
Appendix A

Grammars for Meaning Representation Languages

This appendix describes the grammars for all of the formal MRLs consid-

ered in this thesis, namely the GEOQUERY logical query language, the GEOQUERY

functional query language (FUNQL), and CLANG (Section 2.1). These formal

MRL grammars are used to train various semantic parsers and tactical generators,

including all WASP-based systems and the PHARAOH++ tactical generator (Section

5.3.1).

A.1 The GEOQUERY Logical Query Language

The GEOQUERY logical query language was devised by Zelle (1995, Sec.

7.3) for querying a U.S. geography database called GEOQUERY. Since the database

was written in Prolog, the query language is basically first-order Prolog logical

forms, augmented with several meta-predicates for dealing with quantification.

There are 14 different non-terminal symbols in this grammar, of which

QUERY is the start symbol. The following non-terminal symbols are for entities

referenced in the GEOQUERY database:

145



Entity types Non-terminals Sample productions

City names CITYNAME CITYNAME → austin

Country names COUNTRYNAME COUNTRYNAME → usa

Place names PLACENAME PLACENAME → tahoe

(lakes, mountains, etc.)

River names RIVERNAME RIVERNAME → mississippi

State abbreviations STATEABBREV STATEABBREV → tx

State names STATENAME STATENAME → texas

Numbers NUM NUM → 0

The following non-terminals are used to disambiguate between entities that share

the same name (e.g. the state of Mississippi and the Mississippi river). Note the

corresponding Prolog functors (e.g. stateid and riverid):

Entity types Non-terminals Productions

Cities CITY CITY → cityid(CITYNAME,STATEABBREV)

CITY → cityid(CITYNAME, )

Countries COUNTRY COUNTRY → countryid(COUNTRYNAME)

Places PLACE PLACE → placeid(PLACENAME)

Rivers RIVER RIVER → riverid(RIVERNAME)

States STATE STATE → stateid(STATENAME)

The FORM non-terminal (short for “formula”) is for the following first-order predi-

cates, which provide most of the expressiveness of the GEOQUERY language. Note

that x1, x2, . . . are logical variables that denote entities:

Productions Meaning of predicates

FORM → capital(x1) x1 is a capital (city).

FORM → city(x1) x1 is a city.

FORM → country(x1) x1 is a country.

FORM → lake(x1) x1 is a lake.

FORM → major(x1) x1 is major (as in a major city or a major river).

FORM → mountain(x1) x1 is a mountain.

146



Productions Meaning of predicates

FORM → place(x1) x1 is a place.

FORM → river(x1) x1 is a river.

FORM → state(x1) x1 is a state.

FORM → area(x1,x2) The area of x1 is x2.

FORM → capital(x1,x2) The capital of x1 is x2.

FORM → density(x1,x2) The population density of x1 is x2.

FORM → elevation(x1,x2) The elevation of x1 is x2.

FORM → elevation(x1,NUM) The elevation of x1 is NUM.

FORM → high point(x1,x2) The highest point of x1 is x2.

FORM → higher(x1,x2) The elevation of x1 is greater than that of x2.

FORM → len(x1,x2) The length of x1 is x2.

FORM → loc(x1,x2) x1 is located in x2.

FORM → longer(x1,x2) The length of x1 is greater than that of x2.

FORM → low point(x1,x2) The lowest point of x1 is x2.

FORM → lower(x1,x2) The elevation of x1 is less than that of x2.

FORM → next to(x1,x2) x1 is adjacent to x2.

FORM → population(x1,x2) The population of x1 is x2.

FORM → size(x1,x2) The size of x1 is x2.

FORM → traverse(x1,x2) x1 traverses x2.

