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Billion-Transistor
Architectures: 
There and Back
Again

I n September 1997, Computer published a special issue on billion-
transistor microprocessor architectures.1 Our goal for that issue was
to frame the debate about the direction computer architectures would
take as Moore’s law continues its relentless drive down to atomic
limits. That issue, widely cited, contained a range of visionary pro-

jections from many top researchers, covering the space of architectural pos-
sibilities at the time across a range of candidate markets and domains.

We solicited and selected two sets of papers. The first set enumerated
important emerging trends that were potential drivers of architectural change
in technology, applications, and interfaces. The second set described a num-
ber of visions for designs that could and would scale up to billion-transis-
tor architectures (BTAs). What emerged from the accepted set of papers was
that there was no consensus about which direction microprocessor archi-
tectures are likely to take as chip integration reaches unprecedented levels.

Seven years later, it is both interesting and instructive to look back on that
debate and the projections made. What did the community get right? What
did we miss? What new ideas have since emerged? 

It turned out that many of the authors—a surprising number given the
disparity in opinions—were exactly right about the directions that industry
would take in the near term. However, none of the architectural models dis-
cussed has become dominant, and it is still unclear that any of them will be
the right model for BTAs across a broad swath of future markets. 

LOOKING BACKWARD AT FORWARD PROJECTIONS
Architectures are never designed in a vacuum—they are always affected

by technology, cost, customers, workload, and usability constraints, as well
as marketing initiatives and fads. Because of the complexity of modern sys-
tems, there is also tremendous pressure for architectures to evolve gradually;
major transitions are extremely rare. Consequently, it is important to under-
stand the specific constraints that cause evolution in architectures over time.

Architecture-affecting trends
The 1997 issue contained articles that each predicted a driving external

force that would affect architectures over the next decade. These constraints
fell into three categories—technology, workloads, and hardware/software
interfaces. 
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Technology. Doug Matzke2 presented a prescient
study of on-chip interconnect delay, predicting that
because of faster clocks and growing resistivity in
shrinking wires, only small fractions of a chip would
be reachable in a single cycle by 2012.  Although
many researchers were aware of this trend—several
of the articles cited wire delays as a key driving
issue—this study quantified the extent of the emerg-
ing challenge, unrecognized by many at the time.
Matzke’s projections still hold: The effects of slower
wires continue to increase each year. 

Workloads. Keith Diefendorff and Pradeep
Dubey3 made the case that multimedia workloads
would be the key driver of new computer archi-
tectures. In particular, they predicted that the gen-
eral-purpose processor market would subsume the
high-end DSP market as BTAs inevitably incorpo-
rated support for efficient multimedia execution:
real-time capabilities, loop-specific optimizations,
and subword data parallelism. This unrealized
convergence is still possible because graphics and
signal processing systems are becoming more pro-
grammable, and future general-purpose machines
are likely to exploit more fine-grained concurrency.
Whether the two types of architectures will con-
verge remains an open question.

Binary interfaces. Josh Fisher4 made the case that
fixed instruction sets would become less important
due to “walk-time techniques” such as binary
translation and dynamic recompilation, enabling
many minor application- or market-specific vari-
ations in each family of instruction sets with full
software cross-compatibility. This capability has
not yet become universal, but individual compa-
nies like Transmeta—whose chips run legacy x86
code on a VLIW implementation—rely on such
technology. Additionally, there is evidence that the
major microprocessor vendors are moving in this
direction.

Projections for future BTAs
The 1997 issue included visions of what future

BTAs would be from seven top research groups,
selected to cover the spectrum of leading candidate
architectures. While seven years is a short time in
terms of design generations—fewer than two
assuming a four-year design cycle—it is simultane-
ously a long time in our fast-paced field. 

We ordered the articles in the 1997 issue accord-
ing to the granularity of parallelism exposed to soft-
ware—coarsest to finest—which influences the ease
of partitioning the hardware. The spectrum of
granularities ranged from a single thread running
on a single, enormous, wide-issue superscalar

processor to a chip with numerous small, sin-
gle-issue tiles in which both the computation
and the interfile communication are fully
exposed to software.

