SUBSTITUTION PROCESSES

by

Edsger W. Dijkstra

(Preliminary Publication.)

Januari 1962

Rekenafdeling

Stichting "Mathematisch Centrum”
2de Boerheavestraat 49
AMSTERDAM

The Netherlands

EWD28.html

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD00xx/EWD28.html

EwWD2B - 1

SUBSTITUTION PROCESSES,

A machine defines {by its very structure) a language, viz. its input language;
conversely, the semantic definition of a lanquage specifies a machine thst underz—
atands it. In other words: nachine and language are two faces of one and the came
coin, I am going to describe such & coin. [leave it entirely to you to deciae
which of these two aspects of the subject matter of my talk you think the most
important as it is rather ridiculous in both aspects. The language I am going to
sketch is prohibitively difficult for a human user and the machine I am going to

describe is of a perverse inefficiency.

Therefore, if my mental construction, nevertheless, has a right to exist it
should derive this from other qualities, My machine derives this, to my taste
and judgement at least, from its extreme simplicity and elegance, from the uni-
form way in which it performs its {(at a first glance) rather different operations;
the justification for my language are its clearness and the unusually high dagrea
of ambiguity, derived from a strict sequential interpretation and an explicit
indication in the program to perform operatians, which are usually implicitly
underatoad (and thers=fore apt to misunderstanding). If ons wishes to do so one
may regard my machine and my language as besing conceived for the purpase of

clarification.

8efore I really start with my description [should like to warn you for
two intentioral omissions. The system | am going to present is the result of a
careful choice between a great number of "neighbouring possibilities". I shall
not give my motivations for these choices, | shall even leave the cansciﬁusly
rajected alternatives unmentioned. In other words, I refrain fram introducing
my system at least in some respects as, say, 8 "local optimum". As this diminishes
the convincing power of my presentaticn, [personally regret this omission. |

have to omit these motivations, however, foar the sake of brewvity.

The other question I shall not touch is the question how to implement this
system with the aid of a conventional mechine, One might emven raise the gquestion
-ag | did myself to check that I was not thinking nonsense- whether it can be
implemented at all, no matter how crudely. You have to take my word for it theat

it can be done. [have worked out a method of implementation to a degree that

Lwh2g - 2

could convince, 1 think, the most suspicious euditor of the possibility. But it
is my intention not to show you the particulars of this implementation, bac.cs
I had to incorporate toc many arbitrary decisions in it which, when mentianed,
would only divert the attention from the essentials, In particular, the question

of storage allocation will remain untauched.

My Machine operates on {and under control of) units of information which |
call "wards". Without loss of generality 1 can restrict myself to a finite number

of different words, each represented by the same number of bits.

The machine distinguishes between different kinds of words, say numbers,
operators, variables and eeparatora. For the time being we shall confine our

attention to the first two of these, "number words" and "operator words".

A normal arithmetical operation, ssy the addition or the multiplication
of two numbers, has two nuﬁber words as input and one word, also representing
a number, as output. The rules according to which a numerical value should be
attached to (i.e, derivec from the bifs of) a number word are embodied in the
workings of fhe arithmetic unit, which has the usual property that thase same
rules apply to both input and output: the output of the arithmetic wnit can be
fed into it again at some later stage of the proces. As we assume that the pro-
perties of the arithmetic unit are constant in time, we may say that the number
words have "a fixed meaning", As the fixed interpretation of number words is
coupled to the constant properties of the arithmetic unit it is aot sc surprising
that we shall denote the basic arithmetic operations by aperater words (® + ",

"am e m fu atc.) the meaning of which can also be regarded as fixed.

The machine works under control of a program which primarily consists of a
string of words. For the time being I shall confine myself to pieces af program

prescribing the evaluation of arithmetic expressions.

Let us consider the sxpression that wauld narmally be written down as

5 + 3 /(7 + 2 * 3). 6

in the usual postfix notation (also known under the name "Reversed Polish Notstion™)
this would give rise to the following sequence af numbers and aperators [successive

items in this seguence for the sake of representation on psper being separated

Ewp28 - 3

by apaces)
5 39 7 2 3 * + [/ + 6 - .

