STICHTING

MATHEMATISCH CENTRUM

2e BOERHAAVESTRAAT 49
AMSTERDAM

REKENAFDELING

MR 46

An attempt to unify the constituent concepts of serial program execution,

by

Edsger W. Dijkstra

Paper to be presented at the Symposium
on Symbolic Languages in Data Processing. Rome March, 1962

Januarl 1962

A machine defines (by its very structure) a language,
viz, 1ts input language; conversely, the semantic definition
of a language svecifies & machine that undsrstands it. In
ather words: machine and language are two faces of one and
the same coin, I am going to describe such a coin, I leave
it entirely to you to decide which of these two aspects of
the subject matter of my talk you think the most important
as 1t is rather ridiculous in both aspects. The language I
am going to sketch 1s prohibitively difficult for a human
user and the machine I am going to describe is of a perverse

inefficiency.

Therefore, i1f my mental construction, nevertheless, has
a right to exist it should derive this from other qualities.
My machine derives this, to my taste and judgement at least,
from 1ts extreme simpliclty and elegance, from the uniform
way in which it performs its (at a first glance) rather
different operations; the justification for my language are
its clearness and the unusually high degree of unambigulty,
derived from a strict sequential interpretation and an explicit
indicaticon in the program to perform cperations, which are
usually implicitly understood (and therefore apt to misunder-
standing). If one wishes to do so one may regard my machine
and my language as being conceived for the purpose of
clarification.

Before I really start with my description I should like
to warn you of two intentionalorissions. The system I am
goling to present 1is the result of a2 careful choice between
a great number of "neighbouring possibilitles". 1 shall not
give my motivations for these choices, I shall even leave
the consciously rejected alternatives unmentioned. In cther
words, I refrain from introducing my system at least in some
respects as, say, a "local optimum", As this diminishes the
convinelng power of my presentation, I personally regret
- this omission. I have to omit fthese motivatlons, however,

for the sake of brevity.

The other question I shall not touch is the cuestion
of how to implement this system with the z2id of a conventio-
nal machlne, One might even raise the guestion - as I did
mysell to check that I was not thinking nonsense - whetner
1%t can be lmplemented at all, no matter how crudely. You
have to take my word for it that it can be done. I have
worked out a method of implementation to a degree that could
convince, I think, the most suspicious auditeor of the
possibility, But it is my intention not to show you the
particulars of this implementation, because I had toc incorporate
teco many arbltrary decisions in it which, when mentioned,
would only divert the attenticn from the essentials. In
particular, the question of storage allocation will remain
untouched.

My machine operates on (and under control of) units of
information which I call "words". Without loss of generality
I can restrict myself to a finlte number of different words,
each represented by the same number of bits,

The machine distingulshes between different kinds of
words, say numbers, operators, varlables and separators. For
the time being we shall confine our attention to the first
twe of these, "number words" and "operator words".

A normal arithmetical operation, say the addition or the
multiplication of two numbers, has two number words as input
and one word, also representing a number, as output, The
rules according %o which a numerical value should be attaced
to‘(i.e. derived from the bits of)} a number word are embodied
in the workings of the arithmetic unit, which hasg the usual
prdperty that these same rules apply to both inpuft and cutput:
the output of the arithmetic unit can be fed into 1t again at
some later stage of the process, As we assume that the pro-
perties of the arithmetic unit are constant in time,we may
say that the number words have "z fixed meaning"., As the
fixed interpretation of number words is coupled to the constat

properties of the arithmetic unit it is not sosurprising that
we shall denote the basic arithmetic operations by oparator
words (" + ", - "ot v W ate) the meaning of which can

als0o Dbe regarded as fixed,.

