
Chapter 2: An Introduction to Make�les 5

2 An Introduction toMake�les

You need a �le called a make�le to tell make what to do. Most often, the make�le tells make

how to compile and link a program.

In this chapter, we will discuss a simple make�le that describes how to compile and link a text

editor which consists of eight C source �les and three header �les. The make�le can also tell make

how to run miscellaneous commands when explicitly asked (for example, to remove certain �les as

a clean-up operation). To see a more complex example of a make�le, see Appendix B [Complex

Make�le], page 149.

When make recompiles the editor, each changed C source �le must be recompiled. If a header

�le has changed, each C source �le that includes the header �le must be recompiled to be safe.

Each compilation produces an object �le corresponding to the source �le. Finally, if any source �le

has been recompiled, all the object �les, whether newly made or saved from previous compilations,

must be linked together to produce the new executable editor.

2.1 What a Rule Looks Like

A simple make�le consists of \rules" with the following shape:

target : : : : dependencies : : :

command
: : :

: : :

A target is usually the name of a �le that is generated by a program; examples of targets are

executable or object �les. A target can also be the name of an action to carry out, such as `clean'

(see Section 4.4 [Phony Targets], page 28).

A dependency is a �le that is used as input to create the target. A target often depends on

several �les.

A command is an action that make carries out. A rule may have more than one command, each

on its own line. Please note: you need to put a tab character at the beginning of every command

line! This is an obscurity that catches the unwary.



6 GNU make

Usually a command is in a rule with dependencies and serves to create a target �le if any of

the dependencies change. However, the rule that speci�es commands for the target need not have

dependencies. For example, the rule containing the delete command associated with the target

`clean' does not have dependencies.

A rule, then, explains how and when to remake certain �les which are the targets of the particular

rule. make carries out the commands on the dependencies to create or update the target. A rule

can also explain how and when to carry out an action. See Chapter 4 [Writing Rules], page 19.

A make�le may contain other text besides rules, but a simple make�le need only contain rules.

Rules may look somewhat more complicated than shown in this template, but all �t the pattern

more or less.

2.2 A Simple Make�le

Here is a straightforward make�le that describes the way an executable �le called edit depends

on eight object �les which, in turn, depend on eight C source and three header �les.

In this example, all the C �les include `defs.h', but only those de�ning editing commands

include `command.h', and only low level �les that change the editor bu�er include `buffer.h'.



Chapter 2: An Introduction to Make�les 7

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o
cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

main.o : main.c defs.h
cc -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
cc -c insert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o : files.c defs.h buffer.h command.h
cc -c files.c

utils.o : utils.c defs.h
cc -c utils.c

clean :
rm edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is like using one long line, but

is easier to read.

To use this make�le to create the executable �le called `edit', type:

make

To use this make�le to delete the executable �le and all the object �les from the directory, type:

make clean

In the example make�le, the targets include the executable �le `edit', and the object �les

`main.o' and `kbd.o'. The dependencies are �les such as `main.c' and `defs.h'. In fact, each `.o'

�le is both a target and a dependency. Commands include `cc -c main.c' and `cc -c kbd.c'.

When a target is a �le, it needs to be recompiled or relinked if any of its dependencies change.

In addition, any dependencies that are themselves automatically generated should be updated �rst.



8 GNU make

In this example, `edit' depends on each of the eight object �les; the object �le `main.o' depends

on the source �le `main.c' and on the header �le `defs.h'.

A shell command follows each line that contains a target and dependencies. These shell com-

mands say how to update the target �le. A tab character must come at the beginning of every

command line to distinguish commands lines from other lines in the make�le. (Bear in mind that

make does not know anything about how the commands work. It is up to you to supply commands

that will update the target �le properly. All make does is execute the commands in the rule you

have speci�ed when the target �le needs to be updated.)

The target `clean' is not a �le, but merely the name of an action. Since you normally do

not want to carry out the actions in this rule, `clean' is not a dependency of any other rule.

Consequently, make never does anything with it unless you tell it speci�cally. Note that this rule

not only is not a dependency, it also does not have any dependencies, so the only purpose of the

rule is to run the speci�ed commands. Targets that do not refer to �les but are just actions are

called phony targets. See Section 4.4 [Phony Targets], page 28, for information about this kind of

target. See Section 5.4 [Errors in Commands], page 44, to see how to cause make to ignore errors

from rm or any other command.

2.3 How make Processes a Make�le

By default, make starts with the �rst rule (not counting rules whose target names start with

`.'). This is called the default goal. (Goals are the targets that make strives ultimately to update.

See Section 9.2 [Arguments to Specify the Goals], page 90.)

In the simple example of the previous section, the default goal is to update the executable

program `edit'; therefore, we put that rule �rst.

Thus, when you give the command:

make

make reads the make�le in the current directory and begins by processing the �rst rule. In the

example, this rule is for relinking `edit'; but before make can fully process this rule, it must

process the rules for the �les that `edit' depends on, which in this case are the object �les. Each

of these �les is processed according to its own rule. These rules say to update each `.o' �le by

compiling its source �le. The recompilation must be done if the source �le, or any of the header

�les named as dependencies, is more recent than the object �le, or if the object �le does not exist.



Chapter 2: An Introduction to Make�les 9

The other rules are processed because their targets appear as dependencies of the goal. If

some other rule is not depended on by the goal (or anything it depends on, etc.), that rule is not

processed, unless you tell make to do so (with a command such as make clean).