The following m-tuples are used to constrain the combinations of entity types that

the arguments of a m-place predicate can denote. See Section 4.2.5 for how to use

these m-tuples for type checking:

Predicates Possible entity types for logical variables

capital(x1) (CITY), (PLACE)

city(x1) (CITY)

country(x1) (COUNTRY)

lake(x1) (PLACE), (LAKE)

major(x1) (CITY), (LAKE), (RIVER)

147



Predicates Possible entity types for logical variables

mountain(x1) (PLACE), (MOUNTAIN)

place(x1) (PLACE), (LAKE), (MOUNTAIN)

river(x1) (RIVER)

state(x1) (STATE)

area(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

capital(x1,x2) (STATE, CITY)

density(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

elevation(x1,x2) (PLACE, NUM), (MOUNTAIN, NUM)

elevation(x1,NUM) (PLACE), (MOUNTAIN)

high point(x1,x2) (COUNTRY, PLACE), (COUNTRY, MOUNTAIN),

(STATE, PLACE), (STATE, MOUNTAIN)

higher(x1,x2) (PLACE, PLACE), (PLACE, MOUNTAIN),

(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)

len(x1,x2) (RIVER, NUM)

loc(x1,x2) (CITY, COUNTRY), (PLACE, COUNTRY),

(LAKE, COUNTRY), (MOUNTAIN, COUNTRY),

(RIVER, COUNTRY), (STATE, COUNTRY),

(CITY, STATE), (PLACE, STATE), (LAKE, STATE),

(MOUNTAIN, STATE), (RIVER, STATE), (PLACE, CITY)

longer(x1,x2) (RIVER, RIVER)

low point(x1,x2) (COUNTRY, PLACE), (COUNTRY, MOUNTAIN),

(STATE, PLACE), (STATE, MOUNTAIN)

lower(x1,x2) (PLACE, PLACE), (PLACE, MOUNTAIN),

(MOUNTAIN, PLACE), (MOUNTAIN, MOUNTAIN)

next to(x1,x2) (STATE, RIVER), (STATE, STATE)

population(x1,x2) (CITY, NUM), (COUNTRY, NUM), (STATE, NUM)

size(x1,x2) (CITY, NUM), (COUNTRY, NUM), (PLACE, NUM),

(LAKE, NUM), (MOUNTAIN, NUM), (RIVER, NUM),

(STATE, NUM)

148



Predicates Possible entity types for logical variables

traverse(x1,x2) (RIVER, CITY), (RIVER, COUNTRY), (RIVER, STATE)

In addition, the equal predicate is used to equate logical variables to ground terms,

e.g. equal(x1,cityid(austin,tx)):

Productions Possible entity types for logical variables

FORM → equal(x1,CITY) (CITY)

FORM → equal(x1,COUNTRY) (COUNTRY)

FORM → equal(x1,PLACE) (PLACE), (LAKE), (MOUNTAIN)

FORM → equal(x1,RIVER) (RIVER)

FORM → equal(x1,STATE) (STATE)

Another important production is the conjunction operator (,), which is used to form

conjunctions of formulas:

FORM → (FORM,FORM)

The not operator is used to form negations:

FORM → not(FORM)

The FORM non-terminal is also for the following meta-predicates, which take con-

junctive goals as their arguments:

Productions Meaning of meta-predicates

FORM → largest(x1,FORM) The goal denoted by FORM produces only

the solution maximizing the size of x1.

FORM → smallest(x1,FORM) The goal denoted by FORM produces only

the solution minimizing the size of x1.

FORM → highest(x1,FORM) Analogous to largest (with elevation).

FORM → lowest(x1,FORM) Analogous to smallest (with elevation).

149



Productions Meaning of meta-predicates

FORM → longest(x1,FORM) Analogous to largest (with length).

FORM → shortest(x1,FORM) Analogous to smallest (with length).

FORM → count(x1,FORM,x2) x2 is the number of bindings for x1 satisfying

the goal denoted by FORM.

FORM → sum(x1,FORM,x2) x2 is the sum of all bindings for x1 satisfying

the goal denoted by FORM.

FORM → most(x1,x2,FORM) The goal denoted by FORM produces only

the x1 maximizing the count of x2.

FORM → fewest(x1,x2,FORM) The goal denoted by FORM produces only

the x1 minimizing the count of x2.

Below are the corresponding m-tuples of entity types for type checking:

Meta-predicates Possible entity types for logical variables

largest(x1,FORM) (CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),

(RIVER), (STATE)

smallest(x1,FORM) (CITY), (PLACE), (LAKE), (MOUNTAIN), (NUM),

(RIVER), (STATE)

highest(x1,FORM) (PLACE), (MOUNTAIN)

lowest(x1,FORM) (PLACE), (MOUNTAIN)

longest(x1,FORM) (RIVER)

shortest(x1,FORM) (RIVER)

count(x1,FORM,x2) (∗, NUM)

sum(x1,FORM,x2) (NUM, NUM)

most(x1,x2,FORM) (∗, ∗)

fewest(x1,x2,FORM) (∗, ∗)

In the above table, ∗ denotes any of these entity types: CITY, COUNTRY, PLACE,

LAKE, MOUNTAIN, NUM, RIVER, STATE.