The machine works under control of a program which
primarily consists of a2 string of words, For the time being
I shall confine myself to pleces of program prescribing the
evaluation of arithmetic expressions,

Let us consider the expression that would normally be

written down as

5+33 /(7 +2%3)-6;

in the usual postfix notation (also known under the name
"Reversed Pollsh Notation") this would give rise to the
fellowing sequence of numbers and operators (successive items
in this seguence for the sake of representation on paper being
separated by spaces)

539723 %+ /+6 -
The well known mechanism éspecially devised for the seguential
evaluatlon of such an expression is what I prefer to call a
"stack". {This device has been invented and generalized
independently. by so many veople that 1t 1s Known now under a
great variety of names, such as "push down 1list", '"nesting
store', '"cellar", "last-in-rirst-out-memory" etc.) If we regwd
the above sequence of numbers and operators ds the string of
words representing a piece of program, the machine reads this
string word by word from left to right. If it reads a number
word, this number (i,e, a copy of this number word) is added
to the top of the stack, 1f it reads an operator word the
operation in gquestion 1s performed at the top of the sta;k.
In illustration T give on successive lines the successive
plctures of the top of the stack where the top is at the right
hand side of the line.

I

..... 5 39
veses 53907
..... 5 39 7 2
ce.ee 5 337 2 3
..... 5 39 7 6
ceees 203513
..... 2 3

voe B
ce... 86
veass 2

and the net regult of the execution of this little piece of
program is that the value of this expression has been added
fo the stack.

Ags ciearly shown 1n the above example the machine starts
by copying the program text word by word onto the top of the
stack. Sooner or later this has to be interrupted, otherwise
cur machine would just be a c¢copying machine. In the above
system the process of copying is interrupted by the occurrence
of an arbltrary operator in the program text. The function of
an operator, therefore, is a double one: firstly 1t indicates
that the copying has to be interrupted for a while, because
now an operaticn has to be performed, secondly it specifies
this operation., I propose to separate these two completely
different functions: from now on arithmetic operators are
primarlily treated in exactly the same way as numbers are treated,
l1.e. the operator word is copied into the stack as well.
Everytime the process of copying has to be interrupted I shall
indicate this in the program explicitly by the insertion of a
speclal word, introduced now and represented by "E" (from
"Evaluate”), My machine now takes the following form, It reads
the program text word by word, from left to right. By "reading"
is meant the following: if the word read is unequal to "E" a
copy of 1t 1s added to the stack, if the word read 1s equal
to "E", 1t is not copied but, instead, the operation takes

place as specified [primarily) by the top word of the stack.

According to these rules the program prescribing the
evaluation of the expression of our previous example will

new consist of The following string of words:
53 723 *%*E+E/E2+E6 -E

and under ccnfrol of this piece of program text (i.e. when
this string of words is "read by the machine") the top of
the stack will be in succession as shown in the following
lines:

Ul o\on

39
29
29
39
39
29
39
39
29

uuuuu

R e T B IS
e NG VI VI
Wi
*

AS R
‘\

o Co oWV O\ a1 A AT U1\ A AR
\l

v

As said above the machine performs the operation specified
by the top word of the stack when it reads the word "E" in
the program text., We shall restrict ourselves to such pro-
grams that at such a moment the top word of the stack is
indeed an operator word (and not, for instance, a number word)
Furthermore we shall restrict ourselves to the case that the
immediately underlying stack words are in accordance with
any requirements that the execution of the operator at the
top may set. (For instance, in the case of the binary
arithmetic operations illustrated above the two immediately

-

....‘O_.
underlying words must be numbers.)

In other words: 1f an operand of an arithmetic operaticn
nappens to be an expressiocn we Suistitute for this expression
its numerical value before the operaticn is called into
action, thus appealing to the fact that, primarily, the
arithmetic operations are derined only when supplied with

numerical operands

We regard the replacement of a (sub)expression by it¢s
numerical value as a "substitution”, and we indicate
explicitly when these substitutions have to be performed,
although, linguistically speaking, this is rather redundant:
"3+ 4" will always be equal to "T", nc matter when we

perform this addition.