This debate about the correct degree of par-
titioning is timely because software and hard-
ware may be headed for a train wreck. The
increasing wire delays that Matzke described
are forcing greater partitioning of hardware,
which could in turn force more partitioning of soft-
ware. Because many applications are still monu-
mentally difficult to parallelize, hardware designers
may provide more processing units but pass the
buck to either compilers or programmers to figure
out how to use them. The right point in this space
(for each application class) must carefully balance
this tension between hardware and software parti-
tioning.

Wide-issue superscalar processors. Yale Patt and his
group5 advocated ultrawide-issue, out-of-order
superscalar processors as the best alternative for
BTAs. They predicted that the first BTAs will con-
tain a single 16- or 32-wide-issue processing core
using out-of-order fetch, large trace caches, and
huge branch predictors to sustain good instruction-
level parallelism (ILP).

At present, industry is not moving toward the
wide-issue superscalar model; the termination of
the Alpha 21464 design—an 8-wide-issue, multi-
threaded out-of-order core—was a significant set-
back. This model suffers from high design
complexity and low power efficiency, which are
both currently of enormous concern to product
groups. Since these issues have not been mitigated,
industry is moving in other directions: The desktop
market has continued with narrow-issue, ultra-
high-frequency cores; the server market has begun
using multithreaded chip multiprocessors; and the
graphics market is starting to use CMPs that are
more fine-grained than server processors. New types
of instruction-set architectures may move wide-issue
superscalar processors back into favor.

Superspeculative superscalar processors. Mikko
Lipasti and John Shen6 proposed Superflow, a
wide-issue superscalar architecture that relied on
heavy data speculation to achieve high perfor-
mance. Like Patt’s group, they assumed an aggres-
sive front end that used a trace, but differed by
proposing a data speculation engine that used
value prediction for loads, load addresses, and
arithmetic instructions, along with load/store
dependence prediction for memory ordering.

Aggressive speculation has become common-
place throughout microprocessor pipelines, but it
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has not yet broadly incorporated value spec-
ulation. Most modern predictors mitigate
performance losses due to deeper pipelines;
as industry has progressively shortened the
clock period, state previously reachable from
a given point becomes unreachable in a sin-
gle cycle, forcing the microarchitecture either
to wait or to guess. Thus, of the speculative
techniques that Lipasti and Shen advocated,
those that facilitated deeper pipelines have
generally been implemented, but most of the
techniques intended to support high ILP in a

wide-issue machine have not.
Simultaneous multithreaded processors. SMT proces-

sors share a superscalar core dynamically and con-
currently, increasing its utilization. Susan Eggers and
coauthors7 accurately predicted that SMT proces-
sors would appear in the near future—both the Intel
Pentium 4 and IBM’s Power5 processor use SMT
technology. However, the number of threads per
individual core is unlikely to increase much beyond
the small number currently appearing, making SMT
an unlikely first-order paradigm for BTAs. All super-
scalar-style cores likely will have some form of SMT
capability, but SMT is not a model that will provide
long-term scalability for future implementations. 

Distributed processors. James E. Smith and Sriram
Vajapeyam8 advocated trace processors as a viable
candidate for BTAs. They argued that logical
uniprocessors—running a single thread—are desir-
able, but because hardware trends will increase the
necessary partitioning, microarchitectures will
inevitably start to resemble parallel processors.
They described trace processors as an example of
a “fourth-generation architecture” in which a sin-
gle logical thread feeds multiple discrete process-
ing engines, one trace at a time. Trace processors
are one approach to finding the sweet spot between
single-thread execution semantics and a necessar-
ily distributed microarchitecture.

Aside from limited clustering in the Alpha 21264,
designers have not yet adopted aggressive microar-
chitectural partitioning, although recent academic
literature frequently describes clustered microar-
chitectures. To tolerate wire delays, high-frequency
processor designers have instead added pipeline
stages for communication—for example, the
Pentium 4—rather than clustering the execution
core. Adding pipeline stages is a short-term solu-
tion for wire delays, so clustering is inevitable for
large processors that support single threads.

