, the “noise sensitivity of K at δ ∈ [0, 1]” is

NSδ(K)
def
= 1

2 −
1
2〈K, T1−δK〉 = 1

2 −
1
2S1−δ(K).

By definition of T1−δ, we have that

NSδ(K) = 1
2 −

1
2〈K, T1−δK〉

= 1
2 −

1
2 E

x,z∼Nn
[K(x)K(y)], where y

def= (1− δ) x +
√

2δ − δ2 z

= Pr
x,z

[K(x) 6= K(y)]; (4)

i.e., NSδ(K) is the probability that two “(1− δ)-correlated” Gaussians land on opposite “sides” of K. From
this interpretation, it is intuitive that, at least for small δ, the quantity NSδ(K) should be in some way
comparable to the Gaussian surface area of K. The critical theorem we need in this regard was proven by
Ledoux [Led94] (who mentioned it was implicitly proven by Pisier [Pis86]):

Theorem 13 (Ledoux-Pisier). Let K ⊆ R be a set with smooth1 boundary, and let t ≥ 0. Then

〈1K , Pt1Kc〉 ≤ arccos(e−t)√
2π

Γ(K).

1A technical remark: We would like to apply Theorem 13 to general convex sets, which need not have smooth boundary.
However the arguments in [BH97, proof of “Theorem 1.1, (b)⇒ (a)”] straightforwardly imply that Theorem 13 extends to all Borel
sets (and hence convex sets) [Led06].
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We now manipulate Theorem 13 slightly to state it in terms of noise sensitivity. First, we replace
Pt by T1−δ and use the fact that arccos(1 − δ) ≤ π

2
√

2

√
δ. Next, we compute easily by linearity that

〈1K , T1−δ1Kc〉 = 1
2NSδ(K). Putting these together we conclude:

Corollary 14. Let K ⊆ Rn be a Borel set, and let δ ≥ 0. Then NSδ(K) ≤
√

π
√

δ · Γ(K).

Next, using (3) we have the formula NSδ(K) = 1
2 −

1
2

∑
S∈Nn(1 − δ)|S|K̂(S)2. Using this, and∑

S K̂(S)2 = 1 (by Parseval), it is easy to check (see Proposition 16 of [KOS04]) that∑
|S|≥1/δ

K̂(S)2 ≤ 2
1− 1/e2

NSδ(f).

Combining this with Corollary 14 we obtain∑
|S|≥1/δ

K̂(S)2 ≤ 5 ·
√

δ · Γ(K),

and hence we conclude our main Hermite concentration bound based on surface area:

Theorem 15. Let K ⊆ Rn be a Borel set. Then the ±1 indicator function of K has Hermite concentration
bound α(ε, n) = O(Γ(K)2/ε2).

4 Gaussian Surface Area Calculations and New Learning Results
Theorems 9, 10 and 15 reduce the problem of PAC and agnostically learning a concept class under the
standard Gaussian distribution to the problem of bounding the surface area of the corresponding sets. The
specific surface area upper bounds stated in this section for different classes of sets yield a wealth of efficient
learning results for the corresponding function classes.

Up through Section 4.4 we consider only the standard spherical Gaussian distribution. In Section 4.5 we
show how our learning results for the standard Gaussian distribution extend to arbitrary Gaussian distribu-
tions, and state our most general learning results.

We begin by stating a few basic facts about perimeter and recalling the classical example of halfspaces.

4.1 Basic Facts and Examples
Convex sets not containing the origin. In order to upper bound the Gaussian surface area of a convex
set, we can always assume it contains the origin, via the following observation (see [Naz03b]):

Fact 16. Suppose K ⊆ Rn is a convex set not containing the origin. Then it possible to translate K in such
a way that (a) the origin is on the boundary of K, and (b) each point on the boundary of K (in fact, each
point in K) moves closer to the origin. Since ϕn(y) is a decreasing function of ‖y‖, this translation only
increases the surface area of K (see formula (1)).

Intersections, unions, etc.

Fact 17. Given sets K1,K2 we have Γ(K1 ∩K2),Γ(K1 ∪K2) ≤ Γ(K1) + Γ(K2).

This follows from the simple observation that both ∂(K1 ∩K2) and ∂(K1 ∪K2) are subsets of ∂K1 ∪
∂K2. More generally, given K1, . . . ,Kt, if K(x) = f(K1, . . . ,Kt) for any Boolean f : {−1, 1}t →
{−1, 1}, then Γ(K) ≤

∑t
i=1 Γ(Ki).
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Halfspaces. This is the main classical example. Let K ⊆ Rn be a halfspace whose boundary is at distance
t from the origin. By rotational symmetry of the Gaussian distribution, we may assume that K is the
halfspace whose boundary ∂K is the plane x1 = t. This reduces the calculation to a one-dimensional
problem, and we immediately obtain Γ(K) = ϕ(t). In particular, Γ(K) ≤ 1/

√
2π ≤ O(1) for every

halfspace K. The well-known “Gaussian isoperimetric inequality” [Bor75, ST78] (see also [Bob97]) states
that among all sets K with vol(K) fixed, halfspaces minimize Γ(K).

Applying Theorem 15 and Theorem 9 with the above bound on the surface area of a halfspace, we
immediately obtain one of the main results of Kalai et al. [KKMS05], namely that a single halfspace can be
agnostically learned with respect to N n in time nO(1/ε4).

4.2 General Convex Sets. Ball gave the following fundamental bound on the surface area of convex sets,
solving the “reverse Gaussian isoperimetric inequality”:

Theorem 18. [Bal93] The Gaussian surface area of any convex set in Rn is at most 4n1/4.

