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Abstract

We present a novel, yet simple, technology which enables customized database management systems to be
developed very rapidly. Over the last few years, a theory of database implementation was developed to explain
the storage architectures of many commercial DBMSs (i.e., how these systems store and retrieve data)
[Bat85a]. The theory identified basic components of DBMS software, required all components to have the
same interface, and showed that component composition can be achieved in a simple manner.

We are designing a reconfigurable DBMS, called GENESIS, which is based on this theory. A prototype is now
operational. The goal of GENESIS is to take a specification of a DBMS’s storage architecture, and to have the
system reconfigure itself to store and retrieve data according to this architecture.

DBMS software components can be written in a few months. When all components for a target DBMS are
present, writing the architecture specification of the DBMS and reconfiguring the system takes a few hours and

can be accomplished with negligible cost. Building the same DBMS from scratch can take many man-years
and cost hundreds of thousands of dollars.

We believe that the reconfigurable software technology proposed herein embodies an important advance in
tailoring database management systems to specialized applications. We also explain how extensions of this
technology may have applications beyond DBMS software development,

* This work was supported by the National Science Foundation under grant MCS-8317353.



1. Introduction

Database management systems (DBMSs) have proven to be cost-effective tools for organizing and
maintaining large volumes of data. In recent years it has become evident that there are many important
database applications that do not conform to the familiar debit-credit scenario of business-oriented transac-
tions. Statistical databases ((JEE84a]), CAD and engineering databases ([IEE82], [IEE84b]}), textual data-
bases ([Sto82], [Falg85]), and databases for artificial intelligence ([IEE83]) are examples. Owing to their
unusual requirements, it is not surprising that existing ’general-purpose’ DBMSs do not support these
applications efficiently. Special-purpose database management systems are needed.

Database system software is presently customized in one of two ways: systems are developed from
scratch ([Joh83], [Tur79]) or existing systems are enhanced ([Has82], [Sto83]). It is well-known that both
approaches are exceedingly difficult, costly, and not always successful. There is a definite need for tools
that simplify and aid the development of database system software.

A number of researchers have begun to address these problems in the context of specific DBMSs
([Day84], [Car84], [Sto86]). Concurrent with their work, our research has concentrated on the develop-
ment of an encompassing and practical theory of DBMS implementation ([Bat82], [Bat84a], [Bat85a-b}).
The theory provides a common framework to relate disparate results on a wide range of topics on database
research, and reveals the basic components of DBMS software to be modules that realize simple files (file
structures), linksets (record linking structures), and elementary transformations (conceptual-to-internal
mappings). The storage architectures of commercial DBMSs (i.e., how systems store and retrieve data) are
explained by compositions of these building blocks.

We are designing a reconfigurable database management system, called GENESIS, which is based
on this theory. A prototype is now operational. GENESIS can be reconfigured into a DBMS that stores
and retrieves data according to a specified storage architecture. Reconfiguration is accomplished by syn-
thesizing the target DBMS from a library of software modules that correspond to the components of the
theory. The library is extensible, so new modules can be added as needed.

Once a storage architecture has been designed, only the modules that are not present in the library
must be written. As all modules are reusable, we anticipate the need for adding new modules will decrease
as the library enlarges. When all modules are present, the time it takes to write the specification and to
reconfigure GENESIS is a matter of hours, and can be done with negligible cost. This is in sharp contrast to
the way customized DBMSs are presently developed. If the same DBMS was built from scratch, it could
take many man-years and cost hundreds of thousands of dollars.

Constructing software from existing components is an old idea, and certainly every DBMS has been
developed in a modular fashion. However, what distinguishes our approach from others is the way we
define modules. Every module in our system is plug compatible with all other modules in that all support
exactly the same interface. This enables modules to be composed quickly in many different ways by a sim-
ple linking process.

The boundaries of modules that comprise existing DBMSs are drawn differently than ours, and
reflect the ad hoc nature of DBMS software design. Adding new capabilities to an existing DBMS quite
often requires significant rewriting of modules. In contrast, new capabilities are usually encompassed by a
single module in GENESIS, and to add a new module/layer to a storage architecture is a simple task
because of plug-compatible interfaces.

The theory behind reconfigurable database systems is not yet widely known. We review the theory
in Section 2, and illustrate it with the storage architecture of the MRS database management system
([Kor79]). An in-depth presentation of the theory is given in [Bat85a], along with examples of other
storage architectures.

We present the design and mechanics of GENESIS in Section 3 by showing how the MRS architec-
ture has been implemented. (Other storage architectures would be realized in an identical manner). The
future of our work is outlined in Section 4. We specifically examine how concurrency control, query pro-
cessing, and semantic data models fit into our framework. The MRS architecture is used to illustrate these

extensions. We also outline a way that our technology might impact software development beyond the
confines of a DBMS setting.



2. Background

Files and links are fundamental concepts in databases. A file is a set of records that are instances of a sin-
gle record type. A relationship between two or more files is a link, which is a generalization of a CODASYL
set. Each link relates records of one file, called the parens file, to records of other files, called child files. Links
are more general than CODASYL sets in that they can express M:N relationships and that a file can serve as
both parent and child in the same link.

Files and links are logical concepts; that is, their implementation is unspecified. To explain the spectrum
of their implementations, two models are used: the Transformation Model (TM} and the Unifying Model (UM ).

The TM formalizes the notion of conceptual-to-internal mappings and the UM codifies file structures and
record linking mechanisms.

2.1 The Transformation and Unifying Models

A primary function of a DBMS is to map conceptual files and operations to their internal counterparts.
INGRES [St076], for example, maps relations to inverted files. RAPID [Tur79] and SYSTEM R [Ast76] also
begin with relations, but RAPID maps to transposed files and SYSTEM R maps to inverted files with record

clustering. The software that performs conceptual-to-internal mappings is the physical database component of
a DBMS.

An intuitive understanding of conceptual-to-internal mappings is gained by recognizing that a mapping is
a sequence of database definitions that are progressively more implementation-oriented. The sequence begins
with definitions of the conceptual files and their links, and ends with definitions of the internal files and their
links. Each intermediate definition contains both conceptual and internal elements, and thus can be identified

with a level of abstraction that lies between the conceptual and internal levels. In this way, physical databases
can be viewed at different levels of abstraction.

Distinguishing different levels in a DBMS and mapping from one level to an adjacent level is usually
straightforward. In the DBMSs that we have studied, only ten different primitive mappings, henceforth called
elementary transformations, have been used. Elementary transformations map files and links from one level of
abstraction to a lower level. Classical transformations include indexing, encoding, transposition, segmentation,
record fragmenting (also called division), the CODASYL representation of n:m relationships, and horizontal
partitioning. It follows that the conceptual-to-internal mappings of a software-based DBMS can be modeled by
1) taking a generic description of the conceptual files and conceptual links that the DBMS supports, and 2)
applying a well-defined sequence of elementary transformations to produce the generic internal files and inter-
nal links of the DBMS. In the case of INGRES, SYSTEM R, and RAPID, all begin with the same conceptual
files (i.e., relations), but each is distinguished by different sequences of transformations and hence different sets

of internal files and internal links. Modeling storage architectures using elementary transformations is the basis
of the Transformation Model (TM ) [Bat835al.

Once the internal files and internal links are known, the storage structures of the DBMS’s internal data-
base are specified using the Unifying Model (UM) [Bat82], which distinguishes file structures from link struc-
tures. A simple file is a storage structure that organizes records of one or more internal files. Classical simple
files include hash-based, indexed-sequential, B+ trees, dynamic hash-based, and unordered files. A linkset is a
storage structure that implements one or more internal links. Classical linksets include pointer arrays, inverted
lists, ring lists, hierarchical sequential lists, and record clustering (i.e., ’store near’ [Dat82]). It follows that the
storage structures of an internal database are specified by assigning each internal file to a simple file and each
internal link to a linkset. Catalogs of recognized simple files and linksets are given in [Bat85a].

It is important to recognize that conceptual-to-internal mappings and elementary transformations are not
artificial concepts. Each elementary transformation can be realized by a simple layer of software (i.e, an
abstract data type). In turn, the physical database software of a DBMS can be seen as a sequence of these
layers, where the software of different DBMSs are described by different sequences (i.e., different nestings of
abstract data types). The idea of level of abstraction corresponds to the files and links of a DBMS that are visi-
ble at a particular level in its software. Thus, conceptual-to-internal mappings and elementary transformations
are fundamental to the way DBMS software is actually written or can be written.

We illustrate the TM and UM by modeling the operational database system MRS ([Kor79]). We choose
MRS because of its simplicity. Models of INQUIRE, ADABAS, SYSTEM 2000 are given in [Bat85a], IDMS



is described in [Bat84a], INGRES and RAPID are found in [Bat85b], and preliminary models of DMS-1100,
IMS, TOTAL, SPIRES, and CREATABASE are outlined in [Bat84b] and {Cas86].

As aids to explain the transformation model of MRS, we will use three different diagrams: data structure
diagrams (dsd) show the relationships among files and links at a particular level of abstraction, field definition
diagrams (fdd) indicate the fields of record types for each file shown in a dsd, and instance diagrams (id) illus-
trate both dsds and fdds (see Figures 2.2 - 2.4 for examples). Boxes in data structure diagrams represent files
and arrows are links. Boxes in field definition diagrams represent record types. (There are no arrows in fdds).
Boxes in instance diagrams represent record instances and arrows are pointers.