Finally, the start symbol, QUERY, is reserved for the answermeta-predicate,

which serves as a wrapper for query goals (denoted by FORM):

150



QUERY → answer(x1,FORM)

Here x1 is the logical variable whose binding is of interest (i.e. answers the question

posed). x1 can denote entities of any type (∗).

A.2 The GEOQUERY Functional Query Language

For semantic parsers and tactical generators that cannot handle logical vari-

ables (e.g. WASP, PHARAOH++, WASP−1++), a variable-free, functional query lan-

guage called FUNQL has been devised for the GEOQUERY domain (Kate et al.,

2005). Below is a sample FUNQL query, together with its corresponding Prolog

logical form:

What are the cities in Texas?

FUNQL: answer(city(loc 2(stateid(texas))))

Prolog logical form: answer(x1,(city(x1),loc(x1,x2),

equal(x2,stateid(texas))))

In Section 2.1, we noted that FUNQL predicates can have a set-theoretic inter-

pretation. For example, the term stateid(texas) denotes a singleton set that

consists of the Texas state, and loc 2(stateid(texas)) denotes the set of

entities located in the Texas state, and so on. Here we present another interpre-

tation of FUNQL based on the lambda calculus. Under this interpretation, each

FUNQL predicate is a shorthand for a λ-function, which can be used to translate

FUNQL expressions into the GEOQUERY logical query language through function

application. For example, the FUNQL predicate stateid denotes the λ-function

λn.λx1.equal(x1,stateid(n)). Hence by function application, the FUNQL

term stateid(texas) is equivalent to the following logical form in the GEO-

QUERY logical query language:

151



λx1.equal(x1,stateid(texas))

Also since the FUNQL predicate loc 2 denotes λp.λx1.(loc(x1,x2),p(x2)),

the FUNQL term loc 2(stateid(texas)) is equivalent to:

λx1.loc(x1,x2),equal(x2,stateid(texas)))

There are 13 different non-terminal symbols in the FUNQL grammar. All of them

are from the GEOQUERY logical query language. Only the FORM non-terminal is

not used in FUNQL. QUERY is the start symbol in the FUNQL grammar.

Below are the FUNQL productions for named entities and numbers, which

are identical to those in the GEOQUERY logical query language:

Entity types Sample productions Corresponding λ-functions

City names CITYNAME → austin austin

Country names COUNTRYNAME → usa usa

Place names PLACENAME → tahoe tahoe

River names RIVERNAME → mississippi mississippi

State abbreviations STATEABBREV → tx tx

State names STATENAME → texas texas

Numbers NUM → 0 0

The rest of the FUNQL productions are as follows:

Productions Corresponding λ-functions

CITY → λn.λa.λx1.equal(x1,cityid(n,a))

cityid(CITYNAME,STATEABBREV)

CITY → cityid(CITYNAME, ) λn.λx1.equal(x1,cityid(n, ))

COUNTRY → λn.λx1.equal(x1,countryid(n))

countryid(COUNTRYNAME)

PLACE → placeid(PLACENAME) λn.λx1.equal(x1,placeid(n))

RIVER → riverid(RIVERNAME) λn.λx1.equal(x1,riverid(n))

STATE → stateid(STATENAME) λn.λx1.equal(x1,stateid(n))

152



Productions Corresponding λ-functions

CITY → capital(all) λx1.capital(x1)

CITY → city(all) λx1.city(x1)

COUNTRY → country(all) λx1.country(x1)

PLACE → lake(all) λx1.lake(x1)

PLACE → mountain(all) λx1.mountain(x1)

PLACE → place(all) λx1.place(x1)

RIVER → river(all) λx1.river(x1)

STATE → state(all) λx1.state(x1)

CITY → capital(CITY) λp.λx1.(capital(x1),p(x1))

CITY → capital(PLACE) λp.λx1.(capital(x1),p(x1))

CITY → city(CITY) λp.λx1.(city(x1),p(x1))