By applying the above bound with Theorem 15 and Theorem 9 we obtain our main result for learning
arbitrary convex sets:

Corollary 19. The clas of all convex sets in Rn is PAC learnable in time nO(
√

n)/ε2 and agnostically learn-
able in time nO(

√
n)/ε4 under N n. The same bound holds for learning any union of O(1) many convex

sets.

As we describe in Section 5, Nazarov [Naz03b] later showed that the bound in Theorem 18 is tight (up
to a constant factor) by considering the intersection of roughly exp(

√
n) randomly chosen halfspaces with

boundary at distance n1/4 from the origin.

4.3 Intersections of k halfspaces. In addition to showing that Ball’s estimate is tight, Nazarov also gave a
different proof of Ball’s upper bound result (with a better constant), and in doing so he proved an inequality
that is useful for bounding the Gaussian surface area of convex sets.

To state this bound we introduce some notation from [Naz03b]. Let K ⊆ Rn be a convex set containing
the origin, and let y ∈ ∂K. We write νy for the unit normal vector to ∂K at y (which is well-defined except
on a set of (n − 2)-dimensional measure 0) We also write α(y) for cos(y · νy), and h(y) for ‖y‖α(y); in
other words, h(y) is the distance from the origin of the tangent (to K) hyperplane containing y. Nazarov’s
bound is ∫

∂K

(
1

h(y) + 1

)
· ϕn(y) dσ(y) ≤ 1− vol(K) ≤ 1. (5)

Recalling that Γ(K) =
∫
∂K ϕn(y) dσ(y), for convex sets K, this bound implies that there is little contribu-

tion to Γ(K) from points y where the tangent hyperplane is near to the origin.
This formula is useful for bounding the Gaussian surface area of intersections of halfspaces. In particu-

lar, the following bound on the surface area of the intersection of k halfspaces and proof was communicated
to us by Nazarov [Naz03a]:

Theorem 20. Let K ⊆ Rn be an intersection of up to k halfspaces. Then Γ(K) ≤
√

2 ln k+2 ≤ O(
√

log k).

To prove this, one first observes that K can be assumed to contain the origin. Then one splits up
Γ(K) =

∫
∂K ϕn(y) dσ(y) into the contribution from those y where h(y) >

√
2 ln k and those y where

h(y) ≤
√

2 ln k. The former parts contribute at most k · ϕ(
√

2 ln k) ≤ 1. The latter parts contribute at
most

√
2 ln k + 1, using (5). In particular, Theorem 20 implies that any box or parallelopiped in Rn, in any

orientation, has Gaussian surface area at most O(
√

log n). Ball made a similar observation earlier for boxes.
Applying our machinery relating learning to surface area, we obtain

9



Corollary 21. Any intersection of up to k halfspaces in Rn is PAC learnable in time nO(log k)/ε2 and agnos-
tically learnable in time nO(log k)/ε4 under N n.

As noted in the introduction, compared with Vempala’s (n/ε)O(k)-time PAC learning algorithm (with
respect to nearly-uniform distributions on the sphere)2, his dependence on ε is better if log(1/ε) � log k,
but otherwise our algorithm has a much better dependence on n and works in the agnostic setting.

We can also use Nazarov’s inequality to bound the Gaussian surface area of certain cones:

Theorem 22. Let K be a cone with apex at the origin (i.e. an intersection of arbitrarily many halfspaces
all of whose boundaries contain the origin). Then K has Gaussian surface area at most 1.

This follows immediately from Equation (5) since if K is a cone as described then we have h(y) = 0
for every y ∈ ∂K. As a corollary we have that cones with an apex at the origin are PAC and agnostically
learnable with respect to Nn in time nO(1/ε2) and nO(1/ε4), respectively.

4.4 Balls. Let Bn
r denote the ball of radius r in Rn, centered at the origin. Ball [Bal93] gave the formula

Γ(Bn
r ) = rn−1

2n/2−1Γ(n/2)er2/2
. He noted that this is maximized at r =

√
n− 1 where the surface area is

asymptotic to 1/
√

π.
It is tempting to believe that the origin-centered ball has maximum surface area for any radius r, but this

is not always true; consider, for example, a ball of radius r(n), where r(n) grows very rapidly relative to
n. If such a ball is centered at the origin, its surface area will approach 0 very rapidly (exponentially fast in
r(n)2). But, if the ball is displaced so that the origin lies on its surface, then the Gaussian surface area will
be nearly that of an origin-centered halfspace, which is an absolute constant 1/

√
2π independent of n.

Since Ball’s argument uses the radial symmetry of the Gaussian and explicitly computes the integral of
the Gaussian density over the surface of the ball, it is not clear how to extend the argument to non-origin
centered balls. In Appendix B we give an alternate proof of Ball’s result for origin-centered balls that does
not rely on computing surface integrals. Instead, we maximize a corresponding probability density function;
this approach allows us to show that any ball, origin-centered or not, has surface area at most a constant:

Theorem 23. The Gaussian surface area of any ball in Rn is at most 1.

Applying Theorem 15 and Theorem 9 we have the following corollary:

Corollary 24. The class of balls in Rn is agnostically learnable in time nO(1/ε4) with respect to N n.

Again we remark that the same time bound holds even for unions of a constant number of balls.

4.5 Learning under Arbitrary Gaussian Distributions. We can show that (almost all of) our learning
results extend to arbitrary Gaussian distributions. The arguments of this section, together with Theorems 15,
10, and 9, give Theorem 25, our most general learning result:

Theorem 25. Let C be a class of Borel sets in Rn, each of which has Gaussian surface area at most s.
Assume that C is closed with respect to affine transformations. Then C is PAC learnable to accuracy ε with
respect to any Gaussian distribution on Rn (with nonsingular covariance matrix3) in time nO(s2/ε2) and
agnostically learnable in time nO(s2/ε4).

Due to space considerations we defer this section to Appendix C.