In addition to the usual conventions for drawing dsds, we use two others. First, abstract objects (typically
files) are indicated by dashed outlines in data structure diagrams. Figure 2.1 shows a data structure diagram of
an abstract file W and its materialization as the concrete files F and G and concrete link L.

We apply the terms abstract and concrete to files and links that are relative to a given level of abstraction,
where an abstract file or link is realized by its concrete counterparts. The terms conceptual and internal
represent the most abstract and most concrete representations of files and links in a storage architecture.

...........................

Figure 2.1. Materialization of Abstract File W

Second, pointers to abstract records arise naturally in storage architectures. In order to give such pointers
a physical realization (i.e., a physical address or symbolic key), they must ultimately reference internal records.
To define how pointer references are mapped, we rely on the orientation of record types within a dsd. The
orientation of F and G in Figure 2.1 shows that file F is above file G. We say that F dominates G. This means
that a pointer to an abstract record of type W will actually reference its corresponding concrete record of type F.
For almost all transformations, there is a 1:1 correspondence between abstract records and their dominant con-
crete records; the only exception of which we are aware is full transposition (see [Bat85a]). Note that the domi-
nance concept is recursive; that is, a pointer to a W record is the same as the pointer to its F record, which is the
same as the pointer to the dominant record of the F record, and so on. In this way, pointers {o abstract records
are mapped to internal records.

2.2 A Model of the MRS Database System

MRS is a relational database management system that was implemented at the University of Toronto
([Kor79]). MRS creates a distinct internal database for each conceptual file that is defined by a user. Relation-
ships between different conceptual files are realized by joins rather than by storage structures. The underlying

storage architecture of MRS, therefore, can be revealed by examining how records of a single conceptual file
are stored.

The generic CONCEPTUAL record type that is supported by MRS is shown in Figure 2.2. It consists of
n data fields, F; - - - Fa, where n is user definable. Each data field has a fixed length, so CONCEPTUAL records
have fixed lengths. CONCEPTUAL files are the files that are defined in MRS schemas; CON CEPTUAL records

are the records that are processed by MRS users. The id of Figure 2.2 shows a CONCEPTUAL record with the
value v; in field F; and value vy in field Fy.

The internal files of MRS are materialized in the following way. MRS first maps CONCEPTUAL files to
inverted files. The mapping produces a DATA file, where DATA records are in one-to-one correspondence
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Figure 2.2. The CONCEPTUAL Record Type of MRS

with CONCEPTUAL records. In addition, for each field Fj that is to be indexed, an ABSTRACT_INDEX; file
is created. It is connected to the DATA file by link I; (see Fig. 2.3). 1jis implemented by an inverted list.

If r fields are indexed, there will be one DATA file and r ABSTRACT_INDEX files each connected to
the DATA file by precisely one link. The dsd of Figure 2.3 shows this relationship. (Note the notation ()i in
Figure 2.3 means that zero or more fields may be indexed, each with a different value for j). In the case that no
fields are indexed, CONCEPTUAL records are mapped directly to DATA records.

_CONCEPTUAL ..
DATA DATA
P J :
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ABSTRACT_INDEX ABSTRACT_INDEX; \’
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F; | P \%
J | j J
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Figure 2.3. Indexing of CONCEPTUAL Fields

In the dsd of Figure 2.3, note that the DATA record type is identical to its CONCEPTUAL counterpart.
The ABSTRACT _INDEX; record type has fields F; and Py, Py, is called the parent field of linkset J;. It contains
the parent structures (i.e., inverted list) of I (see id of Figure 2.3).

ABSTRACT INDEX; records are variable in length. As the file structures that MRS uses cannot store
variable-length records, ABSTRACT_INDEX; records are divided into one or more fixed-length fragments.
The first fragment, called an INDEX; record, contains the data field Fj and the first pointer of the inverted list.
The other fragments, called LIST; records, contain the remaining pointers. (A motivation for this division was
that if the data value was a primary key, no LIST; records would be needed). INDEX; is connected to LIST; by
link Lj. L;is implemented as a linear list. The id of Figure 2.4 shows a division of an ABSTRACT_INDEX;
record that resulted in three fragments: an INDEX; record and two LIST; records. Note that in the fdd of Figure
2.4 fragments of field Py, are denoted by +Py. Py, is the parent field of link L; (it contains the pointer to the first
LIST; record) and Cy, is the child field of link L; (it contains a pointer to the next LIST; record).

DATA, INDEX;, and LIST; are the internal files of MRS and I; and L; are the internal links. As men-
tioned earlier, the I links are implemented by inverted lists and the L; links by linear lists. Each internal file is
stored in its own file structure. DATA records are organized by an unordered file. For each j, INDEX; and
LIST; records are respectively organized by a B-tree and unordered file. Thus, if r fields are indexed, there
would be a total of 2*r+1 file structures.
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Figure 2.4. Division of ABSTRACT_INDEX

Figure 2.5 summarizes the storage architecture of MRS. The four tables list how abstract files are

mapped to concrete files (Fig. 2.5b), and how internal files and internal links are mapped to simple files and
linksets (Fig. 2.5¢c-e).

2.3 Comments

The model of MRS accounts for a considerable amount of implementation detail, all of which are essen-

tial to the construction and function of MRS software. It is this level of detail that enables our models to be
used as blueprints for DBMS storage architectures,

Architecture models express the conceptual-to-internal mappings of data in a DBMS. They also can be
used to explain the mappings of operations. MRS, for example, maps operations on CONCEPTUAL files to

operations on DATA and ABSTRACT_INDEX files; operations on ABSTRACT_INDEX files are mapped to
operations on INDEX and LIST files.

We are familiar with many database storage and retrieval algorithms that have been published in the last
fifteen years, and are not aware of any practical example that does not fit our layered paradigm. We are con-

vinced that layering has been an implicit part of explaining and developing database algorithms in the past. Our
research demonstrates the importance of explicit layering.

In the next section, we show how GENESIS implements the TM and UM.
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3. The GENESIS Prototype

A fundamental precept of the TM is the uniformity with which abstract and concrete files and links are
treated. That is, the record types that can be defined and the operations that can be performed at the conceptual
level are exactly the same as those at the internal and intermediate levels. Thus, a single DDL and DML is
sufficient to express the files, links, and operations that occur at every fevel of abstraction.

Defining a DDL and DML that is suitable for use at every level is perhaps the most important and
difficult task in the design of GENESIS because not just any interface can be used. The DDL and DML of
existing systems (e.g., CODASYL) are much too specific or clumsy. For this reason, the present GENESIS
interface is synthetic. The DDL is based on an amalgam of concepts taken from existing DDLs and program-

ming languages. The DML is primarily based on embedded-SQL ([Cha76], [Gra78]) and the extension of SQL
to handle long fields ([Has82}).

We begin with an overview of the GENESIS prototype. We then outline the interface that is shared by
every layer of software that realizes an elementary transformation, and explain the implementation of each

layer in terms of data mappings and operation mappings. We conclude by showing how the composition of
mappings is achieved.

The basic ideas of each section are summarized in the introductory paragraphs. Further details, for
those who are interested, are presented in the paragraphs that follow the bullet ( + ) marker.

3.1 Organization and Overview

Figure 3.1 shows the components of the GENESIS prototype. Their function and relationship, in addition
to the people who interact with GENESIS, are summarized below.

The Database Architecture Administrator (DAA) is responsible for selecting a storage architecture for the
target DBMS. He may choose an existing architecture or create a new one. The DAA reconfigures GENESIS
to this architecture by writing an architecture program. This program compiles conceptual schemas using the
DDL compiler and maps the data definitions of conceptual files and conceptual links to their internal counter-
parts. The mappings are accomplished by prewritten procedures called type transformers which realize the
abstract-to-concrete data definition mappings of elementary transformations. Unless the DBMS architecture
needs to be changed, there is no need to alter an architecture program once it is written. Different storage archi-
tectures are realized by different architecture programs.

The Database Administrator (DBA) is responsible for database design. He develops conceptual schemas
in terms of the GENESIS DDL, and runs the architecture program to convert these schemas into an internal
representation called storage architecture tables. If schemas are modified after they have been compiled, they
must be recompiled in order to update their storage architecture table representations.

Database users write transactions to process database retrievals and updates. The host language is C
[Ker78). The record types that can be defined in GENESIS are more general than the types supported by C, so
users are supplied routines to read and manipulate buffer-resident GENESIS records. These routines compose

the trace manager. Records are transferred between main memory buffers and secondary storage by file opera-
tions which are accessed via the Grand Central module.

Grand Central serves as a routing circuit to modules called expander layers. Each expander layer defines
the abstract-to-concrete operation mappings for an elementary transformation. The number of expander layers
equals the number of elementary transformations needed by a storage architecture. When an operation O on an
abstract file is to be executed and the abstract file is materialized by the elementary transformation T, Grand
Central causes operation Ot of the expander layer for T to be executed. Every expander layer calls the trace
manager to aid in the reading and manipulation of main-memory resident GENESIS records.

Abstract operations are eventually mapped to operations on internal files, which are processed by
JUPITER, the file management system of GENESIS. JUPITER supports both single-keyed and multi-keyed
simple files through a single interface, and handles all YO between main-memory and secondary storage.