The well known mechanism especially divised for the sequential eveluation of

such an expression is what] prafer to call s "stack", (This device has be=en in-
vented and genarelized independently by so many peopie that it is known now

under a great variety of names, such s "push down list", "nesting store", “cellar®,
*last~in~first-out—memory” etc.) If we regard the above sequence of numbers snd
operators as the atring of words representing a piece aof program, the machine

reads this string word by word from left to right. If it reads a number word,

this pumber (i.e. & copy of this number word) is added to the top af the stack,

if it reads an operator word the operation in question is perfarmed at the top

of the stack. In illustration I give on successive lines the successive pictures

aof the top of the stack is st the right hand side of the line.

39

39
39

-~ 3 2 -
N)
w

sasa e

LR RN

A

LV + R RV RN N SN TEEN TR TN S

Cepuvw

and the nat result of the execution of this little piece of program is that the

value of this expression has been added to the stack.

Ae clearly shown in the above example the machine starts by copying the
program text word by ward into the top of the stack. Saocner or later this has to
be intarrupted, otherwise our machine would just be & copying machine. In the
above system the process of copying is interrupted by the occurrence of an
arbitrary operator in the program text. The function of an operator , therefore,
is a double one: firatly it indicates that the copying has to be intarrupted for
a while, because now an pperation haa to be performed, secondly it specifisa this
operation., [propose to separate these two completely different functions; from

now on arithmetic operatorz are primarily trested in exactly the same way as

EWD2B - 4

numbers are treated, i.e. the operator word is copied into the stack as well,
Everytime the process of copying haa to be interrupted I shall indicate this in
the program explicitly by the insertion of a special word, introduced now and
representad by "“E" {from YEvaluate'). My machine now takes the following form.

It reads the program text word by word, from left to right. By “resading”" ia meant
the following: if the word read is unequal to "E" a copy of it is added to the
stack, if the word gead is equal to "E", it is not copied but, instesd, tha
operation takes place as specified {primarily) by the top word of tha stack,

According to these rules the program prescribing the avaluation of the

expression of our previous exampls will now conaiast of the following string of
words:

5 3% 7 2 3 *E + E/ E + E 6 - E
and under control of thie piece of program text {(i.e, when this string of woxds
is "resad by the machine”) the top of the atack will be in succession- as ‘shown in

the following lines:

cieee B
ceies 5 0B

ceves 5 39 7

cerer 5 W T 2

cheee 5 % T 2 3
veees 5 39 T 2 *
veere 5 3 T 6

esess 5 3 T 6 4+
ceees 5 313

vieee 5 3% 13/
ceeee 5 3

cesss 5 3 &

ceees B

cess. 8 6

veeee 8 6 =

veses 2

As said above the machine performs the operation specified by the top word
af the stack when it reads the word "E" in the program text, We shall restrict
ourselves to much programs that 8t such a moment the top word of the stack is

indeed an opsrator word (and not, for instance, a number uard). furthermore we

Ewbzg - §

shall restrict ovurselves to the case that the immediately underlying steck words
be in accardance with any requirsments that the execution of the operator at tha
top may set. (Fur instance, in the case of the binary arithmetic opsrationa illu-

strated sbove the two immedistely underlying words must be numbers.,)

In other wozrds: if an operand of an arithmetic operation happens to be an
expression we substitute for this mxpression its numericel value before the
operation is called into sction, thus &ppealing to the fact that, primarily, the

arithmetic oparations are defined only when supplied with numerical operands,

We regard the replacement of a (sub)exprnsaion by its numerical value es a
Ysubstitution", and we indicate explicitly when thegse substitutions have to be
performed, although, linguistically speaking, this is rather abundant; "3 + 4"

will always be squal to "7T", no matter when we perform this addition.