2Vempala [Vem97] claims a running time of poly(n)kk( 1
ε
)k for the algorithm but this was amended to (n/ε)O(k) in [Vem04].

3As discusssed in Section 4.5, if the class C is closed under intersections with lower-dimensional subspaces then we can drop
the requirement that the covariance matrix be nonsingular.
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5 Lower Bounds for Learning under Gaussian Distributions
In this section we prove a sample complexity lower bound for learning intersections of 2` halfspaces under
the standard n-dimensional Gaussian distribution N n (recall that by Theorem 20, any such intersection of
2` halfspaces has Gaussian surface area O(

√
`)).

Theorem 26. Let `, ε be parameters such that log n ≤ `, 0 < ε < 1
44000 , and `1/2/ε ≤ n1/4. Let H` be the

class of all intersections of 2` halfspaces over Rn. Let A be any algorithm which learns H` to confidence
δ = 1/2 and accuracy ε with respect to N n. Then A must use 2Ω(`/ε2) examples. This lower bound holds
even for algorithms which may make black-box queries to the target function f and suffer no noise.

Discussion. This theorem implies that for a wide range of parameters, our algorithm of Corollary 21,
which can learn intersections of 2` halfspaces to accuracy ε in time nO(`/ε2), is essentially optimal both in
its dependence on the error parameter ε and on the number of halfspaces. The theorem similarly implies
that our positive results for learning general convex sets and learning sets with bounded Gaussian surface
area are also essentially optimal. We remind the reader that while the lower bound holds even for learning
under the standard Gaussian distribution with membership queries, our positive results for these classes all
hold for learning from random examples generated from any Gaussian distribution, without using queries.

We briefly sketch the approach. Given two functions f, g : Rn → {0, 1} we write d(f, g) to denote
PrX∼Nn [f(X) 6= g(X)]; we extend the notion to subsets A,B of Rn, writing d(A,B) = d(1A,1B). We
prove Theorem 26 by establishing the following:

Theorem 27. Let `, ε be as in Theorem 26. There exists a set C`,ε = {f1, . . . , fM} of M = 22Ω(`/ε2)
many

functions fi ∈ H` such that for any 1 ≤ i < j ≤ M , we have d(fi, fj) ≥ 2ε.

By results of Benedek and Itai [BI88], this implies that any algorithm (even allowing membership
queries) for learning the class C`,ε under distribution N n with confidence parameter δ = 1/2 and accu-
racy parameter ε must have sample complexity at least log M = 2Ω(`/ε2). To prove Theorem 26 it thus
suffices to prove Theorem 27.

We prove Theorem 27 using the probabilistic method. The idea is to consider an intersection of N
halfspaces (we specify N later) in which each halfspace is chosen uniformly at random from all halfspaces
tangent to an origin-centered ball of a certain radius, chosen so that the resulting convex body is likely to have
Gaussian volume bounded away from 0 and 1 by a constant.4 Using the “method of bounded differences”
we show that that two convex bodies that are independently generated in this way are extremely likely to be
far from each other; together with a union bound, this gives Theorem 27. The proof is given in Appendix D.
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A Review of Hermite Analysis
We will work within L2(Rn,N n), the vector space of all functions f : Rn → R such that E[f2] < ∞. This
is an inner product space under the inner product

〈f, g〉 = E
x∼Nn

[f(x)g(x)].

This inner product space has a complete orthonormal basis given by the Hermite polynomials. In the case
n = 1, this basis is the sequence of polynomials

h0(x) = 1, h1(x) = x, h2(x) =
x2 − 1√

2
, h3(x) =

x3 − 3x√
6

, . . .

There are several equivalent ways to define this sequence:

exp(λx− λ2/2) =:
∞∑

j=0

λd

√
d!

hj(x);

hj(x) =
(−1)d

√
d!ϕ(x)

· dj

dxj
ϕ(x);

hj(x) =
√

j!
(j − 0)!0!20

xj −
√

j!
(j − 2)!1!21

xj−2 +
√

j!
(j − 4)!2!22

xj−4 −
√

j!
(j − 6)!3!23

xj−6 + · · ·
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For general n, the basis for L2(Rn,N n) is formed by all products of these polynomials, one for each
coordinate. I.e., for each n-tuple S ∈ Nn we define the n-variate Hermite polynomial HS : Rn → R by

HS(x) =
n∏

i=1

hSi(xi);

then the collection (HS)S∈Nn is a complete orthonormal basis for the inner product space. By orthonormal
we mean that

〈HS ,HT 〉 =

{
1 if S = T ,
0 if S 6= T .

By complete, we mean that every function f ∈ L2 can be uniquely expressed as

f(x) =
∑

S∈Nn

cSHS(x),

where the coefficients cS are real numbers and the infinite sum converges in the sense that

lim
d→∞

E

f(x)−
∑
|S|≤d

cSHS(x)

2 = 0;

here we have used the notation

|S| =
n∑

i=1

Si,

which is also the total degree of HS(x) as a polynomial.

Given f , instead of cS , we will write f̂(S), and call this the S Hermite coefficient of f . By orthonormal-
ity of the basis (HS)S∈Nn , we have the following:

f̂(S) = 〈f,HS〉 = E[f(x)HS(x)];

‖f‖2
2

def= 〈f, f〉 =
∑

S∈Nn

f̂(S)2 (“Parseval’s identity”);

〈f, g〉 =
∑

S∈Nn

f̂(S)ĝ(S) (“Plancherel’s identity”).

In particular, if f : Rn → {−1, 1}, then
∑

f̂(S)2 = 1 (when no range for a sum over S is specified, we
assume Nn).

B Bounding the Gaussian surface area of an arbitrary ball
Our approach to bounding the Gaussian surface area of a ball is by analyzing an appropriate probability
density function.