PLACE → lake(PLACE) λp.λx1.(lake(x1),p(x1))

CITY → major(CITY) λp.λx1.(major(x1),p(x1))

PLACE → major(PLACE) λp.λx1.(major(x1),p(x1))

RIVER → major(RIVER) λp.λx1.(major(x1),p(x1))

PLACE → mountain(PLACE) λp.λx1.(mountain(x1),p(x1))

PLACE → place(PLACE) λp.λx1.(place(x1),p(x1))

RIVER → river(RIVER) λp.λx1.(river(x1),p(x1))

STATE → state(STATE) λp.λx1.(state(x1),p(x1))

NUM → area 1(CITY) λp.λx1.(area(x2,x1),p(x2))

NUM → area 1(COUNTRY) λp.λx1.(area(x2,x1),p(x2))

NUM → area 1(PLACE) λp.λx1.(area(x2,x1),p(x2))

NUM → area 1(STATE) λp.λx1.(area(x2,x1),p(x2))

CITY → capital 1(COUNTRY) λp.λx1.(capital(x2,x1),p(x2))

CITY → capital 1(STATE) λp.λx1.(capital(x2,x1),p(x2))

STATE → capital 2(CITY) λp.λx1.(capital(x1,x2),p(x2))

NUM → density 1(CITY) λp.λx1.(density(x2,x1),p(x2))

NUM → density 1(COUNTRY) λp.λx1.(density(x2,x1),p(x2))

NUM → density 1(STATE) λp.λx1.(density(x2,x1),p(x2))

NUM → elevation 1(PLACE) λp.λx1.(elevation(x2,x1),p(x2))

PLACE → elevation 2(NUM) λn.λx1.elevation(x1,n)

153



Productions Corresponding λ-functions

PLACE → high point 1(STATE) λp.λx1.(high point(x2,x1),p(x2))

STATE → high point 2(PLACE) λp.λx1.(high point(x1,x2),p(x2))

PLACE → higher 2(PLACE) λp.λx1.(higher(x1,x2),p(x2))

NUM → len(RIVER) λp.λx1.(len(x2,x1),p(x2))

CITY → loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY → loc 1(CITY) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY → loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY → loc 1(RIVER) λp.λx1.(loc(x2,x1),p(x2))

COUNTRY → loc 1(STATE) λp.λx1.(loc(x2,x1),p(x2))

STATE → loc 1(CITY) λp.λx1.(loc(x2,x1),p(x2))

STATE → loc 1(PLACE) λp.λx1.(loc(x2,x1),p(x2))

STATE → loc 1(RIVER) λp.λx1.(loc(x2,x1),p(x2))

CITY → loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

CITY → loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

PLACE → loc 2(CITY) λp.λx1.(loc(x1,x2),p(x2))

PLACE → loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

PLACE → loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER → loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER → loc 2(STATE) λp.λx1.(loc(x1,x2),p(x2))

STATE → loc 2(COUNTRY) λp.λx1.(loc(x1,x2),p(x2))

RIVER → longer(RIVER) λp.λx1.(longer(x1,x2),p(x2))

PLACE → lower 2(PLACE) λp.λx1.(lower(x1,x2),p(x2))

STATE → next to 1(STATE) λp.λx1.(next to(x2,x1),p(x2))

STATE → next to 2(STATE) λp.λx1.(next to(x1,x2),p(x2))

STATE → next to 2(RIVER) λp.λx1.(next to(x1,x2),p(x2))

NUM → population 1(CITY) λp.λx1.(population(x2,x1),p(x2))

NUM → population 1(COUNTRY) λp.λx1.(population(x2,x1),p(x2))

NUM → population 1(STATE) λp.λx1.(population(x2,x1),p(x2))

NUM → size(CITY) λp.λx1.(size(x2,x1),p(x2))

NUM → size(COUNTRY) λp.λx1.(size(x2,x1),p(x2))

NUM → size(STATE) λp.λx1.(size(x2,x1),p(x2))

154



Productions Corresponding λ-functions

CITY → traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

COUNTRY → traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

STATE → traverse 1(RIVER) λp.λx1.(traverse(x2,x1),p(x2))

RIVER → traverse 2(CITY) λp.λx1.(traverse(x1,x2),p(x2))