This situation, however, radically changes as soon as variables -in contrast
to constant numbers- are taken into sccount. (In the follawing we shall denote
variables with small lstters, rsserving capital lettears for "aspecial words", such
as "£" and others, to be introduced belﬁu.) Let us assume that we have to compute

the value aof the expression
n‘+4n

at a moment that the value of the variabla x equals 3. This means that in the
sbove expression ws must substitute for "x" its numerical value at that moment;
only after having done so wa can perform the arithmetic substitution ("I 4"
being replaced by " T "). Given something dependent on x (viz. the expreseion
" x4+ 4") we croate a result (viz, ® 7 ") which, thanks to the fect that we
have substituted for x its present value, is made indepandent of the future his-
tory of x. We have fixed an "instantaneous picture" of the variable x, Obviously
I insist upon indicating explicitly when this instantaneous picture of the

variable x (which is varying in time!) has to be taken.

Now we sre going to harvest the first fruits of our labor for the mechanism
far this explicit indication is alreedy introduced. The piece of program prescribing

the svaluation of the expression
”‘*_4“

now takss the following form:

EwWD28 -~ 6

" x E 4 + E "
and under the above assumption the successive pictures of the atack are

gesass
Taases
resus

PR e

- W W W X

semen

Our machine invites us to deacribe the fact that "the value of the variable
x squals 3" in slightly other wordings, viz. that the state of the procsss is
such that reading the word “E" at a woment that the top word of the stack ia "x"
results in the replacement of this top word by the number word “3", The variable
on ths top of the stack is thus regarded ss a varisble opsrator which, upon
evaluation, is replaced by something dependent on the stats of the procses at
that moment; in this case it is an operator the exscution of which sets no special
rsquirehsnts ta the immsdiatsly underlying stsck words. (The similarity betwsen

operators and varisbles will bs further siressed by our next axample.)

All words read in the text are added toc the stack axcept the word “E" which
causes the machins fulﬁerfu:m a substitution. For reason to be explained below
we should like to have 4lso the possibility of addind the word YE" to the stack.
The framework for this sextension, however, is already present. We introduce a
spacial nplratar; denoted by the word "P" (from “Postponemenf), which effects
upon svaluation a fixed substitution, viz. its replacement by the word "E". We

shall illustrate the use of the apsrator "P" in the next example.

In this example we have three veriables, named "x", "y" and "plinus". Suppase
the statas of the process to be such that reading "plinus E" generates the word

*4+" on top of the stack. When reading the text:
" »x PE y P £ plinus £ P E "
the top of the stack will show in succession

[T R] x

[EE NN x

seean x

P
R I
E
E

LR X X N x

EwD28 -~ T

couee x E v E

essse x E y E plinus
tevan x E y E +
vesas X E y E <+ P
N E yv E + E

and the top of the stack thus contains the string of words which, when read as
a piece of program, would effectuate the aveluation of the expresaion "x + y".
1f the value of the variable "plinue” would have been =" we would have generated

{the string of words corresponding to) the expression "x - y".

What we have done amounts to a partial evaluation of the expression
"x plinus y", the result again being an expression. In our previous examples
the final eddition to the stack always consisted of & single number. 8ut a number
is & trivial example of an sxpression and generating not only numbers but also
more general expressions as intermediate results is therefore an agbvious extension

of the normsl practice.

Up till now we have described the gensration of words on top of the stack
but not what we sre going to do with theas words. Furthermore we have seaumed that
with respect to given variable the procas could be in such a atate that evaluation
of this varisble would give rise to a previously defined subgtitution, but how
this definition should take place is not mentioned in the ahude. Theaﬁ.fuu gaps

in our picture will both be filled by the introduction of the assignment operators.

for the assignment of @ single word value, as in " x 3= 3 " we could write

in our program

resulting into the stack pictures:

svaee 3
P T
- T
Upon evaluation af the assignment operator ":=" the machina investigates the

immediately underlying word. This must bs the variable to which an assignment has

to take place; the next underlying word is assigned to this variable (e process,

Ewdze - 8

gbout which more belnu) and the three words on top of the stack (which have now
been procesaed) are removed from the stack. Until further notice -i.e. a new
assignment to the variable "x"- the evaluation of this variable will reasult in

the replacement of the top word of the stack by the word "3".