Recall the chi-square distribution with k degrees of freedom:

χ2
k =

k∑
i=1

X2
i
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where each Xi is a random variable distributed according to N (0, 1). Notice that for an origin-centered ball
K of radius r, the Gaussian volume of K is equal to

Pr[χ2
n ≤ r2].

Since the δ-neighborhood of a ball of radius r is a ball of radius r + δ, by the definition of Gaussian surface
area we have that the Gaussian surface area of a ball of radius r is equal to

lim
δ→0

Pr[χ2
n ≤ (r + δ)2]−Pr[χ2

n ≤ r2]
δ

.

Consequently, differentiating the cdf and applying the chain rule, we have that the Gaussian surface area of
an origin-centered ball is equal to 2r · fn(r2) where fn is the pdf of χ2

n. It is well known [Fel68] that the pdf
of χ2

n is given by

fn(x) =
xn/2−1

Γ(n/2)2n/2ex/2
.

It is straightforward to verify that 2r · fn(r2) agrees with Ball’s formula for the surface area of an origin-
centered ball of radius r.

To bound the surface area of non-origin-centered balls, we will need to consider the non-central chi-
square distribution:

Definition 28. We say that Q(n,λ) is a non-central chi-square distribution with n degrees of freedom and
non-centrality parameter λ if Q(n,λ) =

∑n
i=1 Y 2

i where each Yi is an independent N (ai, 1) Gaussian and
λ =

∑n
i=1 a2

i .

To compute the surface area of a ball, we can first assume without loss of generality (due to the rotational
symmetry of the Gaussian) that the ball is centered on the x-axis. Next we observe that the Gaussian volume
of a ball of radius r centered at distance d from the origin is given by

Pr[Q(n,d2) ≤ r2].

Let g(n,d2) denote the pdf of the random variable Q(n,d2). Although there is no simple closed form for
g(n,d2), Patnaik [Pat49] has observed that

g(n,λ) =
∞∑

j=0

1
2λj

j!
exp(−λ/2)fn+2j (6)

where each fn+2j is the pdf of χ2
n+2j . This means that the non-central chi-square distribution is a convex

combination of standard chi-square distributions, since the weights in the above formula are exactly the
probabilities of a Poisson distribution with expected value λ/2.

We can now bound the surface area of a non-origin-centered ball as follows. From the above discussion
it suffices to show that for any r the quantity 2r · g(n,d2)(r2) is at most 1. From Equation (6), we see that the
function 2r · g(n,d2)(r2) is a convex combination of functions of the form 2r · fj(r2) across different values
of j. It is not difficult to verify that that for all j, the value of 2r · fj(r2) is always at most 1 (recall that for
a given j the maximum is at r =

√
j − 1). Thus, 2r · g(n,d2)(r2) is at most 1 as well.
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C Learning with Respect to Arbitrary Gaussians
Here we sketch how (almost all of) our learning results can be extended to arbitrary Gaussian distributions.

Recall that an arbitrary Gaussian distribution D over Rn can be generated by first drawing x ∼ N n and
then outputting µ + Bx, where µ is a fixed vector (the mean of D) and B is a fixed square matrix, possibly
not of full rank (the matrix square-root of the covariance matrix). Let T denote the affine transformation
x 7→ µ + Bx.

Let us assume for a moment that the matrix B has full rank so that T is invertible. Given a set K ⊆ Rn,
let K ′ denote the set T−1K. Now if there is a polynomial p′ over Rn with degree at most d satisfying

E
x∼Nn

[(p′(x)−K ′(x))2] ≤ ε

(again we identify K ′ with its ±1 indicator function), then we immediately have

E
y∼D

[((p′ ◦ T−1)(y)−K(y))2] ≤ ε

But T−1 is an affine transformation, so p = p′ ◦T−1 also has degree at most d. In other words, the existence
of a good approximating polynomial p′ for K ′ implies the existence of a good approximating polynomial p
for K. It follows that our learning algorithms in Section 2.2 will work at least as well when run on K under
D as they do when run on K ′ under N n. (Note that we do not have to assume the learning algorithm knows
the parameters of the Gaussian distribution D; it always runs the same polynomial regression algorithm.)

In the case when B is not invertible, the distribution D is equivalent to a nonsingular Gaussian distribu-
tion E supported on an affine subspace H . It is easy to see that the above argument lets us derive approxi-
mating polynomials for K under D that are at least as good as approximating polynomials for K ∩H under
E (which in turn are at least as good as approximating polynomials for some affine transformation of K ∩H
under Nm for m = dim(H)).

We now observe that many classes C of subsets of Rn that we have considered for learning are closed
under taking affine transformations and intersections with affine subspaces. For instance, the class of convex
sets has this property, as does the class of intersections of k halfspaces. Thus our learning results for these
classes immediately extend to all Gaussian distributions. Cones are closed under linear transformations and
intersections with subspaces, and thus our learning results for cones extend to all Gaussian distributions so
long as the cones have their apex at the Gaussian’s mean.

Unfortunately, the class of balls is not closed under linear transformations. We strongly believe that all
ellipsoids in Rn have Gaussian surface area O(1); however we have not yet proved this. If this holds then
our learning results for balls would also generalize to all Gaussian distributions.