This situation, however, changes radically as socon as
variables - in contrast to constant numbers - are taken into
account. (In the following we shall denote variables with
small letters, reserving capital letters for "special words",
such as "E" and others, to be introduced below.) Let us
assume that we have to compute the value of the exXpression

" H

x + 4
at a moment that the value of the variable x equals 3. This
means that in the above expression we must substitute for
"x" its numerical value at that moment; only after having
done so we can perform the arithmetic substitution ("3 4+ 4"
being replaced by " 7 "). Given something dependent on x
(viz. the expression " x + & ") we create a result (viz."7™)
which, thanks to the fact that we have substituted for x

its present value, is made independent of the future history
of x. We have fixed an "instantaneous picture" of the
variable x. Obviously I insist uvon indicating explicitly
when this instantaneous picture of the variable x (which is

varying in time!) has toc be taken.

How we are going to harvest the first fruits of our
labour for the mechpnism for this explicit indication is
already introduced. The piece of program prescribing the

'T.

evaluaticn of the expression
"xo+ 4o
now takes the following form:
”XEL:'”""‘E”

and under the above agsumotion the successive plctures of the

gstack are
veese X
..... 3

. 3 04

. 304+
.o 7

Our machine invites us to describe the fact that "the
value of the variable x equals 3" in slightly other wordings,
viz, that the state of the process is such that reading the
word "E" at a moment that the top word of the stack is "x"
results in the replacement of this Top word by the number
word "3", The variable on the top of the stack 1s thus
regarded as a variable operator whilch, upon evaluation, is
replaced by something dependent on the state of the process
at that moment; in this case it is an operator the execution
of which sets no special requirements on the Immediately
underlying stack words, (The similarity between operators
and variables will be further stressed by our next example.)

A11 words read in the text are added to the stack except
the word "E" which causes the machine to perform a substitution.
Fbr reason to be explained below we should like to have also
the possibility of adding the word "E" to the stack, The
framework for this extension, nowever, 1s already present.We
Introduce a special operator, denoted by the word "P¥ (from
"Postponement"), which effects upon evaluation a fixed
substitution, viz., its replacement by the word "E". We shall

illustrate the use of the operator "P" in the next example,

In this example we have three variables, named "x",
"y" and "plinus’., Suppose the state of the process to be
such that reading "plinus" "E" generates the werd "+" on top
of the stack. When reading the text:

"x PEy P Evplinus E P E

the Top of the stack will show in succession

. X
. X F
. X E
. . x E y .
. x E yv P
.o x E y E
. X E y E plinus
cessse X E ywy E +
. X E y E + P
.ess X E y E + E

and the top of the stack thus contains the string of words
which, when read as a piece of program, would effect the
evaluation of the expression "x + y"., If the value of the
variable "plinus" had been "-" we would have generated (the
string of words corresponding to) the expression "x - y".

What we have done amocunts to a partial evaluation of
the expression "x plinus y", the result again belng an
expression, In our previous examples the final addition %o
the stack always consisted of a single number. But a number
ts a trivial example of an expression and generating not only
numbers but also more general expressions as intermediate
results is therefore an obvious extension of the normal

practice,

Up till now we have described the generation of words
on top of the stack but not what we are going to do with
these words., Furthermore we have assumed that with respect
to a given variable the process could be in such a state

9

that evaluation of this variable would give rise to a
previously defined substitution, but how this definition
should take place 1s not mentioned in the above. These two
gaps in our picture will both be filled by the introduction of
the assignment operators.

I'or the assignment of a single word value, as in
" x := 3" we could write in our program
i 3 % t= R 1

resulting in the stack pictures:

. 3
L) * 3 x
T e & & & 3 X =
Upon evaluation of the assignment operatcr ":=" the

machine investigates the immediately underlying word. This
must be the variable to which an assignment has to take place;
the next underlying word is assigned to this variable (a
process, about which more below} and the three words con top

of the stack (which have now been processed) are removed

from the stack., Until further notice -l.e, a new assignment

to the variable "x"- the evaluation of this variable will
result in the replacement of the top word of the stack by the
word "3,