8ut for the interchanging of left and right hand side this is closely analogous
to the assignment atatement as known in ALGOL €0. But we need mores than that for,
"in general, the assigned value will not consist out of & single word, but out of
a atring of words and we must tnerefore have a meana'of indicating how deep in
the stack the assigned value extends., The simplest way to do this is to inasert
in the stack a marker, say the special word "T" (from "Terminal®) at the bottom
side of the assigned value. furthermore we introduce anothar assignment operator
“:.# (called the "string assignment” in contrast to the "word assignment" intro-
duced in the previgus paragraph). Upon evaluation of this operator the machine
investigatag the top of the stack in downward direction. The first word (immedistely
under the operator ";-") must be the varisble to which a velue has to be assigned.
Therasafter the machine continues its word by word investigation in the downward
direction until it meets the special marker "T": the words passed in this way

form together the string that acts as the sssigned value.

The simplest way to add a "T" to the stack would be just to insert the
word "T" in the proper place in the program under control of which the stack i
being filled. This arrangement, however, will not do; for reesons to be explained
later we need the possibility of generating a “T" on top of the stack under
control of a program: that itself does not contain this nofd. We can do this with
the same trick that enabled us to generate an "E" on top of the stack., We intro-
duce a new operator, dencted by the word "S" (say from “Seperator" ar because it
precedes the "T" in the alphsbet) which upon evalustion is replaced by the word
"T* and we mske it & rule that this will be the only way in which words "7" ars

added to the stack.

Using all this we have an elternative way to write the assignment statament
" x 3= 3", viz,
"5 FE 3% x = E "

giving in the top of the stack in succession:

[N NN S
LR RN T

R -

EW028 - §

sssan T 3 x

cenes 1 3 x -

The net effect of thie is equivalent to the previous farm using the ward

assignment "i=",

Let us use the more powerful assignment in an example which is an extension
of one of cur earlisr ones, viz. the one describing the partial evaluation of the
expresaion " x plinus y ", The result of this partial evaluation was sn expresssion
depending an the variables "x" and "y" and supposs that we want to call this

expression "z", For thia purpose we write in the progrem:
“ § E x P E y P E plinue E P E 2z = E " .

When the last E" of this string is going to ba rsad the top of the stack will

be as follows {under the same sasumption with respect to the value of "plinus"):

ceess T x E y E + E 2 3=

and after the execution of this asaignment the above words will have bean removed
from the stack, the word "T" inclusive. Until further notice the eveluation of
the variable "z" will imply the execution (the "reading") of the string assigned
to it. Upon evaluatiaon of the v:}iabla "z* the machine tharefors must have scceas
to the first ward of this string; when it starts resding this string, hawever,

it must detect the last word of this string. We propose that the sssignment
operator sees to this by adding again an end merker asnd for thil'purpase wa can
use the very same word "T*. Upon evalustion of the varisbie "z" the string
assigned to it will be read ss a piece of progrsm, from left to right, until ths
and markser "T" is mat. The new situation r-aulting-frun the lesst sssignment can

conveniently bs reprasented by:

" 2+ x E y E + ET " .

In exactly the same way our previous assignmants
" % x 3= £ " or " 5 E % x - E "
will both give rise to the situation, repressrited by

" x- 3T M .

EWD28 ~ 10

One of the mast illuminating aspacts of this arrangemant is that the usual
distinction betwean "numbers" and "instructions” has complstely vanished. The
value of a veriable is defined as & piece of program, svaluation of this variabls

implies the sxecution of this pisce of program.

Furthermore we should like to draw attention to a certain form of duality
between the assignment on the cne hand and resding s taxt on the other. When ths
machine reads a piece of program text, the top of the stack is filled under control
of this program text. In the assignment "readable taxt" is created under control
of the contants of the stack. The duslity can alsc be illustrated by taking into
consideration the accanibilify requirements. The words in the stack need only be
accesible in the direction from top to bottom. If sn assignment statement converts
the top of the stack into readable text, however, tha consecutive words thereby

become accessible in the other ‘direetien,

Finally, the atack is reserved for "snonymous intermediste reaults", whereas
readable text -in principle, at least- is always "named”, for ws craate it by

asaigning it to a varieble,

The attentive reader will have noticed that, slong with the representation
of the value of a variable, wa have ailently introdaced two mors complicationa

in our machine.