RIVER → traverse 2(COUNTRY) λp.λx1.(traverse(x1,x2),p(x2))

RIVER → traverse 2(STATE) λp.λx1.(traverse(x1,x2),p(x2))

CITY → largest(CITY) λp.λx1.largest(x1,p(x1))

PLACE → largest(PLACE) λp.λx1.largest(x1,p(x1))

STATE → largest(STATE) λp.λx1.largest(x1,p(x1))

STATE → λp.λx1.largest(x2,

largest one(area 1(STATE)) (area(x1,x2),p(x1)))

CITY → λp.λx1.largest(x2,

largest one(density 1(CITY)) (density(x1,x2),p(x1)))

STATE → λp.λx1.largest(x2,

largest one(density 1(STATE)) (density(x1,x2),p(x1)))

CITY → λp.λx1.largest(x2,

largest one(population 1(CITY)) (population(x1,x2),p(x1)))

STATE → λp.λx1.largest(x2,

largest one(population 1(STATE)) (population(x1,x2),p(x1)))

CITY → smallest(CITY) λp.λx1.smallest(x1,p(x1))

NUM → smallest(NUM) λp.λx1.smallest(x1,p(x1))

PLACE → smallest(PLACE) λp.λx1.smallest(x1,p(x1))

STATE → smallest(STATE) λp.λx1.smallest(x1,p(x1))

STATE → λp.λx1.smallest(x2,

smallest one(area 1(STATE)) (area(x1,x2),p(x1)))

STATE → λp.λx1.smallest(x2,

smallest one(density 1(STATE)) (density(x1,x2),p(x1)))

CITY → λp.λx1.smallest(x2,

smallest one(population 1(CITY)) (population(x1,x2),p(x1)))

STATE → λp.λx1.smallest(x2,

smallest one(population 1(STATE)) (population(x1,x2),p(x1)))

155



Productions Corresponding λ-functions

PLACE → highest(PLACE) λp.λx1.highest(x1,p(x1))

PLACE → lowest(PLACE) λp.λx1.lowest(x1,p(x1))

RIVER → longest(RIVER) λp.λx1.longest(x1,p(x1))

RIVER → shortest(RIVER) λp.λx1.shortest(x1,p(x1))

NUM → count(CITY) λp.λx1.count(x2,p(x2),x1)

NUM → count(PLACE) λp.λx1.count(x2,p(x2),x1)

NUM → count(RIVER) λp.λx1.count(x2,p(x2),x1)

NUM → count(STATE) λp.λx1.count(x2,p(x2),x1)

NUM → sum(NUM) λp.λx1.sum(x2,p(x2),x1)

CITY → most(CITY) λp′.λx1.most(x1,x′,p′(x1)), where

p′ contains one and only one free variable, x′

PLACE → most(PLACE) λp′.λx1.most(x1,x′,p′(x1))

RIVER → most(RIVER) λp′.λx1.most(x1,x′,p′(x1))

STATE → most(STATE) λp′.λx1.most(x1,x′,p′(x1))

CITY → fewest(CITY) λp′.λx1.fewest(x1,x′,p′(x1))

PLACE → fewest(PLACE) λp′.λx1.fewest(x1,x′,p′(x1))

RIVER → fewest(RIVER) λp′.λx1.fewest(x1,x′,p′(x1))

STATE → fewest(STATE) λp′.λx1.fewest(x1,x′,p′(x1))

CITY → λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(CITY,CITY)

PLACE → λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(PLACE,PLACE)

RIVER → λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(RIVER,RIVER)

STATE → λp1.λp2.λx1.(p1(x1),p2(x1))

intersection(STATE,STATE)

CITY → exclude(CITY,CITY) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

PLACE → exclude(PLACE,PLACE) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

RIVER → exclude(RIVER,RIVER) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

STATE → exclude(STATE,STATE) λp1.λp2.λx1.(p1(x1),not(p2(x1)))

156



Productions Corresponding λ-functions

QUERY → answer(CITY) λp.answer(x1,p(x1))

QUERY → answer(COUNTRY) λp.answer(x1,p(x1))

QUERY → answer(NUM) λp.answer(x1,p(x1))

QUERY → answer(PLACE) λp.answer(x1,p(x1))

QUERY → answer(RIVER) λp.answer(x1,p(x1))

QUERY → answer(STATE) λp.answer(x1,p(x1))

A.3 CLANG: The ROBOCUP Coach Language

In the ROBOCUP Coach Competition, teams compete to provide effective

instructions to advice-taking agents in the simulated soccer domain. Coaching in-

structions are provided in a formal coach language called CLANG (Chen et al.,

2003, Sec. 7.7).