But for the interchanging of left and right hand side this
1s closely analogous to the assignment statement as known in
ALQOL 60, But we need more than that for, in general, the
assigned value will not consist of a singie word, but of a
string of words and we must therefore have a means of
indicating how deep in the stack the assigned value extends,
The simplest way to do this is to insert in the stack a
marker, say the special word "T" (from "Terminal") at the
bottom side of the assigned value. Furthermore we introduce
another assignment operator ":-" {called the "string asslgnment"
in contrast to the "word assignment" introduced in the

~10-

previous paragraph). Upon evaluation of this operator the
machine investigates the top of the stack in the downward
direction. The first word (immediately under the operator
";-") must be the variable to which a value has to be
assigned. Thereafter the machine continues its word by word
investigation in the downward direction until it meets the
special marker "T": the words passed in this way form
together the string that acts as the assigned value,

The simplest way to add a "T" to the stack would be
just to insert the word "T" in the proper place in the
program under control of which the stack is being fillled.
This arrangement, however, will not do; for reasons to be
explained later we need the possibility of generating a "TV
on top of the stack under control of a program that 1tself
does not contain this word, We can do this with the same
trick that enabled us to generate an "E" on top of the
stack, We introduce a new operator, denoted by the word "8"
(say from "Seperator" or because it precedes the "T" in the
alphabet) which upon evaluation is replaced by the word "I
and we make it a rule that this will be the only way in which
words "T" are added to the stack.

Usingall this we have an alternative way to wrlte the
asslgnment statement " x := 3", viz,
" S E 3 x :- E "

giving in the tdp of the stack 1n succession:

N
Wl W

The net effect of this is equivalent to the previous
form using theword assignment ":=*,

-11-

Let us use the more powerful asslignment in an example
which is an extension cf one of cur eariier cnes, viz. the
one describing the partial evaluation of the expression
" x plinus ¥ ". The result of this vpartial evaluation was
an expression depending on the variables "x'" and "y :suppose
that we want to call this expression "z", For this purpose

we write in the program:
" SEXPEyYyPE plinus EPHE gz :- E .

When the last "E" of this string is going to be read the top
of the stack will be as follows (under the same assumption
wilth respect to the value of "plinus"):

..... T x E y E 4+ B =z ;-

and after the execution of this assignment the above words
will have been removed from the stack, the word "T" inclusive.
Until further notice the evaluation of the variable "z" will
imply the execution (the "reading") of the string assigned
to 1t., Upon evaluation of the variable "z" the machine
therefore must have access to the first word of this string;
when it starts reading this string, however, it must detect
the last word of this string. We propose that the assignment
operator sees to this by adding again an end marker and for
this purpose we can use the very same word "T", Upon
evaluation of the variable "z! the string assigned to it will
be read as a piece of program, Ifrom left to right, until the
end marker "T" is met, The new situation resulting from the
last assignment can conveniently be represented by:

It

Z b xEyE + ET ',

In exactly the same way our previous assighments
"3 x = E " or " 38E3 x :- E
will both give rise to the situation, represented by
" Xe-s 3T U,

One of the most illuminating aspects of this arrangement
is that the usual distinction between "numbers" and

-12-

“instructions” has completely vanished. The value of a
variable is defined as a pilece of program, evaluation of

this variable implles the execution of this piece of program,

. Furthermore we should like to draw attention to 2
certain form of duality between the agsignment on the one
hand and reading a text on the other, When the machine reads
a plece of program text, the top of the stack is filled under
control of this program text. In the assignment "readable
text" is created under control of the contents of the stack,
The duality can also be illustrated by taking into consideration
the accessibllity requirements. The words in the stack need
cnly be accessible in the direction from top to bottom. If
an assignment statement converts the top of the stack into
readable text, however, the consecutive words thereby beccme
accessible in the other direction.

Finally, the stack 1s reserved for "anonymous intermediate
results”, whereas readable text -in principle, at leasgt- is
always "named", for we create it by assigning it to a variable.