D Proof of Theorem 27
Recall Theorem 27:

Theorem 27. Let `, ε be as in Theorem 26. There exists a set C`,ε = {f1, . . . , fM} of M = 22Ω(`/ε2)
many

functions fi ∈ H` such that for any 1 ≤ i < j ≤ M , we have

d(fi, fj) ≥ 2ε. (27)

Let Z1, Z2, . . . be independent uniformly distributed random vectors drawn from the unit ball Sn−1 =
{x ∈ Rn : ‖x‖ = 1}. Let ρ = `1/2/ε; observe that by the assumptions on `, ε we have ρ ≤ n1/4. Let
A(Z1, . . . , ZN ) denote the intersection of N halfspaces

A(Z1, . . . , Zn) def= {x ∈ Rn : x · Zi ≤ ρ for all i = 1, . . . , N}
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(we will specify N soon). Theorem 27 is proved by showing that if {Zi,t}1≤i≤M,1≤t≤N are MN inde-
pendent uniform random unit vectors as described above, then with nonzero probability, for every 1 ≤
i < j ≤ M the functions fi and fj satisfy (27), where fi(x) is defined to be the indicator function of
A(Zi,1, . . . , Zi,N ). We do this by showing that for each pair (i, j) the functions fi, fj satisfy (27) with
probability at least 1− 1/M2. Since there are fewer than M2 distinct pairs, a union bound then gives The-
orem 27.

So let f1 be the indicator function of A(Z1,1, . . . , Z1,N ) and f2 be the indicator function of A(Z2,1, . . . , Z2,N )
for random Z1,1, . . . , Z2,N as described above. The key to showing that f1 and f2 are w.v.h.p. at least 2ε-far
apart is the following lemma showing that the expected distance between f1 and f2 is large (the expectation
is taken over the random choice of Z1,1, . . . , Z2,N ):

Lemma 29. E[d(f1, f2)] ≥ 1
11000 .

We will prove this lemma later. Now we show how this lower bound on expectation may be combined
with the “method of bounded differences” to show that d(f1, f2) < 2ε holds with probability at most 1/M2.
Recall McDiarmid’s inequality:

McDiarmid bound [McD89]: Let X1, . . . Xm be independent random variables taking values in a set Ω.
Let F : Ωm → R be such that for all i ∈ [m] we have

|F (x1, . . . , xm)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci

for all x1, . . . , xm and x′i in Ω. Let µ = E[F (X1, . . . , Xm)]. Then for all τ > 0,

Pr [F (X1, . . . , Xm) < µ− τ ] < exp
(
− τ2∑m

i=1 c2
i

)
.

We let the 2N independent random uniform vectors Z1,1, . . . , Z2,N play the role of X1, . . . , Xm in
McDiarmid’s bound, and we let the function d(f1, f2) play the role of F (X1, . . . , Xm). Given any fixed
setting of Z1,1, . . . , Z2,N , the change in magnitude in d(f1, f2) that results from replacing some Zi,t by any
other unit vector Z ′ ∈ Sn−1 is at most

PrX∼Nn [X · u1 ≥ ρ] + PrX∼Nn [X · u2 ≥ ρ] = 2PrX1∼N(0,1)[X1 ≥ ρ] (7)

≤ 2ϕ(ρ)/ρ =
√

2/π · ρ−1 · e−ρ2/2 (8)

In (7) the vectors u1 and u2 are arbitrary fixed unit vectors, and the equality holds by the spherical symmetry
ofN n. The bound (8) follows from the standard bound 1−Φ(t) ≤ ϕ(t)/t, which holds for t > 0 where Φ(t)
is the c.d.f. and ϕ(t) = 1√

2π
exp(−t2/2) is the p.d.f. of N(0, 1). We thus may take each ci in McDiarmid’s

bound to be the bound (8) above. The mean E[d(f1, f2)] is at least 1
11000 by Lemma 29. As we show in (16)

below, we have N ≤ 12(n1/2/ρ)eρ2/2. Taking τ = 1
22000 in McDiarmid’s bound, we thus have

Pr[d(f1, f2) < 2ε] ≤ Pr[d(f1, f2) <
1

22000
]

< exp

(
−(1/22000)2

24(n1/2/ρ)eρ2/2 · (
√

2/π · ρ−1 · e−ρ2/2)2

)
= exp

(
−Θ(1) · (ρ3/n1/2) · eρ2/2

)
(9)

We define M to be such that 1/M2 def= (9). Since ρ2 = `/ε2 � 2 log n by our assumptions on ` and ρ,

we have that (9) ≤ exp(−2Ω(ρ2)), and hence M = 22Ω(`/ε2)
. It remains only to prove Lemma 29.
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D.1 Proof of Lemma 29 First some notation. We write A1 to denote A(Z1,1, . . . , Z1,N ) and A2 to denote
A(Z2,1, . . . , Z2,N ). Recall that ϕn(x) denotes the density function of the standard n-dimensional Gaussian
distribution. Let us write “Z ∼ S” to indicate that Z is a random unit vector distributed uniformly over the
unit ball Sn−1 in Rn. Given x ∈ Rn, let us write b(x) to denote

b(x) def= PrZ∼S [x · Z ≤ ρ].

Let an−1 denote the surface area of the unit sphere Sn−1. It is well known that an−2/an−1 = Θ(n1/2);
for conciseness we write rn to denote an−2/an−1. For n ≥ 3, for any fixed unit vector u ∈ Sn−1, we have

PrZ∼S [α ≤ u · Z ≤ β] = rn

∫ β

α

(√
1− z2

)n−3
dz.

Let us write cap(t) to denote the fractional surface area of the spherical cap Sn−1 ∩ {x : x1 ≥ t}:

cap(t) def= PrZ∼S [Z1 ≥ t] = rn

∫ 1

t

(√
1− z2

)n−3
dz. (10)

Consequently for all 0 6= x ∈ Rn, we have

b(x) = 1−PrZ∼S

[
x

‖x‖
· Z ≥ ρ

‖x‖

]
= 1− cap(ρ/‖x‖) = 1− rn

∫ 1

ρ
‖x‖

(√
1− z2

)n−3
dz. (11)

Now we turn to the proof of Lemma 29. We have the following (all expectations are taken over the
random choice of Z1,1, . . . , Z2,N ):

E[PrX∼Nn [f1(X) 6= f2(X)]] = 2E[PrX∼Nn [X ∈ (A1 \A2)]