In summary, data definition mappings of elementary transformations are handled by type transformers.
Operation mappings are handled by operation expanders. A database schema is compiled and mapped by an
architecture program, which calls the DDL compiler and type transformers. A transcript of these mappings is
stored in architecture tables. A transaction initiates operations on conceptual files and conceptual links. Grand



Central uses the contents of architecture tables to direct the translation of conceptual operations to their internal
counterparts. Operation expanders are called to perform the level-by-level mappings.

The ANSI/SPARC role of database users, who write and execute transactions, and the DBA, who designs
and writes database schemas, remain unchanged ([Tsi78]). Reconfigurable DBMSs, such as GENESIS,
requires an additional party, the DAA, who is responsible for the construction and customization of a DBMS.

We estimate that it may take several days or weeks for the DAA to determine a satisfactory storage archi-
tecture for a given class of applications. It has been our experience that a typical expander layer and its
transformer can be designed, coded, and debugged in one or two months. Once a storage architecture has been
chosen, and when all of the expanders and transformers that are needed are available, GENESIS can be
reconfigured to store and retrieve data according to the target architecture in the time it takes to write the
DBMS’s storage architecture program. This can done in a few hours.
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Figure 3.1 The Configuration of the GENESIS Prototype
3.2 The Layer Interface

3.2.1 DDL

The GENESIS DDL is a mixture of record structuring concepts taken from the C, PASCAL, and COBOL_
programming languages, and the set constructs of DBTG. GENESIS record types can contain fixed-length andd
variable-length fields, scalar and set-valued attributes (henceforth called scalar fields and repeating fields)},
nested scalar and nested repeating fields, and matrices. These constructs underly non-first normal form relation s
([Osz85], [Rot84], {Jae82]). Links support N:M relationships, information carrying sets ([Tsi77]), and mui-
timember sets ([Dat82]).



As mentioned earlier, the GENESIS DDL is used to declare a spectrum of schemas from the conceptual
to the internal levels. As an example of a conceptual schema, Figure 3.2 shows a typical MRS (relational)
schema, i.e., one that contains no nested definitions, LINK, or SET constructs. Figure 3.3 is an example of an
internal schema, which describes an inverted file (at a level of detail comparable to Figure 2.3).

A schema consists of a sequence of four declarations: OPTIONS, TYPES, FILES, and LINKS
{{Smi85)). There are two FILES in the database of Figure 3.3: Employee and Ename_Index whose types are
Employee_Type and Ename_Index_Type, respectively. The Employee_Type lists three scalar fields: Emp#,
Ename, Salary, where Ename is a variable-length string of at most 12 characters. The Offspring field is repeat-

ing and can contain at most 20 elements; the repeating unit is defined by the Dependent_Type, which itself con-
tains a variable-length and a fixed-length field.

The Ename Index_Type has two fields: Ename (the Employee field which is being inverted) and
Inverted List. The Inverted_List field is an unbounded set of POINTERS (i.e., a set whose cardinality has no
limit). The LINKS statement declares Ename_Index to be the parent file and Employee the child file of link EI.
The link key ([Bat82}, [Bat&5a]) for both files is Ename, and the parent field of link El is Inverted List.

The OPTIONS statement declares tags that can be associated with individual fields, files, or links. The

option ’primary_key’ tags fields Emp# of Employee_Type and Ename of Ename_Index_Type. ’unordered’
tags the Employee file and *bplus’ tags Ename_Index.

OPTIONS are used as storage architecture directives. For example, ’bplus’ and 'unordered’ are used to
tag files that are to be stored in B+ trees and unordered file structures, respectively. The role of OPTIONS in
storage architecture design will be amplified in Section 3.3.2 (Type Transformers).

3.2.2 DML

The basic objects in a GENESIS database are records, files, and links. Each has its own data retrieval and
manipulation operations. Record operations process records that are in main-memory, file operations transfer
main-memory records to and from secondary storage, and link operations traverse and alter link occurrences.

Cursors are run-time mechanisms that are used to reference objects and to express operations on objects
([Gra78]). Records, files, and links have their own types of cursors.

In the prototype, only record and file cursors are explicitly supported. A link cursor can be realized by
one or more file cursors, and link operations are primarily accomplished by calls to file operations. For this rea-

son, ad hoc support of links will suffice for the short-term. However, a general-purpose link manager is a long -
range goal.

The cursors and operations that are supported by GENESIS are reviewed in the remainder of this section.

3.2.2.1 Traces and Record Operations

A GENESIS record is an unnormalized relational tuple and is structured as an ordered tree of fields. The
root represents an entire record. Its children are its immediate subfields, their children are their subfields, and
so on. The ordering of nodes reflects the ordering in which fields appear in the record. Leaves correspond to
scalar fields defined over primitive types, such as characters, bytes, floats, and integers, or strings of these types.
Repeating groups and matrices are represented by non-leaf nodes, where their elements are treated as subfields.

Figure 3.4 is a tree representation of an Employee record, where the Employee type was defined in Figure
3.3. Beside each node is the name of the corresponding field and its ordinal number in parentheses. Under
each leaf node is the data value that is contained in the field. The depicted record has Emp#=417G,
Ename="Jones, Ed’, Salary=40,000, and two Offspring: Al and Cindy, both of age 14.

The field name of a node cannot be used as its identifier, as many nodes may share the same name.
Instead, nodes are identified by their trace, i.e., the path from the root to the node in question. The ordinal trace

to the field containing *Cindy’ in Figure 3.4 is (1,4,2,1). Traces serve as cursors to fields of records in
GENESIS.

Unlike many DDLs where there is a compatibility of the record types of the host language and DBMS,
GENESIS record types are more general than those provided by the C language. Special routines, called trace

operations, are used to read and update fields in GENESIS records that are buffer resident. The collection of
all trace operations is the trace manager.
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Emp® (1)  Ename (2)  Salary (3) Offspring (4)
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Figure 3.4. A Tree Representation of an Employee Record

Operation Type ~ Trace Operation Semantics

Navigation
LEFT(trace) reposition trace to left sibling
RIGHT(trace) reposition trace to right sibling
UP(trace ) reposition trace to parent node
DOWN( trace, nth_child ) reposition trace to the nth child

Manipulation

RD( trace, buffer) read scalar field into buffer

WR( trace, buffer) write buffer into scalar field

AD( trace, buffer) add element in buffer to repeating field

DL trace, nth_child ) delete nth_element of repeating field
Uility

MAKE_TRACE( trace, field_pame )  create tracelo specified field

DROP_TRACE( trace ) deallocate trace

INIT_FIELD(1race, buffer ) initialize field in buffer

COUNT_CHILDREN(trace ) return number of subfields of given field

LEN(trace) return length of field

LOC(trace) return starting address of field

Figure 3.5. A Partial List of Trace Operations
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There are three different groups of trace operations: navigational, manipulation, and utility. Navigational
operations position traces, manipulation operations read and update individual fields, and wtility operations
create and delete traces dynamically and provide encoding information (e.g., the number of elements in a
repeating field, the field length in bytes, etc.). A partial list of trace operations is given in Figure 3.5. A detailed
description of the trace manager is given in [Smi85].

3.2.2.2 File Cursors and File Operations

GENESIS operations on files are patterned after embedded SQL operations ({Cha76]) and operations on
long fields ([Has82]). A partial list of operations is given in Figure 3.6.

. Every file in a GENESIS database is assigned an identifier called a file handle or mt_id, which is
used to identify a cursor with a file. Cursors can be dynamically allocated, deallocated, and reassigned to dif-
ferent files.

Records of a file that satisfy a query can be retrieved in two different ways. One way is to initialize a
cursor for file searching (using the RET operation) and to advance the cursor repeatedly (using ADV) to return
the sequence of qualified records one at a time. Note that queries involving joins (i.e., predicates over multiple
files) are not handled by RET; such queries must be decomposed into simpler queries over single files prior to
their processing ([Won76]). Query decomposition is discussed in Section 4.2,

A second way to retrieve records is to follow pointers. The INIT operation prepares a cursor for direct
accessing, and the ACC operation retrieves a record given its pointer. The procedure to follow an inverted list,
for example, is accomplished by INITializing a cursor, storing a pointer in the cursor, and ACCessing the
record. The latter two steps are repeated for each pointer on the list.

Pointers to records can be symbolic or physical addresses, depending on how the records are stored in
simple files. No distinction between pointer types is made by ACC or INIT. In this way, storage structures can
change at the internal level without affecting higher-level algorithms. However, a distinction is made inside
JUPITER, the file management system of GENESIS (see Section 3.3.1).

Other operations include modification (UPD) and deletion (REM) of the current record of a cursor, and
record insertion (INS), which repositions a cursor to the inserted record.

Repeating fields can be retrieved and updated in fragments by the GET and PUT operations. These
operations use long field cursors to indicate the sequence of elements in the field that are to be transferred.
Fragments always contain an integral number of elements.