Vector IRAM processors. Christoforos Kozyrakis
and colleagues9 advocated placing enormous, high-
bandwidth memories on the processor die—built

using dynamic RAM (DRAM) technology—inte-
grating physical memory with the processor and
thus increasing main memory bandwidth appre-
ciably. They proposed using vector processors to
exploit this additional bandwidth and developing
new compiler techniques to vectorize many appli-
cations previously deemed unvectorizable.

The importance of vector-like media processing
has clearly increased, and vector processors have
remained important at the ultrahigh end of the
computing spectrum—for example, the Japanese
Earth simulator. However, the continued diver-
gence of DRAM and logic processes makes vector
intelligent RAM (VIRAM)-like parts unlikely to
subsume general-purpose processors anytime soon.
Vector-like processors with dedicated and inte-
grated memories are good candidates for data-par-
allel workloads in the embedded space.

Chip multiprocessors. Like many of the other
authors, Lance Hammond and coauthors10 argued
that wire delays and changing workloads will force
a shift to distributed hardware, which in their
model consists of a large number of simple proces-
sors on each chip. Unlike other authors, they
extended that argument to software, claiming that
the programming model is likely to change to
exploit explicit parallelism because a CMP uses
transistors more efficiently than a superscalar
processor only when parallel tasks are available. 

In the high-performance commercial sphere,
CMPs are becoming ubiquitous. IBM’s Power4 has
two processors, Compaq WRL’s proposed Piranha
processor had eight, and Intel has announced plans
to build CMP-based IA-64 processors. In the desk-
top space, however, single-chip uniprocessors are
currently still dominant. A key question is whether
CMPs—made up of simple processors—can scale
effectively to large numbers of processors for non-
server workloads. Computer architecture historians
may be interested to know that the 1997 Computer
issue was where the now widely used CMP acronym
was popularized, although we had first used the term
a few months before in a paper presented at ISCA.

Raw microprocessors. Finally, Elliot Waingold and
coauthors11 proposed Raw microprocessors as the
right model for BTAs. These processors have the fla-
vor of a highly clustered, two-dimensional VLIW
processor in which all of the clusters have indepen-
dent sequencers. Raw processors push partitioning
to an extreme, with numerous extremely simple and
highly distributed processing tiles managed wholly
by software. Statically scheduled instruction streams
at each intertile router manage interprocessor com-
munication. 

Designers need to
find the sweet spot

between single-
thread execution
semantics and 
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architecture.



These systems achieve terrific scalability and effi-
ciency for codes exhibiting statically discoverable
concurrency, such as regular signal processing
applications. However, they still cannot deal effec-
tively with runtime ambiguity, such as statically
unpredictable cache misses or dynamically deter-
mined control, making them unlikely candidates
for BTAs except in specialized domains.

EMERGING TRENDS
A number of constraints and trends, the signifi-

cance of which many researchers (including us) did
not foresee, have emerged since 1997. Some of
these new directions are affecting the march toward
balanced and scalable BTAs.

Superclocked processors
The extent to which faster clocks were driving

designs was known but underappreciated seven
years ago. Since then, industry has continued along
the high-frequency path, emphasizing faster clock
rates over most other factors. This emphasis is most
clearly evident in the Intel x86 family of processors.

In 1989, Intel released the 80386, implemented
in approximately 1-µm technology, with a 33-MHz
clock rate. That frequency corresponded roughly
to 80 fan-out-of-four (FO4) inverters’ worth of
logic per clock cycle, with each inverter driving a
load four times that of its own. By 2003, Intel was
selling 3.2-GHz Pentium 4 chips, implemented in
roughly 90-nm (or .09-µm) technology—a 100-fold
increase in frequency. This speed increase came
from two sources: smaller, faster transistors and
deeper pipelines that chopped the logic up into
smaller pieces. The Pentium 4 has between 12 and
16 FO4 inverters per clock cycle, a decrease of 80
to 85 percent compared to the 80386. 