The firat ona, the occurrence of the word "T" in program text and tha
machine‘’s "immediate reaction" to it is s relatively simple one. As we have
degscribed the organization, the word ™T*, when resd in the text, is not copisd
an top of the stack! Instead, it cousss the machine to go on reading at the
first word follawing in the string after thes "E® that caused this svalustion of
the variable in question. In other words, it acts as a "Aeturn" at the end of

a closed subroutina.

But the evaluation of & variable may call for the evaluation of other
variables {(even for the svaluation of itself): the pragmatic dafinition of the
evaluation of a varisble is basicly e rescursive ons and the mechanisme ons needs
to follow 8 recursive definition is .,... snother stack! I cell this second stack
"the stack of activations" in cantrset to the first whichr I call "the anonymous
atack"., One of ths functions of tha stack of activetions is to control the reading

process. When the evaluation of s varisble starts the stack of activations expands,

£w0z28 - 11

when the corresponding word "T" im read, it shrinks to ite previous size. (In
the usual terminology of machine structure: the stack of activations contains a
stack of "order counter values", its top element being, by definition, "the pre-
sent order counter"; in this same terminology its older mlements act as a stack

containing the “"return addresses",)

Note. We could try to merge our two stacks into one. This merging would present
itself in a completely natural fashion if the two should expand and shrink "in
phage" with one anather. In general, hawever, this is not the case and trying ta

merge the two stacke into a single one would give a highly unnatural construction.

We shall use the stack of activations for yet another purpose, to satiafy a
very fundamental need, viz. the creation of new variables. In the ebove I have used
special words { *x*, "y", "plinus" etc.) to denote variables and I have carefully
avgided to use the term "identifier". I have used the term "wvariable" in cﬁnnectinn
with a singla, uniqus object, axisting for some pericd of time and capsble of ta-
king on diffatent velues in succassion, This concept of a varisble is to be dis-
tinguished carefully from the "identifier” as used in ALGOL 60, because one and
the sama identifier may be used to point to a hest of objects, to a great numbsr

af different variables.

First of all we meet the fact that one and the same identifier may play
different roles thanks to the fact that it occurs in wore than one declaration.
A lexicographical rule then tells us which one of these declarations applies
everywhere, where the identifier in quastion may be used. This form of multiple
use of ane and the same identifier could be removed by a simple process of re-

naming.

But there is a much more subtle case of "multiple use of one and the same
identifier", viz. as soon as & certain block occurs in vpe or more hested acti-
vations {(as in the case of a recursive prucadure). In other words: one and the

same identifier then refers sometimes to this variable, sometimes to another.

In actual fact: the identifisr atands for a variable and in order to indicate
clearly for which variasble it stande [intend to denote explicitly the moment

when a variabls has to be substituted for an identifiar.

Ewp2s -~ 12

For the saks of convenience ~to he more sxact: convenisncs for the machine
and not for the hypothetical user- I intend ta use the same identifisrs for the
local varisbles of every activation. (What I call “an aétivation" is closely
analogous to & block or a procedure body, ss known in ALGOL 60.) 1 use for this

purposs the special identifier words “LO", "LiI", "L2", etc,.

If the machine starts the evaluation of a variable, tha stack of sctivetions
increases with ons item. At the atart this item also containe a note that up till

now no local variables have been introduced in this activation.

If the machine reads the word "E" at s moment that the top of ths anonymous
stack contains one of the identifier words (say "L2") them it investigetss ths top
item of the stack of activations, If it is the first time that this identifisr
has to ba evaluatad in the present mctivation the machine creates a new variable
for it'(lﬂd may give thia variabls an empty valus) and makes in ths youngest
item of the stack of activations & note to this effect. Then it replaces the top
word of the snonymous stack by the varisble just creatsd for it. At a next evaluation
of the same identifier at a moment that the sems activation is still (or again)
the presant one, the machine finds in the_ top item af the stack of sctivations
the nots left thaf£ ;t the first svaluation of this identifier and the top word

of the stack is replaced by thes very same variable.