Figure 3.6 summarizes these operations. There are other operations, such as database creation, open, and
close; transaction start, abort, and commit; and file loading and sorting. They have straightforward semantics
and are not considered here.
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Operation

Semantics

MAKE_FILE_CURSOR(F_cursor, mt_id )
DROP_FILE_CURSOR(F_cursor)
REASSIGN(F_cursor, new_mt_id )

RET( F_cursor, query, into_list, position )

ADV(F_cursor)

INIT(F_cursor, query, into_list )
ACC(F_cursor)

REM( F_cursor)
UPD(F_cursor)

INS(F_cursor, hold_option )

MAKE FIELD_CURSOR(F_cursor, trace, L_cursor)
DROP_FIELD_CURSOR( L _cursor)

GET(L_cursor, #_of elements, buffer, buf_size)
PUT( L_cursor, #_of_elements, buffer)

Figure 3.6 A Partial

create file cursor for file with handle mt_id
delete file cursor
reassign file cursor to another file

prepare F_cursor for record retrieval.

query is a selection predicale, into_list contains
trace-buffer pairs for the input and output of
individual fields, position specifies initial

positioning of F_cursor (before_first or at_first record)

advance F_cursor to point to next record
1o be retrieved

prepare F_cursor for pointer following
follow pointer in F_cursor to access record

delete record referenced by F_cursor

update record referenced by F_cursor;
trace-buffer pairs that are flagged on F_cursor’s
into_list indicate the fields to be updated and
the buffers containing their new values

insert record into the file of F_cursor;
field values of record are referenced in F_cursor’s
into_list; hold_option is true if record is to be updated

shortly after insertion

create a cursor {o a long field
delete cursor to long field

long field retrieval
long field update

List of File Operations
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3.3 The Layer Implementation

Every layer of software that realizes an elementary transformation features the interface described in Sec-
tion 3.2. We explain in the following sections how layers are implemented.

We begin with a brief description of JUPITER, the file management system and the lowest layer of
GENESIS. Implementing elementary transformations requires the abstract-to-concrete mappings of both data
definitions and operations. We show how data definitions are mapped by procedures called type transformers,
and how file operations are mapped by procedures called operation expanders. We conclude by explaining how
expanders relate to software layers and how operation mappings are composed.

3.3.1 The JUPITER File Management System

JUPITER is a general-purpose file management system ([Gar85]). It is composed of five layers and
resides on UNIX (See Fig. 3.7). The bottom layer is the buffer manager. 1t handles block /O and coordinates
the usage of buffers via an LRU replacement strategy. The next higher layer is the recovery manager, which
uses Lorie’s shadowing algorithm ([Lor77]). Above the recovery manager is the block manager. It handles the
storage and retrieval of records within buffer-resident blocks. Records can either be fixed-length or variable-
length, and can be either anchored (i.e., have fixed storage locations) or unanchored. In all, four different block
formats are handled.

I JUPITER USER

h 4
FILE MANAGER
*|% :
<+ : Legend
NODE MANAGER :
manager A
JUPITER i calls
FILE : : manager B
: BLOCK MANAGER :
MANAGEMENT : : 8 |
SYSTEM : :
RECOVERY MANAGER : #% only for volume open,
: close, commit, and
- abort.
BUFFER MANAGER :
4 h
I UNIX

Figure 3.7 The Organization of JUPITER

Nodes or frames have been shown to be the basic components of file structures ([Mar81], [Bat82]). The
node manager provides nodes and operations on nodes as primitives, and relies on the block manager for
lower-level support. Four different types of node implementations are available: 1) primary block only, 2) pri-
mary block with unshared overflow blocks , 3) primary block with shared overflow blocks, and 4) unshared
overfiow blocks only. Each is illustrated in Figure 3.8. (Note that shared overflow blocks contain records of
different nodes, whereas unshared overflow blocks contain records of a single node).

The highest layer is the file manager. It presents a uniform interface to all single-keyed and multi-keyed
file structures. By doing so, a measure of data independence is achieved. Simple file implementations in a
DBMS storage architecture can be changed without forcing modifications to the software that reference therm.
JUPITER presently features indexed-sequential, indexed-aggregate, B+ tree, deferred B+ tree, unordered,
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'a)  primary block only:

b) primary block

with unshared overflow:

(c) primary block

with shared overflow:
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]
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Figure 3.8 Node Implementations in JUPITER
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hash-based, heap, and multi-keyed hashing file structures. (Useful variations of these structures can be gen-

erated by altering their node and block implementations ([Gar85]). This is easily done by resetting the block
and node implementation flags prior to file creation).

JUPITER is extensible. Different buffer and recovery management algorithms, such as those described
in ([E184], [Eff84]), have been introduced by replacing the existing buffer or recovery manager while retaining
the same interface. (Recovery using logs would require more extensive changes). New file structure algo-
rithms can be added easily. Furthermore, they can be coded quickly because many of the difficult-to-write

primitives are already provided by the block and node managers. A detailed description of JUPITER is forth-
coming.

3.3.2 Type Transformers and Architecture Programs

A formalization of conceptual-to-internal mappings are architecture programs, which translate the data
definitions of conceptual files (e.g., record types) to their internal counterparts using type transformers.
([Tsu85]). Type transformers are procedures that handle the details of entering architecture specifications into

tables, called storage architecture tables. These tables are used to direct the conceptual-to-internal mappings of
file operations.

An architecture program for MRS is shown in Figure 3.11. All architecture programs are very simple and

very short, and hence can be written quickly. An explanation of this program and architecture programs in gen-
eral is given below.

A volume in GENESIS is an area in secondary storage. (A volume corresponds to a UNIX file in the
current version of JUPITER). One or more JUPITER files can be stored in a volume, where a JUPITER file is

the union of the records of one or more internal files. Each JUPITER file is organized by a separate simple file
structure.

An architecture program declares all volumes, JUPITER files, and JUPITER file implementations by calls
to the VOL_DCL, JUPITER FILE DCL, and FILE_IMPL_DCL procedures. Each procedure enters its
declaration into an unused row of one of three tables: the volume table (VT), the JUPITER f{ile table (JFT), and
the file implementation table (FIT). The row number at which a declaration is stored is returned by the pro-
cedure as the handle or id to that volume, JUPITER file, or file implementation. Subsequent references to a
declaration is made via its handle. (When a JUPITER file is declared, the handle of the volume in which the file
is to be stored and the handle of its file structure implementation must be specified. Thus, volumes and simple
file implementations are declared prior to JUPITER files. The assignment of internal files to JUPITER files is
accomplished by INTERNAL, a procedure which will be discussed shortly).

The DDL_COMPILE procedure compiles GENESIS schemas into an internal representation that is
stored in several tables, the most important of which is the field definition table (FDT). Every record type
defined in a schema is identified with a row in the FDT, called its FDT handle (fdt_id).

An architecture program encodes the data definitions of a schema and its conceptual-to-internal mappings
in the mapping table (MT). Every file that is encountered in the conceptual-to-internal translation is identified
with a row of the MT. The number of the row is the mapping table identifier (mz_id) of the file. As we saw in
Section 3.2.2.2 (File Cursors), mt_ids are used as file handles.

The MT row of a file contains the FDT handle of the file’s record type, the identifier of the elementary
transformation which maps the file to one or more concrete files, the number of concrete files to which it is
mapped, the mt_id of the first (the dominant) of these concrete files (the mt_ ids of the subordinate files have
consecutively hxgher mt_id numbers), and the FST handle of the simple file in which records of this file are
stored (applicable if the file is internal).

MT entries are made by procedures called rype transformers which map an abstract file to its concrete file
and concrete link counterparts according to an elementary transformation. In the following, we illustrate type
transformers by showing how MRS schemas are mapped. Note, however, that it is the internal representatiors
of schemas that are actually transformed in the prototype.

Let MRS INDEX(a_mtid, c_mtid, nindex, indx_opt) be the transformer that MRS uses to accomplishh
indexing. It takes as input the handle a_mtid of an abstract file and produces the handle ¢_mtid of the concrete
data file. The handles of the index files which are created are assigned consecutive numbers beginning with
¢_mtid+1. The number of index files that are created is returned in parameter nindex.
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MRS _INDEX looks at the OPTIONS assigned to each field of the abstract record type to determine

which fields are to be inverted. If a field is flagged by the indx_opt option, another input parameter to
MRS _INDEX, then an index file is created.

As an illustration, let a_mtid be the handle of an abstract file whose record type definition is shown in
Figure 3.9a. The type consists of n fields Fy - - - Fn, where field F2 and Fy are tagged with the ’index’ option.
(Actually, any number of fields could be tagged; here we have chosen F; and F; as examples).

Figure 3.9b shows the result of performing MRS_INDEX(a_mtid, ¢_mtid, nindex, ’index’). Record types
for a data file and two index files are produced, along with the declarations for their connecting links. The han-
dle of the data file is returned in ¢_mtid and the handle of the index files are ¢_mtid+1 and ¢_mtid+2. The value
of parameter nindex is 2. Note that the primary key fields of both index record types are tagged by the
*primary_key’ option. This tagging is important for subsequent transformations.

As a general rule, OPTIONS in database schemas specify storage architecture directives such as which

fields to encode or index, which file structures to use, etc. OPTIONS serve as schema-defined parameters to
transformers.

Let MRS _DIVIDE(a_mtid, ¢_mtid, nptr) be the transformer which accomplishes the division that is used
by MRS. It takes as input an abstract index file whose handle 1s a_mtid and produces an index file and list file
whose handles are ¢_mtid and ¢_mtid+1. Parameter nptr is the maximum number of pointers to be stored in a
list record. The link that connects index records to their list records is implemented as a linear list.