This rapid clock speed increase—40 percent per
year over the past 15 years—has provided most of
the performance gains as well as being the primary
driver of microarchitectural changes, a result that
few researchers predicted. Most of the new struc-
tures and predictors appearing in complex microar-
chitectures, such as load latency predictors in the
Alpha 21264 and the Pentium 4, are there solely to
support high frequencies, mitigating the ILP losses
resulting from deeper pipelines.

The emphasis on frequency increases has had
three major implications. First, it has hastened the
emergence of power bottlenecks. Second, it has
deferred the need to change instruction sets; since
RISC instruction sets, and the x86 µop equivalents,
were intended to support pipelining effectively,
industry was able to focus on clock scaling with-

out incurring the pain of changing industry-
standard architectures. The dearth of new
ISAs in the past 15 years is more attributable
to the explosion of clock frequency than to a
fundamental end of ISA innovations. Once
design-enabled frequency improvements are
no longer viable, we are likely to see a resur-
gence of ISA changes, although they will
likely be hidden behind a virtual machine
with an x86 interface.

Third, reductions in the logic-per-clock
period are nearing a hard limit; prior work
has shown that reducing the clock period
much below 10 FO4 inverters per cycle is
undesirable.12,13 We are thus quite close to a micro-
architectural bound on frequency improvement.
Further, leakage power is likely to bound the rate
of device-driven frequency improvement. These
two factors suggest that the rate of frequency
increases is about to slow dramatically, forcing a
shift to other strategies for achieving performance.

Power
One factor that has become drastically more

important than any of the 1997 authors predicted
is power consumption, both dynamic and static.
Power issues have moved from being a factor that
designers must simply consider to become a first-
order design constraint in future processors. 

The primary cause of the sudden emergence of
dynamic power as a constraint is the extraordi-
narily rapid and continued growth in clock speeds.
Future BTA designs must consider power efficiency
as a factor in determining the right way to extract
performance from a given software workload—a
necessity that penalizes the conventional wide-issue
superscalar approach.

Static power is just beginning to emerge as a seri-
ous design constraint, but it could be more funda-
mental by limiting the number of devices available
for use at any given time. 

Intel’s recent announcement of new materials—
presumably improved dielectrics—offers some
hope that leakage will not limit available devices
as soon as some thought. However, we could still
eventually find ourselves in a domain in which tran-
sistors continue to shrink but do not get faster,
putting more pressure on extraction of concurrency
for performance rather than raw clock speed. 

These potential new power constraints imply
that designers must balance high performance with
efficient use of transistors, adding another new con-
straint—wire delays being the other—to options
for BTAs. 
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LOOKING FORWARD AGAIN: 
SOME NEW DIRECTIONS

Semiconductor process experts predict a
continued increase in transistor counts for at
least another decade. These increases will
enable an enormous degree of integration,
but the pressing question is, what should we
do with all of this hardware? To answer this
question, researchers are actively exploring
two directions: making processors faster,
which was the focus of the 1997 articles, and
making them better.

Making systems better, not faster
As on-chip devices become extraordinarily small

and more numerous, using them intrinsically
becomes more difficult. They are less reliable, fail
more often, and can consume too much power.
Furthermore, programmers, languages, and com-
pilers may not be able to use them all effectively.
Numerous ongoing research efforts are addressing
these challenges by allocating a fraction of future
hardware budgets to mitigate the downsides of
such enormous device counts. 

Assist threads. Since enough explicit parallel
threads often are not available, researchers have
begun using the parallel thread slots available in
SMT processors for “helper” threads. These helper
threads are designed to improve performance and
have been called variously subordinate threads,
slipstreaming, speculative data-driven threads, or
master-slave threads.14-17 Like SMT, this approach
could benefit a few generations of designs, but it is
not a substitute for scalable hardware or more
effective parallel programming.

