EWD101-0

Description of the object progranm

The main points seem to be:

1. Memory lay out

2. Simple variable adressing

3. Block entry and exit

4, Formal variable addreseing

5. Procedure calls and actusl parameters
6. Subscription

7. Labels and switches {(goto-astatement)
8, Conditicnal expressions and statements
9. For-gtatement
10. Library
11. Assignment
12. Errer checking
15. Input-output buffering.

hemory Layout
Apart from a fixed pmximk porticn of core memory, the remainder will
be used in portions of 512 words, called = gcore page.

Vemory on drum will be divided into drum pages of 512 words. The
atarting address is given by

1025 » drum page number (mod 219
The information in a program is subdivided into segments also of 512
words. (A segment 1= an {information upit, « page is & mewery unit)

In the case of a big array, a segment which has been declared, but up
till now is stil) unused, is regarded as existing, but empty. It
cccuplies no page.

The information of a non-emptiy asegment may be at any moment
1) in the process of tranaportation

2) exclusively on core

3) exclusively on drum

4} on both.

Femark: while a segment is in the process of transportation it may
cease to exist, As far as the running system is concerned the core
page remains occupied until notice has been taken of the completion
of the transport process,

We distinguish (mainly)
stock segmenta
program segmants
array segmsnts,

EWD101-1

Remark 1, Each program has a unique stack.

2. Program segments are in principle of two kinds, library
sezments and private segments ("private" will mean:
pertaining to an individual prograa).

3. Array segment may turn out to be different from buffer
segments for inmput and output. Time will ahow.

To each segment belongs a so-called SV (Segment Variable); it is
via the S5V that a segment will be addressed.

Addressing Program Segments

In core memoery will be a table of SV's pertaining tc the library
segments., This will contain as many SV's as the library has segmenta.

The 5V table for the library will be situated at a fixed place in
store; the 3V's will be addressed - mirablle dictu - by their physical
address.

The private program 5V's of a program will be put at the bottom of
its atack. This bottom page will be chosen, fixed, at the beginning
of the translation process, As a result the private program SV's can
be addressed by their physical address.

Points in grogran or library are thus characterized by 9 bits line
numbsr + 18 (or say be 15 undecided yet) bits SV-addresa.

Addressing Array Segments

A8 array will be local to a program, the SV's corresponding to its
segments will be put in the atack at a block height corresponding
to the declaration. They are never addreessd directly by the obJect
Progrxit.

Addressing buffer segments

Undecided yet.

Remark about stack segments

4 stack segment will always be in core, and on a so-called "holy core
vage', Therefore, the system can safely wonvert to physical addresses
when referring to elements within the stack.

stack segsent overflow

Logically consecitive stack segmenta need not be on consecutive core
pages. The object program has the duty to reserve, at block entry,
"sp and so many more' stack places. #Hhether they can be put on the
same segment or whether the transition to a next page is needed is
not reflected in the cbject program.

EWD101-2

Simple variable addressing

Jeading - i.8. executing - a text implies that D polnts to a proper
display.

quantities declarsd in the cutermost block will be addressed by HO[q]-
addresses, simple variables in blocks with block height 1 by M1[q]
addresses, etc.

However: when executing a plece of text of block hdght =n. Din} should
be contained in the A-regibster, so that for local aimple varisbles the
addressing can alsc be done by means of MA[q]. For the system this
implies, that after return from a2 primitive to program text, care must
be taken to enaure that A will indeed contain the local reference point.
(At each stage D[-1 = n, 8o this is one of the ways to achieve this.)

3imple reals will occupy two words in the stock, simple booleans and
integers will occupy & eingle word. Simple complex variables will
contain four consecutive words in the stack.

The local variablea of a block will be addressed by Mn[q] (or MA[q],
ases above) with @ = 0,1,2,3v.. B with m £ 255. The rule that we start
with q = O is essentisal; whether the maximum walua of m will be
allowed to be 255 ie a tranaslator question: it say decide to introduce
a fietitious extra bloock st an esarlier point.