As an illustration, let a_mtid be the handle of an abstract index file whose record type definition is given
in Figure 3.10a. The type has two fields: a primary key field F and an inverted list field Py. 1

Figure 3.10b shows the result of performing MRS_DIVIDE(a_mtid, ¢c_mtid, nptr). Record types for an
index file and a list file are produced, along with the declaration of their connecting link. Note that the index
record type contains room for one pointer of the inverted list and each list record can contain as many as nptr

pointers. Futhermore, field F of the index record type is tagged with the ’primary_key’ option, whereas the
fields of the list record type have no tags. :

Let INTERNAL(_mtid, fid , pkey_opt) be the transformer which assigns an internal file with handle
i_mtid to the JUPITER file whose handle is fid. If the simple file implementation of the JUPITER file requires
primary keys, as is the case with B+ trees, hash-based files, and indexed-sequential structures, internal file
i_mtid must have a primary key. INTERNAL recognizes the primary key field by the pkey_opt’ option. 2

With the aid of some additional procedures (transformer utilities), an architecture program can be written
that maps an MRS schema - consisting of one or more CONCEPTUAL files - to its internal representation. Fig-
ure 3.11 shows such a program written in C ([Ker78]). It accepts a file ‘mrs_schema’ containing an MRS
schema as input and outputs a file *mrs_schema_tables’ containing the architecture tables for this schema. This
program is a transcription of the MRS architecture presented in Section 2.2.

As an example of how an architecture program maps the record types of a specific schema, Figure 3.12
illustrates the mapping of the Professor record type defined in the MRS schema of Figure 3.2. A more detailed
explanation of this example, including a listing of architecture tables, is given in Appendix I

1t is worth noting that unless a storage architecture is modified, an architecture program does not change
once it is written. Different architectures are described by different architecture programs.

MRS has a rather simple storage architecture. Although other architectures can be considerably more
complicated (e.g., IDMS), their architecture programs are only a few lines longer than the one presented. It is
because of this simplicity that architecture programs can be developed and modified very quickly.

1 Abstract index records can also have augmented fields. We don’t consider these fields here for simplicity. However, we
do include them in the prototype.

2 Note that unimplementable storage architectures arise when an internal file has no primary key and its JUPITER file im-
plementation Tequires one. A similar error is if two or more internal files are stored in the same JUPITER file and both

internal files have different primary keys (i.e., different lengths or different starting addresses). Transformers can provide
assistance in recognizing these and other errors.
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TYPES
Abstract = /* abstract file */
{ B
Fa indexed;
Fa indexed;
3

TYPES

Data = /* dominant concrete file */
{ F
Fs indexed;
Fa indexed;
b
Fy Index = r* index record type forfield Fp */
{ B . primary_key;
Pip SET (*) OF POINTER;  /* inverted list */
h
Fp_Index = /* index record type for field Fp */
{ Fu primary_Kkey;
Prp, SET (*) OF POINTER;  /* inverted list */
B
LINKS
1F = /* invented list link set ¥/

{ PARENT.LKEY = Fp_Index.F;
PARENT.FIELD = Fp_Index.P g;
CHILD.LXEY = Data.F;

h

1 Fp = /* inverted list linkset */
{ PARENT.LKEY = Fy_Index.Fy;
PARENT.FIELD = Fp_Index.Py r,

(a) CHILD.LKEY = Data.Fy; (b)
b5
Figure 3.9 Data Mappings of MRS_INDEX
TYPES
Index = /* index record type */
{ F primary_key; /* datafield®/
+P; SET (1) OF POINTER; /% 1 pointer */
P POINTER; /* listhead ®/
h
TYPES
List = /* list record type =/
Abstract_Index = /* abstract index record type */ S SET (nptr) OF POINTER; 7% nptr pointers */
{ F primary key; /* data field %/ C POINTER; /™ nexi pointer */
; P SET (*) OF POINTER; 7 inverted list field */ > k
LINKS
L= /* list linkset */
{ PARENT.FIELD = Index.Py;
(a) CHILD.FIELD = ListCy; (b)
%
L.

Figure 3.10 Data Mappings of MRS_DIVIDE



program

mrs_architecture_program( mrs_schema, mrs_schema_tables )
: INIT_TABLES;

DDL_COMPILE( mrs_schema );

VOL_DCL({mrs_vol, ... );

FILE IMPL_DCL( unordered, ... );
FILE IMPL DCL(bplus, ... );

CONCEPTUAL_FILES(nfiles );

for (¢ = 1; ¢ < nfiles; c++)

{
MRS_INDEX( c, d, nindx, ’index’ );

for ( ai = d+1; ai € d+nindx; ai++ )
{
MRS_DIVIDE( ai, i, nptr );

JUPITER_FILE_DCL(index_file, bplus, mrs_vol, ... );
INTERNALC( i, index_file, *primary_key’ );

JUPITER_FILE_DCL(list_file, unordered, mrs_vol, ... );
INTERNAL( i+1, list_file, );

I

JUPITER FILE DCL( data_file, unordered, mrs_vol, ... );
INTERNAL( d, data_{ile, );

IH

WRITE_TABLES( mrs_schema_tables );
b

comments

clear architecture tables

compile schema

declare database volume

declare file implementations

enter definitions of each conceptual

file in the schema into the first

rows of the mapping table; the

number of conceptual files defined

in the schema is returned in ’nfiles’.

for each conceptual file ¢ do..

map file ¢ to its inverted file
counterparts. 'd’ is the mt_id of data file,
nindex is the number of abstract_index files
created, 'index’ is OPTIONS tag to flag
fields to be indexed.

for each abstract index file ai do..

divide abstract_index file

1’ is mt_id of index file;

’i+1” is mt_id of list file

declare B+ tree file structure
store index file in B+ tree

declare unordered file structure
store list file in unordered file

end abstract_index loop

declare unordered file structure
store data file in unordered file

end conceptual loop

save architecture tables

Figure 3.11 An Architecture Program for MRS
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3.3.3 Operation Expanders

An operation expander is a procedure that maps an operation on an abstract file to a sequence of opera-
tions on concrete files, as prescribed by an elementary transformation. Expander mappings do not rely on how
concrete operations are realized at lower levels; they express operation mappings that are independent of the
elementary transformations which may be used to materialize concrete files and their operations. As we noted
in Section 2.3, this is a simple requirement to meet. Moreover, it is this independence which permits different
DBMS storage architectures to be constructed from a common pool of software components.

Again consider MRS. The MRS_INDEX transformation maps an abstract file to an inverted file (ie., a
concrete data file and concrete index files). Operations on inverted files are well-understood. When abstract
records are retrieved their corresponding (dominant) data records are retrieved, along with zero or more index
records. (The index records were used to locate the data records). When an abstract record is updated or

deleted, its corresponding data record is updated or deleted, in addition to the modification of affected index
records.

The MRS _DIVIDE operation mappings are also straightforward. Retrieving an abstract index record
involves the retrieval of its (dominant) index record and the following of a linear-list linkset to access all of its
list records. By concatenating these records, the abstract index record is reconstructed. An update or deletion
of an abstract index record requires the update or deletion of its corresponding index and list records.

The INTERNAL transformation translates operations on files directly to operations on JUPITER files.
As such, operations on internal files can be considered primitives. (Actually, JUPITER has a slightly more

primitive set of operations than the operations listed in Section 3.2.2.2. INTERNAL aigorithms perform this
translation).

In the remainder of this section, we show how two simple operations - MAKE FILE CURSOR and
DROP_FILE CURSOR - are mapped by expanders. Operation mappings for the more complicated operation
of record retrieval (RET and ADV) are presented in Appendix II.

. We will use the following notation to express the mappings of operation expanders:

OPER ATION yansformation —

OPERATION-1;
OPERATION-2;

OPERATION-n;

The operation to the left of — is an operation on an abstract file. Its subscript indicates which elementary
transformation produces this mapping. The sequence of operations to the right of —» are operations on concrete

files and have unspecified transformation subscripts (to denote no reliance on how concrete operations are
implemented at lower levels).

Consider the MAKE_FILE_CURSOR operation and the MRS_INDEX transformation. Suppose that at
most two cursors are needed at any one time to process operations on an inverted file; one is permanently

assigned to the data file and the other is reassignable to any of the index files. It follows that when a cursor is

created for the abstract file, a data file cursor and an index file cursor are also created. The mapping for this
operation is:

MAKE FILE CURSORMrs INDEX( A_cursor, A mtid) —

MAKE _FILE_CURSOR(D_cursor, D_mtid );
MAKE FILE_CURSOR( X_cursor, X_mtid );

A_mtid and D_mtid denote the handles of the abstract file and the data file, and X_mtid is the handle of one of

the index files. (Note that the mapping table MT provides the means to determine D_mtid and X_mtid from:
A_mitid).
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Although it is not shown in this mapping, D_cursor and X_cursor are actually linked as ’subcursors’ to
A_cursor. Subsequent transformations may create subcursors to D_cursor and X_cursor, giving rise to a tree of
cursors rooted at A_cursor. The leaves of the tree are cursors on internal JUPITER) files. With this construc-
tion, it is possible to find the concrete cursors of any abstract cursor quickly. We show an example cursor tree
at the end of the next section (Grand Central).

In a similar manner, DROP_FILE_CURSOR has the expansion:
DROP_FILE_CURSORwMgs_INDEX( A_cursor ) —

DROP_FILE _CURSOR(D_cursor };
DROP_FILE_CURSOR( X_cursor });

Now consider the mapping of these operations by MRS_DIVIDE. Creating (dropping) a cursor on an
abstract index file requires the creation (deletion) of cursors on the corresponding concrete index and concrete
list files. Thus, MAKE_FILE_CURSOR and DROP_FILE CURSOR have simple expansions:

MAKE_FILE_CURSORMzs _pivision( X_cursor, X_mtid ) —

MAKE _FILE CURSOR(I_cursor, I _mtid );
MAKE_FILE_CURSOR( L _cursor, L_mtid );

DROP_FILE__CURSOng_mv}s[ox( X _cursor ) —

DROP_FILE CURSOR(I cursor );
DROP_FILE_CURSOR(L_cursor );

X_mtid is the handle of the abstract index file, and I_mtid and L_mtid are the handles of the index and list files.