The attentive reader will have noticed that, along
with the representation of the value of a variable, we have
sllently introduced two more complications in ocur machine,

The first one, the occcurrence cof the word "T" in
program text and the machine's "immediate reaction'" to it isg
a relatively simple one, As we have described the organization,
the word "T", when read in the text, 1s not copied on top of
the stack! Instead, it causes the machine to go on reading
at the first word following in the string after the "E!
that caused this evaluation of the variable in question. In
other words, it acts as a "Return" at the end of a closed

subroutine,

But the evaluation of a variable may call for the
evaluation of other variables (even for the evaluation of
itself): the pragmatic derinition of the evaluation of a

variable is baslically a recursive cne and the mechanism one
needs to icllow a recursive definition is ... another stack!
I call this second stack "the stack of activationa' in
contrast to the first which T call "the anonymnous stack’.

One of the functicns of the stack of activations is to confrol
the reading process. When the evaluation of a variable

starts the stack of activations expands, when the correspong-
ing word "T" 1s read, it shrinks to its previous size, (In
the usual terminclogy of machine structure: the stack of
activations contains a stack of "order counter values", its
top element being, by definition, "the present order counter”;
in this same terminology its older elements act as a stack

containing the "return addresses".)

Note. We could try to merge our two stacks into one, This
merging would present itself in a2 completely natural fashion
if the two should expand and shrink "in phase" with one
ancther., In general, however, this is not the case and
trying to merge the two stacks into a single one would give
a highly unnatural construction.

We shall use the stack of activations for yet another
purpose, to satlsfy a very fundamental need, viz. the creation
of new variables, In the above I have used special words
("x", "y", "plinus" etec.) to denote variables and I have
carefully avoided using the term "identifier"., I have used
the term 'variable" in connection with a single, unique
object, existing for some period of time and capable of
'taking on different values in successicon. This concept of a
variable 1s to be distinguished carefully from the
"ldentifier" as used in ALGOL 60, because one and the same
ldentifier may be used to point to a host of objects, to a
great numbear of different variables,

First of all we meet the fact that one and the same
identifier may play different roles thanks to the fact that

it occurs 1in more than one declaration. A lexicographical

.

rule Then tells us which one of these declarations applies
everywhere, where the identifier in Jquestion may be used,
fhis form of multiple use of cne and the same identifier

ceuld be removed by a simple process of renaming,

But there is a2 much more subtle case of "multiple use
of one and the same identifier", viz. as soon as a certain
block occurs in one or more nested activations (as in the
case of a recursive procedure), In other words: one and the
same ldentifier then refers sometimes to this variable,
sometimes to another.

In actual fact: the identifier stands for a variable
and in order to indicate clearly for which variable it
stands I intend to denocte explicitly the moment when a
variable has to be substituted for an identifier,

For the sake of convenience -to be more exact:
convenlence for the machine and not for the hypothetical
user- I intend to use the same identifiers for the local
variables of every activation., (What I call "an activation"
1s closely analogous to a block or a procedure body, as
known in ALGOL €0.) I use for this purpose the special
identifier words "LO","L1", "L2", etc..

When the machine starts the evaluation of a variable,
the stack of activations increases by one item, At the start
thlis 1ltem also contains a note that up tlll now no local
‘variables have been introduced in this activation,

If the machine reads the word "E" at a moment that the
top of the anonymous stack contains one of the identifier
words (say "L2") then it investigates the top item of the
stack of activations., If it is the first time that this
identifier has to be evaluated in the present activation the
machine creates a new variable for it (and may give this
variable an empty value) and makes in the youngest item of

-15-

tne stack of activations a note to this effect, Then 1t
replaces the top word of the anonymcus stack by the variable
Just created for it, At a next evaluation of the same
identifier at a moment that the same activation is still

(or again) the present one, the machine finds in the Top
item of the stack of activations the note left there at the
first evaluation of this identifier and the top word of the
stack 1s replaced by the very same varlabie,

Now we can show a more complicated example, Let the
values of the variables "x", "y" and "complus" be as

represented by:

"x- 10 23 T "
"y 5 -2 T "
" complug+ LO E = E
L1 B = E
L2z E = E
L1 E E + E
Lz E E LO E E + E

T ",

If we now read the text
" S E x E y E compius ® & :- E "

the net effect will be that we can represent the new value
of "z" by:
"z 15 219 T 0 s

and what we have done can be interpreted as the addition of

two complex numbers.