Before recompiling an object �le, make considers updating its dependencies, the source �le and

header �les. This make�le does not specify anything to be done for them|the `.c' and `.h' �les

are not the targets of any rules|so make does nothing for these �les. But make would update

automatically generated C programs, such as those made by Bison or Yacc, by their own rules at

this time.

After recompiling whichever object �les need it, make decides whether to relink `edit'. This

must be done if the �le `edit' does not exist, or if any of the object �les are newer than it. If an

object �le was just recompiled, it is now newer than `edit', so `edit' is relinked.

Thus, if we change the �le `insert.c' and run make, make will compile that �le to update

`insert.o', and then link `edit'. If we change the �le `command.h' and run make, make will

recompile the object �les `kbd.o', `command.o' and `files.o' and then link the �le `edit'.

2.4 Variables Make Make�les Simpler

In our example, we had to list all the object �les twice in the rule for `edit' (repeated here):

edit : main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object �le is added to the system, we might add it

to one list and forget the other. We can eliminate the risk and simplify the make�le by using a

variable. Variables allow a text string to be de�ned once and substituted in multiple places later

(see Chapter 6 [How to Use Variables], page 55).

It is standard practice for every make�le to have a variable named objects, OBJECTS, objs,

OBJS, obj, or OBJ which is a list of all object �le names. We would de�ne such a variable objects

with a line like this in the make�le:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o



10 GNU make

Then, each place we want to put a list of the object �le names, we can substitute the variable's

value by writing `$(objects)' (see Chapter 6 [How to Use Variables], page 55).

Here is how the complete simple make�le looks when you use a variable for the object �les:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

main.o : main.c defs.h
cc -c main.c

kbd.o : kbd.c defs.h command.h
cc -c kbd.c

command.o : command.c defs.h command.h
cc -c command.c

display.o : display.c defs.h buffer.h
cc -c display.c

insert.o : insert.c defs.h buffer.h
cc -c insert.c

search.o : search.c defs.h buffer.h
cc -c search.c

files.o : files.c defs.h buffer.h command.h
cc -c files.c

utils.o : utils.c defs.h
cc -c utils.c

clean :
rm edit $(objects)

2.5 Letting makeDeduce the Commands

It is not necessary to spell out the commands for compiling the individual C source �les, because

make can �gure them out: it has an implicit rule for updating a `.o' �le from a correspondingly

named `.c' �le using a `cc -c' command. For example, it will use the command `cc -c main.c -o

main.o' to compile `main.c' into `main.o'. We can therefore omit the commands from the rules

for the object �les. See Chapter 10 [Using Implicit Rules], page 101.

When a `.c' �le is used automatically in this way, it is also automatically added to the list of

dependencies. We can therefore omit the `.c' �les from the dependencies, provided we omit the

commands.



Chapter 2: An Introduction to Make�les 11

Here is the entire example, with both of these changes, and a variable objects as suggested

above:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

main.o : defs.h
kbd.o : defs.h command.h
command.o : defs.h command.h
display.o : defs.h buffer.h
insert.o : defs.h buffer.h
search.o : defs.h buffer.h
files.o : defs.h buffer.h command.h
utils.o : defs.h

.PHONY : clean
clean :

-rm edit $(objects)

This is how we would write the make�le in actual practice. (The complications associated with

`clean' are described elsewhere. See Section 4.4 [Phony Targets], page 28, and Section 5.4 [Errors

in Commands], page 44.)

Because implicit rules are so convenient, they are important. You will see them used frequently.

2.6 Another Style of Make�le

When the objects of a make�le are created only by implicit rules, an alternative style of make�le

is possible. In this style of make�le, you group entries by their dependencies instead of by their

targets. Here is what one looks like:

objects = main.o kbd.o command.o display.o \
insert.o search.o files.o utils.o

edit : $(objects)
cc -o edit $(objects)

$(objects) : defs.h
kbd.o command.o files.o : command.h
display.o insert.o search.o files.o : buffer.h



12 GNU make

Here `defs.h' is given as a dependency of all the object �les; `command.h' and `buffer.h' are

dependencies of the speci�c object �les listed for them.

Whether this is better is a matter of taste: it is more compact, but some people dislike it because

they �nd it clearer to put all the information about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write rules for. Make�les commonly

tell how to do a few other things besides compiling a program: for example, how to delete all the

object �les and executables so that the directory is `clean'.

Here is how we could write a make rule for cleaning our example editor:

clean:
rm edit $(objects)

In practice, we might want to write the rule in a somewhat more complicated manner to handle

unanticipated situations. We would do this:

.PHONY : clean
clean :

-rm edit $(objects)

This prevents make from getting confused by an actual �le called `clean' and causes it to continue

in spite of errors from rm. (See Section 4.4 [Phony Targets], page 28, and Section 5.4 [Errors in

Commands], page 44.)

A rule such as this should not be placed at the beginning of the make�le, because we do not want

it to run by default! Thus, in the example make�le, we want the rule for edit, which recompiles

the editor, to remain the default goal.

Since clean is not a dependency of edit, this rule will not run at all if we give the command

`make' with no arguments. In order to make the rule run, we have to type `make clean'. See

Chapter 9 [How to Run make], page 89.