As mentioned earlier, MAKE_FILE_CURSORprernaL, DROP_FILE CURSORixTERxAL, and other
INTERNAL operations can be considered primitives which create and destroy JUPITER cursors.

Expanders for other operations and elementary transformations can be written in a straightforward
manner (see Appendix 1I).

3.3.4 Grand Central

Conceptual-to-internal mappings of operations are realized as a composition of abstract-to-concrete map-
pings of operations. This composition is accomplished at run-time by routing the output of one expander layer
to the input of another. The mapping table (MT) contains the routing information. The routing procedures are
collectively called Grand Central. A more advanced method of composition is discussed in Section 4.3.

. Grand Central is a set of procedures, one procedure for each file operation. Each procedure is a
case statement, where the case indicator identifies an elementary transformation. The number of cases equals
the number of expander layers that are needed for a specific architecture. Suppose an abstract file A has the
handle A_mtid. Let MT[A_mtid].xform be the identifier of the elementary transformation which maps A to its
concrete counterpants. (MT.xform is the column of the mapping table MT which contains this identifier). It
follows that the Grand Central procedures for MAKE FILE_CURSOR and RET look like:

MAKE_FILE_CURSOR( A_cursor, A_mtid )
{
switch( MT[ A_mtid ].xform )
{
case MRS_INDEX:
MAKE_FILE_CURSORmrs_mpex( A_cursor, A_mtid );

case MRS _DIVIDE :
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MAKE FILE CUR SORMRSWDIVIDE( A _cursor, A_m ud);

case INTERNAL :
MAKE_FILE_CURSORixtERNAL( A_cursor, A_mtid );
b
b

RET( A_cursor, A_query, A_into_list, position)

{
switch( MT{ A_cursor.mtid ].xform }
{
case MRS_INDEX:
RETwmrs inpex( A_cursor, A_query, A_into_list, position};
case MRS_DIVIDE :
RETwmrs prvipe( A_cursor, A_query, A_into_list, position);
case INTERNAL :
RETinTERNALL A_cursor, A_query, A_into_list, position);
b
b

Procedures for other operations follow the same pattern.

Here’s how Grand Central works. Each procedure of Grand Central directs the expansion of an operation
on abstract files, If an abstract file is materialized by the MRS_INDEX transformation, then the RET, ADV,
etc. operations on the abstract file would be translated into the RETmrs mprx, ADVagrs_INDEX, €IC. operations
on concrete files. In general, if an abstract file is materialized by transformation T, the abstract operation O on
this file is mapped to operation Ot by Grand Central.

Users issue operations on conceptual files in the MRS architecture. These operations are translated by
MRS_INDEX mappings to operations on abstract index files and data files. Operations on abstract index files
are translated by MRS_DIVIDE mappings to operations on index and list files. Operations on data, index, and

Iist files are translated by INTERNAL to operations on JUPITER files. All of these translations are directed by
Grand Central.

As mentioned in Section 3.3.3 (Operation Expanders), a tree of file cursors is created when a cursor on a
conceptual file in an MRS database is created. Figure 3.13 shows this tree. Again, it is a result of composing
MAKE_FILE CURSORMgs iwxpEx, MAKE_FILE CURSORMgs pivioe, and MAKE_FILE _CURSORINTERNAL-
As mentioned earlier, the leaves of the cursor tree are JUPITER cursors (i.e., cursors on INTERNAL files).
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C_cursor (Conceptusl file cursor)

(Daste file cursor) D_cursor X_cursor (Abstract_lIndex file cursor)

(Index file cursor) I_cursor L_cursor (Listfilecursor)

Figure 3.13 A Cursor Tree for the MRS Storage Architecture
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4. Future Research

Reconfigurable database systems require a technology that will take years to perfect. We have taken the

first steps to consolidate theoretical results and practical achievements. The next steps will require basic
research both in databases and software development.

Among the outstanding database issues that remain to be incorporated into the prototype are concurrency
control, query processing, and customized end-user interfaces. Although we are investigating all three, we dis-

cuss the first two in Sections 4.1 and 4.2 to show how layering forces a novel interpretation and generalization
of existing results.

Customizing end-user interfaces is an essential feature of reconfigurable DBMSs. It can take the form of
allowing alternative data models and data languages, allowing new data types and operations to be defined, or
both. A considerable amount of research on these topics is already available ([Shu77], [Hou77}, [Tay79],
[SuB1], [Dem85], [Sto83], [Car84], [Day84], [Lor85], [Sto85]). Our preliminary investigations suggest that

existing results can be accommodated into our framework in a straightforward manner. For this reason, we
direct readers to these references.

From the side of software development, a technology is needed to compose layers of software at compile
time (not at run-time as we are now doing). Compile-time composition has the potential of eliminating
unneeded generality in expanders through code simplification. Furthermore, there is the possibility of applying
our technology to other areas of software development. These topics are the subject of Section 4.3.

As before, the basic ideas of each section are summarized in the introductory paragraphs. Additional
details follow the bullet ( » ) marker.

4.1 Concurrency Control

Concurrency control is an integral component of multiuser database systems. The most common method
to achieve concurrency control is locking; i.e., a transaction can access a data item only if it holds an appropri-
ate lock on that item ([Kor86]). As a general rule, locking protocols have been developed for reading and writ-
ing objects that are visible through a single interface. Reconfigurable database technology requires more
sophistication because a series of interfaces are crossed in conceptual-to-internal mappings. At each interface,
objects in addition to conceptual objects may appear (e.g., indices, fragment files, etc.), and protocols for read-
ing and writing them are needed. It is often the case that protocols, such as two-phase locking (2PL), which are
appropriate at the conceptual level may not be optimal at the internal level.

An accurate way to characterize the locking protocol of a DBMS is by a composition of the protocols that
are applied at each layer in its storage architecture. This concept is illustrated below.

Placing and releasing locks on records are special database operations. Consequently, they are sub-
ject to mappings. It is not unusual, for example, that locking a conceptual record may generate locks on one or

more internal records. A simple set of rules appears to govern the mapping of record locks, so that consistency
at a higher level is preserved at lower levels ([Cul85]):

(1) A lock on an abstract record is always mapped to a lock on its dominant concrete record.
(2)  Arecord lock becomes a page lock if mapped by the internal or layering transformation.

(3) Secondary records created by division and segmentation are indirectly locked by locking their primary

record. That is, locking the primary path to secondary records prevents them from being accessed by oth-
ers.

Note that these rules do not say when locks should be placed or released (this is the responsibility of the locking
protocol), but rather Aow a lock on an abstract object is inherited by concrete objects. Thus we distinguish
between locking protocols and lock mappings.

Lock mapping in MRS occurs in the following way (see Fig. 4.1). A lock on a CONCEPTUAL record
becomes a lock on its DATA record by rule (1). A lock on an ABSTRACT_INDEX record becomes a lock on
its INDEX record, again by rule (1). LIST records need not be locked, even if they are read or updated, by rule
(3). Locks on DATA and INDEX records are locks on internal records. Lock mappings can either stop here, or
they can be translated into page locks by rule (2). (This means that two different versions of the MRS
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architecture could be constructed, each with a different lock granularity, i.e., records vs. pages).

MRS uses 2PL for concurrency control at the conceptual level. However, a non-2PL. protocol is used for
locking ABSTRACT INDEX records and their corresponding INDEX records. As mentioned above, LIST
records are not Jocked at all. Thus, if the locking protocol of MRS were explained solely in terms of internal
records, it would be an odd mixture of rules which would not correspond at all with recognized protocols.
Viewed in a layered manner, where the semantics of the objects that are being locked are taken into account,
the MRS protocol can be easily seen as a composition of familiar results.

A reconfigurable DBMS could provide a selection of protocols at any given layer. System R, for exam-

ple, has a software layer similar to MRS INDEX. However, it uses 2PL to lock ABSTRACT_INDEX records.
IDMS uses a variant of 2PL at the conceptual level.

CONCEPTUAL

Legend

a record lock R PR RRCTL BERIL SRR

ﬂ )B Tock mapping B’a NDEX §

Figure 4.1 Conceptual-to-Internal Lock Mappings in MRS

It appears possible to integrate concurrency control into expander layers, so that multiuser DBMSs can be

constructed from components just as easily as that for single user systems. A general theory of lock mappings
will be needed to provide the required groundwork.

4.2 Query Processing

Query processing is a fundamental area of database research. The seminal results have concentrated on
relational DBMS:s (e.g., [Sel79], [Won76]). Extensions have generalized their scope so that query processing in
network, hierarchical, and relational databases are subsumed as special cases (e.g., [Che84], [Wha831,
[Ros82]). Current research addresses the challenges of non-1NF relations, abstract data types, complex objects,
and recursive queries (e.g., [Rot85], [Sto85], [Lor85], [Uli85]).

Reconfigurable DBMS technology requires query processing algorithms to be consolidated and recast
into a layered framework. This calls for known algorithms to be decomposed into layers, so that each process-
ing strategy and optimization strategy is localized to a specific layer. Thus, a query processing algorithm which

covers multiple layers would be reconstructed by the composition of the optimizations and strategies of the
layers that it references.