In ALGOL terminology: “"complus" is a procedure with
four numerical parameters, all called by value, The simple
structure of the process allows the first of these to remain ‘
anonymous even 1ln the procedure body, Furthermore, it is a
kKind of '"type procedure", be it one that, syntactically
speaking, takes the place of two primaries.

-16 -

Let me endwith & trivial example, Suppose that we
want to write "plus" instead of "+Y, After the
asslignment

" $ E + P E plus :- E s
which gives rise to the situation
" plus —~ + E T "
the expressions
" x E y E plus E "

and
" x E y E + E "

are completely equivalent, This example is included to
show as c¢learly as possible the arbitrariness of our
primitives,

Conclusion.

T am fully aware that the sketch is definiltely
incomplete, In particular conditional reaction and some
equivalent of the go to statement should be incorporated
if one wishes to make a system out of this, For the
moment 1 leave these out and I do so for two reasons.
Firstly for the sake of brevity and secondly because I
have not decided yet: I know of several possible ways but
none of them fully satisfiles me.

With some versions of these facllities I have made
slightly more elaborate programs., They showed me both the
power and the weakness of my Language, its power being
1ts flexibility and its unambiguity, its weakness being
the fact that using it intelligently proved to be far
beyond at least my powers,

If nevertheless I claim attention for this project
Ido not do so only because it charms me and may charm

17

others as well. This report is the condensation of my
meditations after we had completed our implementation
of ALGOL 60. This implementation was conceived at high
speed and the main Jjustification for the numerous
decisions taken in those hectic months was the
recognition that our conceived constructions would lead
To our goal and would <o the job, in some way or
ancther. The Machine desecribed in this report, however,
represents an extreme of the continuous spectrum of
possible implementations of an algorithmic language
which (as is the case with ALCOL 60) caters for
recursiveness. In this cuality it has been very clarifying
for me personally: it has helped me a great deal in the
appreciation of the various (initially disconnected)
tricks we have incorporated intuitively and it has
clearly shown us a number of alternative solutions.
Therefore the hope is justified that translator con-
struction and machine design in the future will benefit
from these considerztions.

Furthermore, the Machine nresented here is so
ridiculously inefficient “ha% every practical implementation
of a practical algorithmie language in all probability
can be regarded as an optimization of it, an optimization
which is permissible thrnks %o certain restrictions in
the language. It moy be vserul to compare a proposed
language with my language; during the process of
language construcsicn it may be helpful in the timely
detection of "erpensive features”. Whether such an
expensive Feature will be included or not is more or
less a political question but quite apart from how such
a question is answered it is nice to know what one is
doing.

Finally the languagc deseribed in this report (or
a language devised along similar lines) may prove to be

-18-

a suitable means for the formulization of the semantic
definition of an algebraic language. The lack of such

a rigorcus semantic definition is one of the recognized
shortcomings of the official "Report on the Algorithmic
Language ALGOL 60" and having seen the tremendous amount
of trouble caused by this defect, I most sincerely hope
that this report will contribute to the effort to avoeid
this mistake the next time an algorithmic language is to
be devised.

Acknowledgements.

A great number of people have contributed to this,
consciously or not. Besides all my colleagues at the
Computation Department of the Mathematical Centre,
Amsterdam, I should like to mention Dr.M.V. Wilkes and
Prof. J. McCarthy, who proved to be inspring listeners,
and in particular Mr. M.Woodger: his judgement and his
comments (I remember his lack of enthusiasm for my first
trials in this direction now with gratitude) have been
a great help for me.