= E
[∫

x∈Rn

1x∈(A1\A2)ϕn(x)dx

]
(Fubini)=

∫
x∈Rn

E[1x∈(A1\A2)]ϕn(x)dx

=
∫

x∈Rn

Pr[x ∈ A1](1−Pr[x ∈ A2])ϕn(x)dx (12)

=
∫

x∈Rn

(b(x))N (1− (b(x))N )ϕn(x)dx. (13)

Here equations (12) and (13) are by the independence of the randomly chosen vectors Z1,1, . . . , Z2,N . We
shall prove Lemma 29 by showing that

b(x)N (1− b(x))N ≥ 0.0002244 for all x ∈ Rn such that ‖x‖ ∈ [
√

n,
√

n + 1]. (14)

For X ∼ N , the random variable ‖X‖2 is distributed according to a chi-squared distribution χ2
n which

has mean n and variance 2n. The Central Limit Theorem implies that as n → ∞, the random variable
(‖X‖2−n)/(

√
2n) converges to the standard normal distribution N(0, 1). Since N(0, 1) assigns probability

≈ 0.421 to the interval [0,
√

2], it follows that for n sufficiently large we have

PrX∼Nn [‖X‖2 ∈ [n, n + 2
√

n + 1]] ≥ 0.42

which, together with (14), shows that E[d(f1, f2)] ≥ 0.0002244·0.42 ≥ 0.000094 > 1
11000 and proves Lemma 29.
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Now we prove (14). Let

N
def=

1
cap(ρ/

√
n)

. (15)

We pause at this point to observe that using the easy bound cap(t) ≤ e−nt2/2, we have N ≥ eρ2/2. In fact,
as we now show N is not much larger than this value. We have

cap(ρ/
√

n) = rn ·
∫ 1

ρ/
√

n

(√
1− z2

)n−3
dz

> rn ·
∫ ρ/(

√
n−1)

ρ/
√

n

(√
1− z2

)n−3
dz

> rn ·A ·B, where A =
ρ√

n− 1
− ρ√

n
and B =

(
1−

(
ρ√

n− 1

)2
)(n−3)/2

.

Known bounds give rn ≥ 1
3

√
n; an easy computation shows that A ≥ ρ/n; and some routine asymptotic

analysis (using the bound (1−1/m)m ≥ exp(−1− 1
m) together with the fact that ρ ≤ n1/4) gives that B ≥

1
4e−ρ2/2. (All these inequalities are for n sufficiently large.) We thus have cap(ρ/

√
n) ≥ 1

12 ·(ρ/
√

n)·e−ρ2/2,
which implies

N ≤ 12 · (
√

n/ρ) · eρ2/2. (16)

Finally, we assume w.l.o.g. in the sequel that the value N defined by (15) is an integer; the reader can check
that there is adequate slack in the bounds to handle rounding N to the nearest integer.

With (15) as our choice of N , for any ‖x‖ =
√

n we have b(x)N = (1− 1/N)N ≤ e−1. Since b(x) is a
decreasing function of ‖x‖, we have b(x)N ≤ e−1 for all ‖x‖ ∈ [

√
n,
√

n + 1]. We will show below that

for all ‖x‖ ∈ [
√

n,
√

n + 1], we have b(x)N ≥ 0.0002245. (17)

(Note that for ‖x‖ =
√

n, we actually have b(x)N ≈ e−1.) Given this, we have

for all ‖x‖ ∈ [
√

n,
√

n + 1], b(x)N (1− b(x)N ) ≥ 0.0002245 · (1− .0002245) > .0002244.

Since b(x) is decreasing in ‖x‖, to prove (17) it is enough to give a lower bound on b(x′) for ‖x′‖ =√
n + 1. We will show that

cap
(

ρ√
n + 1

)
≤ 8.4

N
. (18)

This gives

b(x′)N =
(

1− cap
(

ρ√
n + 1

))N

≥ (1− 8.4/N)N ≥ 0.0002245

as desired (the last inequality holds for N sufficiently large). Now we prove (18). First recall that

cap
(

ρ√
n + 1

)
= rn

∫ 1

ρ√
n+1

(1− z2)(n−3)/2dz

= rn

∫ ρ√
n

ρ√
n+1

(1− z2)(n−3)/2dz + cap(ρ/
√

n)

= rn

∫ ρ√
n

ρ√
n+1

(1− z2)(n−3)/2dz +
1
N

. (19)
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Now observe that

rn

∫ ρ√
n

ρ√
n+1

(1− z2)(n−3)/2dz ≤ rn ·

(
1−

(
ρ√

n + 1

)2
)(n−3)/2

·
(

ρ√
n
− ρ√

n + 1

)
(20)

Using Taylor series expansion one can verify that for 0 ≤ ρ ≤ n1/4, we have

lim
n→∞

(
1−

(
ρ√
n+1

)2
)(n−3)/2

(
1−

(
ρ√
n−1

)2
)(n−3)/2

≤ e2 < 7.39

(the inequality is an equality for ρ = n1/4) and consequently(
1−

(
ρ√

n + 1

)2
)(n−3)/2

≤ 7.4 ·

(
1−

(
ρ√

n− 1

)2
)(n−3)/2

(21)

for n sufficiently large. Moreover we trivially have

ρ√
n
− ρ√

n + 1
≤ ρ√

n− 1
− ρ√

n
. (22)

Combining (21) and (22), we have that

(20) ≤ rn · 7.4 ·

(
1−

(
ρ√

n− 1

)2
)(n−3)/2

·
(

ρ√
n− 1

− ρ√
n

)

≤ 7.4 · rn

∫ ρ√
n−1

ρ√
n

(1− z2)(n−3)/2dz

< 7.4 · rn

∫ 1

ρ√
n

(1− z2)(n−3)/2dz = 7.4 · cap(ρ/
√

n) =
7.4
N

. (23)

Combining (19), (20) and (23) we obtain (18). This concludes the proof of Lemma 29 and hence of
Theorem 27, and so our sample complexity bound, Theorem 26, is proved.