The CLANG grammar described here basically follows the one described

in Chen et al. (2003). We have slightly modified CLANG to introduce a few con-

cepts that are not easily describable in the original CLANG language. These new

constructs are marked with asterisks (∗).

In CLANG, coaching instructions come in the form of if-then rules. Each

if-then rule consists of a condition and a directive:

RULE → (CONDITION DIRECTIVE)

Possible conditions are:

Productions Meaning of predicates

CONDITION → (true) Always true.

CONDITION → (false) Always false.

157



Productions Meaning of predicates

CONDITION → (ppos PLAYER At least UNUM1 and at most UNUM2 of

UNUM1 UNUM2 REGION) PLAYER is in REGION.

CONDITION → (ppos-any PLAYER REGION)∗ Some of PLAYER is in REGION.

CONDITION → (ppos-none our REGION)∗ None of our players is in REGION.

CONDITION → (ppos-none opp REGION)∗ None of the opponents is in REGION.

CONDITION → (bpos REGION) The ball is in REGION.

CONDITION → (bowner PLAYER) PLAYER owns the ball.

CONDITION → (playm bko) Specific play modes (Chen et al., 2003).

CONDITION → (playm time over)

CONDITION → (playm play on)

CONDITION → (playm ko our)

CONDITION → (playm ko opp)

CONDITION → (playm ki our)

CONDITION → (playm ki opp)

CONDITION → (playm fk our)

CONDITION → (playm fk opp)

CONDITION → (playm ck our)

CONDITION → (playm ck opp)

CONDITION → (playm gk our)

CONDITION → (playm gk opp)

CONDITION → (playm gc our)

CONDITION → (playm gc opp)

CONDITION → (playm ag our)

CONDITION → (playm ag opp)

CONDITION → "IDENT" Condition named IDENT. See definec.

CONDITION → (< NUM1 NUM2) NUM1 is smaller than NUM2. Both

NUM1 and NUM2 can be identifiers.

CONDITION → (> NUM1 NUM2) NUM1 is greater than NUM2.

CONDITION → (<= NUM1 NUM2) NUM1 is not greater than NUM2.

CONDITION → (== NUM1 NUM2) NUM1 is equal to NUM2.

CONDITION → (>= NUM1 NUM2) NUM1 is not smaller than NUM2.

158



Productions Meaning of predicates

CONDITION → (!= NUM1 NUM2) NUM1 is not equal to NUM2.

CONDITION → (and CONDITION1 CONDITION2) CONDITION1 and CONDITION2.

CONDITION → (or CONDITION1 CONDITION2) CONDITION1 or CONDITION2.

CONDITION → (not CONDITION) CONDITION is not true.

Directives are lists of actions for individual players to take:

Productions Meaning of predicates

DIRECTIVE → (do PLAYER ACTION) PLAYER should take ACTION.

DIRECTIVE → (dont PLAYER ACTION) PLAYER should avoid taking ACTION.

Possible actions are:

Productions Meaning of predicates

ACTION → (pos REGION) Go to REGION.

ACTION → (home REGION) Set default position to REGION.

ACTION → (mark PLAYER) Mark PLAYER (usually opponents).

ACTION → (markl REGION) Mark the passing lane from current ball position

to REGION.

ACTION → (markl PLAYER) Mark the passing lane from current ball position

to position of PLAYER (usually opponents).

ACTION → (oline REGION) Set offside-trap line to REGION.

ACTION → (pass REGION) Pass the ball to REGION.

ACTION → (pass PLAYER) Pass the ball to PLAYER.

ACTION → (dribble REGION) Dribble the ball to REGION.

ACTION → (clear REGION) Clear the ball to REGION.

ACTION → (shoot) Shoot the ball.

ACTION → (hold) Hold the ball.

ACTION → (intercept) Intercept the ball.

ACTION → (tackle PLAYER) Tackle PLAYER.