Reliability, debugging, and security. David Patterson
has recently been making the case that reliability in
future systems will be paramount and should be
more of a focus for researchers than improved per-
formance. Certainly, many recent reports in the lit-
erature have focused on providing reliable
execution, whether with a result checker,18 relia-
bility-enhancing redundant threads,19,20 or a sys-
tem that supports execution near the edge of
tolerable voltage limits.21

Researchers have also begun using threads to
support software debugging. In related efforts, they
have proposed using hardware support to enhance
security, for example, detecting and preventing
buffer overflows and stack smashing, or providing
fine-grained memory protection.22 Detecting bugs,
recovering from faults, and foiling intruders
(malevolent and otherwise) are all likely to be
important uses for future hardware resources.

Parallel programming productivity. A major under-
lying theme that emerged from the articles in the
1997 issue was the tension between the difficulty
of explicitly partitioning software and the need to
partition future hardware. It is clear that the abil-
ity of software—either compilers or program-
mers—to discover concurrency will have a
first-order effect on the direction of BTAs in each
market. If parallel programming remains
intractably difficult for many applications, chips
with small numbers of wide-issue processors will
dominate, bounded only by complexity and effi-
ciency limits.

We (Jim Goodman, along with his colleague,
Ravi Rajwar) have been developing hardware sup-
port that improves the ease of productive parallel
programming by enabling concurrent execution of
transactions.23 Speculative Lock Elision allows pro-
grammers to include locks that suffer no perfor-
mance penalty if no lock contention occurs, and
the more aggressive Transactional Lock Removal24

provides lock-free execution of critical sections.
Programmers can thus concentrate on getting the
synchronization code right, with a generous use of
locks less likely to kill a program’s performance.

Continuing the quest for performance
As frequency improvements diminish, increased

concurrency must become the primary source of
improved performance. The key concern that archi-
tects must address is the number and size of proces-
sors on future CMP chips. Scaling the number of
simple processors in a CMP beyond a few tens sim-
ply doesn’t make sense given the state of software
parallelization, and it will result in asymptotically
diminishing returns. Similarly, scaling a single core
to billions of transistors will also be highly ineffi-
cient, given the ILP limits in single threads. In our
view, future BTAs should have small numbers of
cores that are each as large as efficiently possible.

The sizes and capabilities of these large future
processors are an open question. The Imagine
processor25 and the follow-on streaming supercom-
puter effort26 both use large numbers of arithmetic
logic units to exploit the data-level parallelism preva-
lent in steaming and vector codes, with high power
efficiency per operation. We (Doug Burger, along
with his colleague, Steve Keckler) have proposed an
alternative approach that exploits concurrency from
irregular codes and from individual threads using
large, coarse-grained processing cores. These large
cores rely on a new class of dataflow-like instruc-
tions sets called EDGE architectures (for explicit data
graph execution—a term that Chuck Moore coined
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while he was at the University of Texas at Austin),
of which the TRIPS architecture will be the first
instance.27 By enabling much larger cores to exploit
concurrency both within and across threads (and
vectors), the hope is that this class of architectures
will permit future BTAs to continue effective per-
formance scaling while avoiding the need to build
“CMPPs” (chip massively parallel processors).

F uture BTAs will be judged by how efficiently
they support distributed hardware without
placing intractable demands on program-

mers. This balance must also factor in efficiency;
hardware that matches the available concurrency’s
granularity provides the best power and perfor-
mance efficiency. Researchers will doubtless con-
tinue to propose new models as they seek to find
the right balance among partitioning, complexity,
and efficiency. Whether the right model for general-
purpose BTAs ends up being one of those advo-
cated in 1997, a more recent one such as some of
those described in this article, or one that has not
yet been discovered, the future for interesting archi-
tectures has never been more open.

What is even more exciting—or scary, depend-
ing on the reader’s perspective—is that the solution
to these problems could have fundamental impli-
cations for both the software stack and software
developers. When efficient, transparent solutions
to hardware partitioning reach their scalability
limit, hardware designers must pass the buck to
software, placing the onus for more performance
on the programming model. 

The next decade in both architecture and soft-
ware systems research promises to be even more
interesting than the last. �
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