E Boolean surface area
E.1 Motivation Given the very useful connection between noise sensitivity and surface area in Gaussian
space, Corollary 14, it is natural to wonder if there is a similar connection in the setting of the Boolean
cube under the uniform distribution. In some senses the case of {−1, 1}N is a generalization of the case of
(Rn,N n): this is because we can simulate a Gaussian random variable with Boolean ones:∑m

i=1 xi√
m

≈ N

when the string x ∈ {−1, 1}m is drawn from the uniform distribution. There is a long history of proving
results in Gaussian space by first deriving them in the Boolean case and then making a limiting argument;
notable examples of this include Gross’s work on the logarithmic Sobolev and hypercontractive inequali-
ties [Gro75] and Bobkov’s proof of the Gaussian isoperimetric inequality [Bob97].
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The notions of noise stability and sensitivity for Boolean functions f : {−1, 1}n → R are well-known
[BKS99]. In place of the Ornstein-Uhlenbeck operator we have the Bonami-Beckner operator, also denoted
Tρ, acting as

(Tρf)(x) = E
y∼ρx

[f(y)];

here y ∼ρ x means that y is chosen by keeping each bit of x fixed with probability ρ and randomizing it with
probability 1− ρ, independently across coordinates. The noise stability and sensitivity of f are now defined
by formally repeating the definitions in the Gaussian case. The analogous expression to (2) for Tρf in terms
of f ’s Fourier (Walsh) coefficients continues to hold. As a result, we have the same relationship between
low-degree Fourier concentration, noise sensitivity, and learning as in Section 2.2; see [KOS04, KKMS05].

Unfortunately for learning purposes, it is somewhat difficult to prove noise sensitivity upper bounds for
natural classes of Boolean functions. The work [KOS04] relied on a clever theorem of Peres [Per04] which
states that NSδ(f) ≤ O(

√
δ) for any Boolean halfspace f . This immediately implies that an intersection

of k halfspaces has noise sensitivity at most k · O(
√

δ). [KOS04] conjectured that in fact the much better
upper bound of

√
log k · O(

√
δ) should hold. We now know, via Corollary 14 and Nazarov’s Theorem 20,

that the conjecture holds in Gaussian space. This provides significant motivation for seeking a connection
between noise sensitivity and “surface area” in the Boolean setting. In fact, we find the desired connection;
unfortunately, it does not prove to be quite as useful as hoped.

E.2 Overview of Boolean surface area There is a likely candidate for the proper analogue of “surface
area” in the Boolean setting. The proof of Theorem 13 uses

∫
|∇f | as a surrogate for surface area (cf.

the discussion after its statement), and there is a well-known notion of “gradient” in the Boolean cube (see
e.g. [Bob97]): for f : {−1, 1}n → R, this is:

∇f(x) = (D1f(x), . . . ,Dnf(n)),

where Di is the “ith discrete derivative operator”, defined by

Dif(x) =
f(x(i=1))− f(x(i=−1))

2
,

with x(i=b) denoting the string x with its ith coordinate changed to b. Note that when f : {−1, 1}n →
{−1, 1},

(Dif(x))2 =

{
1 if f is “sensitive” to the ith coordinate of x,
0 else,

and hence the “length of the gradient” is

|∇f(x)| =

√√√√ n∑
i=1

(Dif(x))2 =
√

# of sensitive coordinates for f on x.

Thus the following definition is natural:

Definition 30. The “Boolean surface area” of a function f : {−1, 1}n → {−1, 1} is defined to be

Γ(f) = E[|∇f |] = E
x
[
√

# of sensitive coordinates for f on x].
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Here and throughout this section, E[·] is with respect to the uniform probability distribution on {−1, 1}n.

The Boolean surface area appears to have been first introduced and studied by Talagrand [Tal93]. (Ac-
tually, Talagrand studied a variant,

E
x
[
√

1f(x)=1 · # of sensitive coordinates for f on x],

which is slightly different for f with |E[f ]| very close to 1.) He connected it to various topics, includ-
ing discrete isoperimetry, logarithmic Sobolev equations, percolation, and Banach space inequalities. It
was also used by Bobkov [Bob97] in his proof of the Gaussian isoperimetric inequality and by Tillich and
Zémor [TZ00] in the context of coding theory.

One basic fact about Boolean surface area is the following:

Γ(f) = E[
√
|∇f |2] ≤

√
E[|∇f |2] =

√
I(f),

where I(f) =
∑

S |S|f̂(S)2 is the “total influence” of f . For f : {−1, 1}n → {−1, 1} this is also called the
“average sensitivity” of f , since

I(f) = E
x
[# of sensitive coordinates for f on x].

In this case we also write

Infi(f) = Pr
x

[f is sensitive to the ith coordinate of x],

for the “influence” of the ith coordinate on f , and we have I(f) =
∑

i Infi(f). For monotone functions,
Infi(f) = f̂(i).

It is well-known that I(f) ≤ O(
√

n) whenever f is a monotone Boolean function, and thus Γ(f) ≤
O(n1/4) for monotone f . This seems to be the analogue of Ball’s upper bound for Gaussian surface area
of convex sets. As further evidence, Talagrand [Tal96] exhibited a monotone Boolean function f with
Γ(f) ≥ Ω(n1/4), and his construction strongly prefigures the lower bound of Nazarov: it can be viewed as
the intersection of 2Θ(

√
n) random disjunctions. As more evidence that we are on the right track, the two

Boolean halfspaces which are arguably most natural — namely Dictator (f(x) = xi) and Majority — both
have O(1) Boolean surface area, just as in the Gaussian case. In Majority’s case, this bound holds because
a Θ(1/

√
n) fraction of inputs have sensitivity n/2 and the remaining inputs have sensitivity 0. (Bobkov,

Götze, and Houdré [SBH01] generalized this to arbitrary symmetric threshold functions.)