Now we can show & more complicated example. Let the values of the variables

Px", "y" and "complus" be as represented by:

*" x- 10 23 T ©

"y 5 =2 T "
" complus -~ 1O E = E
L1 E =:= E
L2 E := E
L1 E E + E
L2 & E O E E + E
T "

if we now read the text .
L]

" 5 E x E£E y E complus E z := E
the net sffect will be that we can represent the new value of "r" by:
"oz 5 2¢ T v ’

and what we have done can be interprested as the addition of two compleax numbers.

EWD28. - 13

In ALGOL terminclogy: "complus” is a procedure with four numerical parsmeters,
all called by value. The simple structure of the process allows the first of these
to remain anonymous even in the procedurs body. Furthermore, it is & kind of “type

procedure”, be it ane that, syntactically spesking, takes the place of two primaries.

Let me end with a trivial example. Suppose that we want to write "plua” instead

of "4, After the assignment
" S E + PE -plus - E " ,
which gives rise to the situation
" plus = + E T"

the expressions Y

" x £ y E plus E
and _

" x £ y £E + E "
are completely equivalent, This example is included to ghow as clearly as possible

the arbitrariness of our primitives.

Conclusion.

I am fully aware that the sketch ie definitely incomplete. Particularly
canditional reaction and some equivalent of the go to statement should be incor-
porated if one wishes to make a system out of thie. For the moment I leave these
out and [do so for two reasons. Firstly for the sake of brevity and secondly
because [have not decided yet: I know of several possible ways but none of them

fully satiafies me.

With some versions of these facilities I have made slightly mors elaborate
programs. They showed me both the power snd the weakness of my Language, its
power being its flexibility and its unambiguity, its weakneas being the fact that

using it intelligently proved to be far above at least my powers,

If nevertheless [claim attention for this pruject I don't do so only
because it charms me and may charm others as well. This repcrt is the condensation
af my meditations after we had completed our implementation of ALGOL 60. This

implementation was comceived &t high speed and the main juatification for the

EWD28 - 14

that
numerous decisions taken in those hectic months was the recognition our conceived

congtructions would lead to our ynal and would ¢o the job, in some way or anather,
The Fachine described in this report, however, represents an extrema of the
continuous spectrum of possible implementations of an algarithmic language which
{as is the case with ALGOL £0) caters for recursiveness. In this quality it has
been very clarifyirg for me personally: it has helped me s great deal in the
appreciation of the various (initially disconnectea) tricks we have incorporated
intuitively and it has clearly shown us a number of aiternative solutions. There-
fore the hope is justified that translator construction and machine design in the

future will benefit froum these consideraticons.

furthermore, the Machine presentad hers is sc ridiculously inefficient that
every practical implementation of a practical algorithmic language in all proba-
bility cen be regarded as an optimization of it, an optimization which is permige
sible thenks to certain restrictions in the language. It may be useful to compare
a proposed language with my language; during the process of language construction
it may be helpful in the timely detection of "expensive features". Whether such
an expensive festure will be included or not is more or less a political question
but quite apart from how such 8 question is snswered it is nice to know what one

is doing.

Finally the language described in this report {or a language devised along
similar lines) may prove to be 8 suvitable means for the formulization of the
semantic definition of an algebraic language. The lack of such a rigorous semantic
definition is one of the recognized shortcomings of the afficial "Report an the
Algorithmic Language ALGOL 60" and having seen the tremendaus amount of trouble
cauged by this defact, [most sincerely hope that this report will contribute to
tha effort to avoid this mistake the next time an algorithmic language will be

devised.

Acknowledgements.

A great number of peccle have contributed to this, conaciously or not. Besides
all my calieagues at trne Computation Department of the Mathematical Centre, Amster-
dam, I should like ta mention Or.M.V,Wilkes and Prof.J McCarthy, who proved to be
inspring listenerz, and in particular Mr.M.Woodger: his judgement and his comments
\I remember his lacg of enthousiasm for my first trisls in this direction now with

gratitude) have been a great help for me,