Queries are usually posed at the external level; it is the responsibility of the DBMS to map queries to the

internal level. A layered model of query processing must account for external-to-internal mappings in a unified
way. An example of layered decomposition is given below.
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Consider the conceptual Employee and Department record types (relations) which both have
indices on the Dept field:

TYPE Employee =

{
E# INT primary_key;
Ename SET (10) OF CHAR;
Salary FLOAT;
Dept SET (8) OF CHAR indexed;

b

TYPE Department =

{
D# INT primary key;
Dept STRING (8) OF CHAR indexed;
Building  STRING (10) OF CHAR;
City STRING (10) OF CHAR;

b

A view file (relation) of the equi-join of Employee and Department is declared in SQL as:

DEFINE VIEW Empdept AS

SELECT E#, Ename, Salary, Employee.Dept, D4, Building, City
FROM Employee, Department

WHERE  Employee.Dept = Department.Dept

The query to retrieve employee names and department numbers of employees who earn more than $30,000 and
work in Denver is expressed through this view as:

SELECT Ename, D#
FROM Empdept
WHERE  Salary > 30000 AND City = "Denver’

One way that this query could be processed is by a merge-join of the Dept indices ([Bla77]). That is, a Dept
index record of the Employee file is joined with a Dept index record of the Department file if both have the
same Dept value. The join produces pairs of inverted lists; one list points to Employee records and the other
points to Department records. An inverted list pair is processed by following the pointers of each list and
applying the restriction predicates to the referenced records. The Employee and Department records that qual-
ify are joined unconditionally, and the Ename and D# attributes are projected. The query is evaluated by pro-
cessing each inverted list pair in the above manner.

Decomposing this algorithm into layers requires us to introduce a new layer to the MRS architecture and
a new file operation . The new layer is called VIEW and is responsible for external-to-conceptual mappings. It
resides on top of MRS_INDEX and incorporates standard query modification and query simplification algo-
rithms to map operations on view relations to operations on conceptual relations. 2 Figure 4.2 is a dsd that
shows the external-to-internal data mappings of the Empdept view relation.

The new file operation is called JOIN. It binds a cursor to a *view’ file which is produced by the join of
two concrete files. A parametric definition of JOIN is given in Figure 4.3. A cursor initialized by JOIN can be

2 The implementation of the VIEW layer may be different than other MRS layers. A preprocessor can accomplish the
external-to-conceptual mappings for embedded DML statements at program compile time. In such cases, the VIEW ’layer’
is actually in the preprocessor expansions. For high-level query languages, the VIEW expansions are done at run-time.
The VIEW layer would then conslitule part of the query language subsysiem of the DBMS.
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ADVanced, in the same way as RET, to read records of a view file one at a time.

Figure 4.4 shows how the RET operation at the external level is mapped to operations at the internal
Ievel. Each step in the mapping is highlighted below.

1) External Level. A wuser initiates a RET on the Empdept view relation. Grand Central translates this
operation into RETview (Fig. 4.4a).

2)  External-to-Concepiual Mappings. VIEW maps the RET on Empdept relation to a JOIN of the
Employee and Department files (Fig. 4.4b). The mapping is accomplished by view substitution algo-
rithms,

3)  Conceptual-to-Inveried_File Mappings. MRS_INDEX maps the JOIN of Employee and Department to a
JOIN of the abstract Dept index files, and an INITialization of the cursors on the internal Employee_Data
and internal Department_Data files (Fig. 4.4c). The data file cursors are used for following pointers of

inverted lists and applying restriction predicates to data file records. It is in MRS_INDEX where the
algorithm to process inverted list pairs, which was described above, resides.

4)  Abstract_Index-to-Internal Mappings. MRS_DIVIDE maps the JOIN of the abstract Dept index files to a
JOIN of the internal index files, and an INITialization of cursors to the internal list files (Fig. 4.44d). The

INITed cursors are used for pointer following to access list file records. It is in MRS _DIVIDE that
inverted lists are reconstructed from their fragments.

5y  Internal Level. INTERNAIL materializes the JOIN of the internal index files by the merge-join algorithm.

Once an external cursor has been bound to the view file (which is what the above mappings accomplish),

view records are read one at a time by ADVancing the external cursor. The mapping of the external ADV
operation is straightforward and is not presented here.

As indicated earlier, there are many other ways of processing this query; each would have its own distinc-
tive external-to-internal mappings. Although it may not be obvious from this example, specific strategies and
optimization decisions can be identified with each layer. The VIEW layer, for example, determines the order-
ing in which conceptual files are to be joined. (No decision was necessary in our example). The MRS_INDEX
layer determines whether or not indices should be used. (An alternative strategy to the one considered above
would be to ignore indices altogether and to perform a JOIN on the Employee_Data and Department_Data files
directly. A JOIN of the conceptual files would still result, but perhaps at a cost of lower performance.) Some

layers, such as MRS_DIVIDE, don’t involve optimization of JOINs as there is only one obvious strategy to pur-
sue.

A layered model of query processing, based on the above approach, is forthcoming.

4.3 Software Development Technologies

If one compares the code that GENESIS produces with the actual hand-written code of MRS, one finds
substantial differences. GENESIS code has a considerable amount of layering between the conceptual and
internal levels, whereas hand-written code has minimal layering. GENESIS code relies heavily on intermediate
results (such as cursors to ABSTRACT_INDEX files in Figure 3.13), whereas hand-written code does not.
GENESIS layers (expanders) embody generahzed algorithms, whereas hand-written code embodies subalgo-
rithms. 3 The overhead of extra layering, materialization of intermediate results, and algorithm generality

causes GENESIS code to be more verbose and to run slower than hand-written code. Despite these differences,
both accomplish exactly the same mappings.

The drawbacks of GENESIS-produced code are not intrinsic to reconfigurable DBMS technology; they
are actually a consequence of composing modules at run-time. Compile-time composition of modules offers a

3 The MRS_INDEX module in the GENESIS prototype, for example, handles the inversion of both scalar and repeating
fields. Although repeating fields in conceptual records are excluded from the MRS architecture, they may be featured in

other architectures. The exira generalily enables the MRS_INDEX module to be used in the construction of diverse archi-
tectures.
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means by which these problems can be eliminated.

Hand-written code expresses a compact form of conceptual-to-internal mappings. We are con-
vinced that programmers are mentally composing the mappings of expanders and simplifying the resulting
compositions without realizing the layering processes that are involved. Preliminary investigations support the
hypothesis that just as arithmetic equations can be expanded and simplified by plugging in definitions of lower-
level functions and collecting terms, so too can efficient code - resembling hand written - be produced by
macro-expanding operation expanders and then simplifying. Obvious simplification techniques are the elimina-
tion of dead code and the replacement of unnecessary computations with their resulting values. Such techiques
have been used optimizing compilers ([Lov76], [Car77], [Sch77)).

Compile-time composition and simplification of software modules seems destined to become an impor-
tant technology for software development. Libraries of prewritten and general-purpose modules can be tapped
by software designers to eliminate the tedium and cost of writing code for well-understood routines. Compile-
time composition of referenced modules will enable customized software to be developed rapidly and the code
which is produced to be efficient. Thus, the utility of a software composition technology will not be limited to

the construction of database management systems. However, the same can be said for the technology on which
GENESIS rests.

Data structures are main-memory storage structures. Preliminary investigations reveal that layering
occurs in data structures much in the same way as it does in DBMS storage architectures. Thus, there should be
data structure counterparts to the UM and TM. As data structures are used in virtually every major software
application (of which DBMSs are a small subset), it seems reasonable to believe that a companion technology

to GENESIS can be devised to handle a much broader scope of software development problems than we are
presently considering.

The software composition technology and the reconfigurable DBMS technology are complimentary and
independent. It is our belief that the impact of one on commercial software systems development is likely to be
strongly influenced by the maturity of the other. We have begun to explore these more general technologies.
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5. Conclusions

Database systems have largely been built in an ad-hoc manner. Typical DBMS software is monol-
ithic; to affect modifications and upgrades is either very costly or impractical. Constructing DBMSs has

been more of an art practiced by few, rather than a science understood by many. This will not always be
the case.

We have developed a novel, yet simple, technology which enables customized DBMSs to be pro-
duced cheaply and quickly. The technology for reconfiguring DBMSs is based on theoretical models
([Bat82], [Bat85a]) which 1) identified basic building blocks of DBMS software, 2) revealed that all build-
ing blocks could be referenced through a common interface, and 3) showed that operational DBMSs could

be described by compositions of these building blocks. GENESIS, an operational prototype of a
reconfigurable DBMS, is an implementation of these ideas.

The merit of our research lies in both its practical and theoretical contributions. From a practical
perspective, once a storage architecture has been designed, the software to support it i can be produced
rapidly. If a prototype architecture doesn’t work out, it can be changed easily. Both capabilities are in
stark contrast to the present state-of-the-art where the exact opposite is true.

Another practical advantage is the method by which basic software components of DBMSs can be
developed. Each component (e.g., an expander-transformer pair) describes simple mappings and can be
coded and debugged in isolation. This contrasts with current methods of DBMS software construction
where many of our components (layers) are fused and therefore must be debugged simultaneously.

From a theoretical perspective, our research points a way to which disparate academic results and
practical achievements on database implementation (i.e., storage structures, query processing, concurrency

control, etc.) can be unified. Furthermore, we see the potential of our technology to be generalized to areas
of software development beyond DBMSs.