The following productions are for specifying players: (UNUM stands for “uniform

numbers”, i.e. 1 to 11)

159



Productions Meaning of predicates

PLAYER → (player our {UNUM})∗∗ Our player UNUM.

PLAYER → (player our Our players UNUM1 and UNUM2.

{UNUM1 UNUM2})∗∗

PLAYER → (player our Our players UNUM1, UNUM2 and

{UNUM1 UNUM2 UNUM3})∗∗ UNUM3.

PLAYER → (player our Our players UNUM1, UNUM2, UNUM3

{UNUM1 UNUM2 UNUM3 UNUM4})∗∗ and UNUM4.

PLAYER → (player opp {UNUM})∗∗ Opponent player UNUM.

PLAYER → (player our {0})∗∗ Our team.

PLAYER → (player opp {0})∗∗ Opponent’s team.

PLAYER → (player-range our Our players UNUM1 to UNUM2.

UNUM1 UNUM2)
∗

PLAYER → (player-range opp Opponent players UNUM1 to UNUM2.

UNUM1 UNUM2)
∗

PLAYER → (player-except our Our team except player UNUM

{UNUM})∗

PLAYER → (player-except opp Opponent’s team except player UNUM

{UNUM})∗

Productions marked with double asterisks (∗∗) are slight variations of existing con-

structs in the original CLANG grammar (e.g. as in (bowner our {4})). The new

player predicate is introduced for uniformity. To specify regions, we can use the

following productions:

Productions Meaning of predicates

REGION → POINT A POINT.

REGION → (rec POINT1 POINT2) A rectangle with opposite corners POINT1 and

POINT2.

REGION → (tri POINT1 POINT2 A triangle with corners POINT1, POINT2 and

POINT3) POINT3.

160



Productions Meaning of predicates

REGION → (arc POINT NUM1 A donut arc (Chen et al., 2003).

NUM2 NUM3 NUM4)

REGION → (circle POINT NUM)∗ A circle of center POINT and radius NUM.

REGION → (null) The empty region.

REGION → (reg REGION1 REGION2) The union of REGION1 and REGION2.

REGION → (reg-exclude REGION1 REGION1 excluding REGION2.

REGION2)
∗

REGION → (field)∗ The field.

REGION → (half TEAM)∗ The TEAM’s half of field. TEAM can be

either our or opp.

REGION → (penalty-area TEAM)∗ The TEAM’s penalty area.

REGION → (goal-area TEAM)∗ The TEAM’s goal area.

REGION → (midfield)∗ The midfield.

REGION → (midfield TEAM)∗ The TEAM’s midfield.

REGION → (near-goal-line TEAM)∗ Near TEAM’s goal line.

REGION → (from-goal-line TEAM NUM1 to NUM2 meters from TEAM’s goal

NUM1 NUM2)
∗ line.

REGION → (left REGION)∗ The left half of REGION (from our team’s

perspective).

REGION → (right REGION)∗ The right half of REGION.

REGION → (left-quarter REGION)∗ The left quarter of REGION.

REGION → (right-quarter REGION)∗ The right quarter of REGION.

REGION → "IDENT" Region named IDENT. See definer.

To specify points, we can use the following productions:

Productions Meaning of predicates

POINT → (pt NUM1 NUM2) The xy-coordinates (NUM1, NUM2).

POINT → (pt ball) The current ball position.

POINT → POINT1 + POINT2 Coordinate-wise addition.

POINT → POINT1 - POINT2 Coordinate-wise subtraction.

POINT → POINT1 * POINT2 Coordinate-wise multiplication.

161



Productions Meaning of predicates

POINT → POINT1 / POINT2 Coordinate-wise division.

POINT → (pt-with-ball-attraction POINT1 + ((pt ball) * POINT2).

POINT1 POINT2)
∗

POINT → (front-of-goal TEAM)∗ Directly in front of TEAM’s goal.

POINT → (from-goal TEAM NUM)∗ NUM meters in front of TEAM’s goal.

The following CLANG statements can be used to define names for conditions and

regions. These names (IDENT) can be used to simplify the definition of if-then

rules:

STATEMENT → (definec "IDENT" CONDITION)

STATEMENT → (definer "IDENT" REGION)

Note that an if-then rule is also a CLANG statement:

STATEMENT → RULE

STATEMENT is the start symbol in the CLANG grammar.

162