E.3 The Boolean version of Corollary 14 In this section we provide the Boolean analogue of Corol-
lary 14:

Theorem 31. For any f : {−1, 1}n → {−1, 1} and any 0 ≤ δ ≤ 1,

NSδ(f) ≤
√

π
2

√
δ · Γ(f).

The result relies on the following theorem of Bobkov and Götze [BG99]:

Theorem 32. Let (Ωi, µi) be probability spaces, i = 1 . . . n, and write (Ω, µ) for the product probability
space. Assuming f : Ω → [0, 1] is measurable, we have

U(E
µ
[f ]) ≤ E

µ

[√
U(f)2 + 2‖∇f‖2

µ

]
. (24)
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Here U is the Gaussian isoperimetric function, and

‖∇f‖2
µ

def
=

n∑
i=1

Varµi [f ].

We now prove Theorem 31:

Proof. Consider the Bobkov-Götze inequality (24) in the special case that f ’s range is {0, 1}; since U(0) =
U(1) = 0, this eliminates the U(f)2 in the right-hand side of (24). We will also eliminate the U on the
left-hand side of (24) by using the elementary inequality

U(t) ≥
√

2/π(1
2 − 2(1

2 − t)2).

Thus for f : Ω → {0, 1} we have√
2/π(1

2 − 2(1
2 −E

µ
[f ])2) ≤ E

µ
[
√

2‖∇f‖µ] ⇒ 1
2 − 2(1

2 −E
µ
[f ])2 ≤

√
π E

µ
[‖∇f‖µ] (25)

Suppose we fix an x ∈ {−1, 1}n and a ρ ∈ [0, 1]. We define Ωi = {−1, 1} and µi to be the biased
measure which gives probability 1

2 + 1
2ρ to xi and probability 1

2 −
1
2ρ to −xi. Note that with this choice one

can easily check that Eµ[f ] = (Tρf)(x) and that

Varµi [f(y)] = (1− ρ2) · (Dif(y))2.

Hence

‖∇f(y)‖2
µ =

n∑
i=1

Varµi [f(y)] = (1− ρ2)|∇f(y)|2,

where on the right side we have the usual, uniform-distribution discrete gradient on {−1, 1}n. Substituting
into (25) we get

1
2 − 2(1

2 − (Tρf)(x))2 ≤
√

π
√

1− ρ2(Tρ[|∇f |])(x).

We now revert f ’s range to {−1, 1}, replacing f by 1
2 + 1

2f in the above. This yields

1
2 −

1
2((Tρf)(x))2 ≤

√
π

2

√
1− ρ2(Tρ[|∇f |])(x).

Finally, if we take the expectation of this inequality over a uniform choice of x ∈ {−1, 1}n, we get precisely

NS1−ρ2(f) ≤
√

π
2

√
1− ρ2 E[|∇f |].

Setting ρ2 = 1− δ completes the proof.

By the Fourier concentration method, we now conclude that our main Theorem 5 holds in the Boolean
setting:

Theorem 33. Let C denote the class of all Boolean functions f : {−1, 1}n → {−1, 1} with Γ(f) ≤ s.
Then under the uniform distribution, C is PAC learnable to accuracy ε in time nO(s2/ε2) and agnostically
learnable in time nO(s2/ε4).

We recall that Bshouty and Tamon [BT96] showed that any Boolean function f has Fourier concen-
tration I(f)/ε, and hence can be learned under the uniform distribution in time nI(f)/ε. Our bound is an
improvement on theirs in so far as Γ(f)2 ≤ I(f) for every Boolean function f (and the difference can be
substantial, as for the Majority function which has Γ = O(1) and I = Θ(

√
n)); however our bound has an

additional factor of 1/ε in the exponent.
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E.4 Boolean surface area of halfspaces Thus far it seems the Boolean theory is matching the Gaussian
theory perfectly. Since halfspaces have Gaussian surface area O(1) it is natural to expect that the same
bound holds for Boolean surface area; this would allow us to recover the results of [KOS04]. Bobkov,
Götze, and Houdré [SBH01] considered this statement but commented that they did not know how to prove
it.

Surprisingly, the statement turns out to be false. The correct answer for the maximum Boolean surface
area of any n-variable halfspace is Θ(

√
log n), and the halfspace that achieves the maximum — essentially

sgn(
∑

xi/
√

i) — is an unusual example.

Theorem 34.

1. Every Boolean halfspace f(x) = sgn(
∑

i aixi − θ) satisfies Γ(f) ≤ O(
√

log n).

2. Let ηj denote
√

j + 1 −
√

j, so ηj ∼ 1
2
√

j
. Then for even n, the Boolean halfspace f(x) =

sgn(
∑n

i=1 ηdi/2exi) satisfies Γ(f) ≥ Ω(
√

log n).

We expect that the slightly simpler halfspace sgn(
∑

xi/
√

i) also has Boolean surface area at least
Θ(
√

log n), but we have not verified this. Since Theorem 34 is somewhat tangential to our main concerns
in this paper, we defer its proof to the full version.

We conclude this section by commenting that although we only have Γ(f) ≤ O(
√

log n) for Boolean
halfspaces, the approach of bounding noise sensitivity by surface area may still prove useful for learn-
ing. It may possibly be easier to prove that the intersection of k Boolean halfspaces has surface area
O(
√

log k
√

log n) than to prove the conjectured O(
√

log k
√

δ) bound on noise sensitivity. If this surface
area bound could be established it would yield an nO(log k log n/ε2)-time learning algorithm, which would
still be quite strong.
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