We believe that the development of a reconfigurable DBMS technology will result in a fundamental
advance in understanding and simplifying the construction of database systems.

Acknowledgements. We thank Hank Korth and Arthur Keller for their comments on an earlier draft of this
paper.
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Appendix 1. Storage Architecture Tables

The five most important storage architecture tables are the field definition table (FDT), the mapping table
(MT), the volume table (VT), the file implementation table (FIT), and the Jupiter file table (JFT). There are
other tables, but they are not relevant here. In the following paragraphs, we show the contents of five tables for
the MRS schema of Figures 3.2 and 3.12 after it has been processed by the architecture program of Figure 3.11.

Field definitions are stored in the FDT. Each row of the FDT of Figure Al describes a single field by its
option flags, type, bounds (if an array or repeating group), the row of the FDT of its first subfield, the number of
subfields, and the name of the field itself. Row O always contains the name of the conceptual schema. The
rows whose type is 'FILE’ contain record type definitions. For example, the Professor record type is stored in
row 1 and the Pname_Abstract Index record type is stored in row 8. Rows 0-6 were entered by the DDL com-
piler when the MRS schema of Figure 3.2 was processed. Rows 7-13 were added by the MRS_INDEX
transformer. Rows 14-20 and 21-27 were added in successive executions of the MRS_DIVIDE transformer.

Files are defined in the MT. Each row of the MT of Figure A2 describes a file by its name, the row of the
FDT at which its record type is stored, the identifier of the elementary transformation that maps it to its concrete
counterparts, the row of its dominant concrete file, the number of concrete files to which it is mapped, and the
row of the JFT specifying where records of this file are stored (applicable if the file is internal). For example,
the Professor file (row 0) is mapped by the MRS INDEX transformation to the Professor_Data_File (row 1)
and the abstract index files for Pname and Building (rows 2 and 3).

The tables of Figure A3 are relevant to JUPITER. MRS databases are stored in a single volume. The VT
of Figure A3 contains only one volume definition (mrs_vol’). Two different file structures are used by MRS:

unordered and B+ trees. They are defined in the FIT. The MRS database of Figure 3.2 generates five internal
files: two index files, two list files, and one data file. They are defined in consecutive rows of the JFT,

Appendix II. RET and ADYV Operation Expanders for the MRS Architecture

Consider the MRS _INDEX transformation and its mapping of the RET and ADV operations. For pur-
poses of simplicity, we will assume that queries are single clauses of the form (field = value). Algorithms for
processing/mapping more complicated queries are given in [Sel79], [And76], and [Far75].

When RET prepares an abstract cursor A_cursor for retrieval, a strategy for processing the specified
query is decided. The data file is scanned if there is no index to process the query, else the index record

identified by the query is retrieved and the pointers of its inverted list are followed. This strategy is expressed
by:

RETwmrs_xpEx( A_cursor, A_query, A_into_list, position ) —

if A_query can be processed by indices then

{
n X_into_list:= (inverted list_trace, inverted list_buffer );
2) RET( X_cursor, A_query, X_into_list, at_first );
3) INIT( D_cursor, null, A_into_list );
}
else /* scan data file */
{
4) RET(D_cursor, A_query, A_into_list, before_{irst );
b

(5) if position = at_first then ADVmrs_mvpex( A_cursor );

Lines (1-3) deal with the case of processing A_query using an index. At line (1), ’inverted_list_buffer’ is
declared to be the buffer that is to contain the inverted list of the retrieved index record. The record (and its
inverted list) is retrieved at line (2), where the index record satisfies A query (ie., ’field = value’). The

D_cursor is initialized for pointer following in line (3). Note that the fields to return are the same as that for the
abstract file.
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fdr_id

opt_flags

bounds

type Ist child n_child name

0 DB 1 1 MRS _Schema

1 FILE 2 4 Professor

2 F1+F2 STRING 10 6 1 Pname

3 INT Office

4 F1 STRING 4 6 1 Building

5 INT Campus_Phone

6 CHAR

7 FILE 2 4 Professor_Data_File

8 FILE 9 2 Pname_Abstract_Index
9 F1 STRING 10 6 1 Pname

10 SET * 11 1 /* pointer array */

11 POINTER /* pointer type */

12 FILE 13 2 Building_Abstract_Index
13 STRING 4 6 1 Building

14 FILE 15 2 Pname_Index
15 F1 STRING 10 6 1 Pname

16 SET 1 11 1 /* set (1) of pointer */
17 POINTER /* first child pointer */
18 FILE 18 2 Pname_List

19 SET nptr 11 1 /* set (nptr) of pointer */
20 POINTER /* next child pointer */
21 FILE 22 2 Building_Index
22 F1 STRING 10 6 1 Building
23 SET 1 11 1 1* set (1) of pointer */
24 POINTER /* first child pointer */
25 FILE 26 2 Building_List

26 SET nptr 11 1 /* set (nptir) of pointer */
27 POINTER 0 0 0 /* next child pointer */

note: F1 denotes the 'indexed’ option and F2 denotes the "primary_key’ option.

Figure Al. The Field Definition Table (FDT)
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mt id  file_name fdt_id  xform Ist child n_child jfi_id
0 Professor 1 MRS _INDEX 1 3
1 Professor_Data_File 7 INTERNAL 5
2 Pname_Abstract_Index 8 MRS DIVIDE 4 2
3 Building_Abstract_Index 12 MRS DIVIDE 6 2
4 Pname_Index 14 INTERNAL 1
5 Pname_List 18 INTERNAL 2
6 Building_Index 21 INTERNAL 3
7 Building_List 25 INTERNAL 4
Figure A2. The Mapping Table (MT)
VT FIT JFT
vt id  vname fit id file_type | jft_id simple_file name vi id  fitid
1 mrs_vol | 1 unordered | 1 Pname_Index SF 1 2
2 b+ tree 2 Pname_List_SF 1 1
3 Building_Index_SF 1 2
4 Building_List_SF 1 1
5 Professor_Data_File 1 1

Figure A3. The Volume Table (VT), File Implementation Table (FIT), and Jupiter File Table (JFT)
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Line (4) handles the case of data file scanning. D_cursor is initialized by using the query and into_list
specified for the abstract file. (Again, data records are identical to their abstract record counterparts).

At line (5), if A_cursor is to be positioned at the first qualified record, ADVmrs_iNpEx is called. The
expansion of ADV Mrs INDEX 1S:

ADVars iNpEx( A_cursor ) —

if A_query is being processed using indices then

{
(1) loop: get next pointer p from inverted_list_buffer;
) if no more pointers exist, set STATUS := EOF and return;
€ D_cursor.pointer :=p; /* D_cursor now points to record p */
4) ACC(D_cursor ); /* follow pointer */
}
else /* scan data file */
{
(5) ADV(D_cursor );
b

Lines (1-4) get the next pointer from the inverted list_buffer and access the referenced record. At line (5), an
advance of an abstract cursor translates to an advance of the data file cursor.

MRS_INDEX mappings for other operations (e.g., INS, REM, UPD, eic.) can be written in an analogous
manner. We omit their details.

Now consider the MRS_DIVIDE transformation. Retrieving an abstract index record involves the
retrieval of its (dominant) index record and the following of a linear-list linkset to access all of its list records.
The index and list records are concatenated to reconstruct the abstract index record. Let X_mtid be the mtid of

an abstract index file, and I_mtid and L_mtid be the mtids of its index and list files. The retrieval algorithm for
MRS_DIVIDE is expressed by:

RETwmrs_prvipe( X_cursor, X_query, X_into_list, position ) —

(1) Linto_list := ( trace to entire index record, index_buffer );
(2) RET(I_cursor, X_query, I into_list, before_first );

(3) L_into_list := ( trace to entire list record, list_buffer );
(4) INIT(L_cursor, null, L_into_list);

(5) if position = at_first then ADVmrs prvipe( X_cursor );

ADVmzrs prvipe( X_cursor } —

(1) ADV(I_cursor);

(2) if STATUS = EOF then return;

(3) get child pointer p from index record (in index_buffer);
(4) whilep<>nulldo

(5) { . L_cursor.pointer :=p; /* L_cursor now points to record p */
(6) ACC(L_cursor );
(7 add pointers of list record (in list_buffer) to the pointers
of the index record (in index_buffer);
&) get next child pointer p from list record (in list_buffer);
b
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(9) return fields of the abstract index record (reconstructed in

index_buffer) that are specified in X_into_list;
(10) set STATUS := successful;

In RET™mrs_pivipe, the index cursor 1_cursor is prepared for record retrieval, where a RETrieved index
record is to be placed in index_buffer (lines (1-2)). The list cursor L_cursor is prepared for pointer following in
lines (3-4), where an ACCessed list record is t0 be placed in list_buffer. ADVmrs_DIVIDE is performed in line
(5) if the first abstract index record is to be retrieved.

In ADVwmgs pivipe, lines (1-3) retrieve an index record and make preparations to follow a chain of list
records. Lines (4-8) follow the chain and concatenate the pointers of the list records onto the index record. The

abstract index record is reconstructed in the index_buffer. Lines (9-10) return the fields requested by
X_into_list and set a successful status code.

MRS_DIVIDE mappings for other operations can be written in a straightforward manner, and will not be
presented here.

As mentioned earlier, INTERNAL level operations, such as RETinTervaL and ADVINTERNAL, are primi-
tives and are not given expansions.
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