Bloeck entry

The main task of block eniry is

a) extension of the terminology (=Display)

b, stack reservation.
The blogk sntry apart from arrays will be performed ia the following
steps.

First a stack reservation has to be made for the explicitly EIEjiIE
TR NN BN X R Y X RN (R AR R E X AT I NE T ¥
RN NEBI R EXUNEAY addressed stack quantities (one word per simple
beolean, and simple integer, twe words per simple real, four words per
simple complex and one word per array). To these have to be added some
standard ones describing the linking of stack storage; sees below.

The stack reservation is made by two instructions:
i= number of words sonsecutively needed
SEC
Betwaen these two orders, segment tranaition will not be allowed,
SEC is the pams of a subroutine jump to a System Routine. It will be
an instruction of the type SUBCD.

The taak of 5E0 is to inerease the current block number, (to be found
in D[}?])‘ to find the new stack space asked for, either in the sasme
or ir another stack page, tc provide the linking necessary, to set the
WP, the AP and to fi1l in & new item in the Display.

When mo array 1a declared, the object program will proceed by asking
for an ancnymous reservation, i.e. the amount of storage apace needed
for the anonymous intermediate results. The algorithm deseribing how
to derive thia number will be given in detail.

EWD101=-3

In the object program the anonymous reservation will be deacribed by

S:z number of words consecutively needed

SE4
Also S5E1 is a SUBCD inatruction; between these two orders no segment
transition will be allowed.

The task of SE1 is to check whether WP can remain as it stands, or
whether it must be set to the beginning of a new stack page.

In the case of one or more array declarations the prowsedings are
slightly different.

After SEO, which effected the block entry proper the array declarations
are treated "array segment' after "array ssgment’ (see 5.2.1.).

The treatment of an array segment consists of

1) asking stack space for the values of the bounds in order from left
to right and their anonymous svaluation. (In this respsct the
ereation of storage mapping functions, the procesaing of an "array
segment’” can be regarded 2s a Zn-ary operation).

2) evaluating the bound values and stécking them as integers, one word
for each, on top of the stack (i.e. at the bottom of the place
reserved,. These values will remain there during the execution of
the block.

%) creation of the storage function., Thias cperation needs as parameters

3.1) the type of the array (boolean,integer,real,or complex)

3.2, the bound values

3,%) the dimension

Z2.4) the array words concerned,

The type of the arrsay will be specified by different entries,

The bound values of the array can be found &t the top of the stack,
The dimension can be deduced from the difference bhetween AP and WP,
The array words will be specified by the object prograna,

as follows:

S:= number of array identifiers in the segment.
A:z physical address of the first array word concerned.

These two instructions will be followed by one of the following four:
52 create integer arrays

SE3 create real arrays
SE4 create hoolean arrays of type SUBCD.
S8ES create complex arrays

The return value of A is the local refersnce point, of B the present
AP, of S and F immaterial.

The three instructions thus generated may not be separated by a
segment transition.

The first array segment is now treated. The object program will repeat
this for any further array segments; after the last one, SE1 will be
used to reserve stack space for the anonymous expression svaluatihon.
This is needed, becazuse 552, SE3, SE4 and SES will imply a (statically
unknown) increase of nF.

EWD101-4

The iiiliﬁi!i procedures declared within a block will not result in
extra operations in the object program, to be performed at block entry.
The processing of switch declarations is undecided yet.

Block exit

The nermal block exit ("passing through an end") will be reflected in
the object program by a single instruction of type SUBCD

SE6: Blocek exit,

Formal varjable addressing

The top of the stack is used ag transmission mechanism to transmit the
actual parameters to the procedure called.

+t call side the object program stacks the current actual parameters an
top of the stack in some preacribed order (either from left to right or
right to left; this is fully a translator question and need ¥ not be
decided now), Zach actual parameter specification takes four consecutive
words in the snonymous top. As soon as the procedure has been duly
entered, they become "nonymous” and can be addressed as the sc-called
"“"formal locations”.

The top formal locations are addressable by something likxe Mnf-4} up to
and including Mn[-1], the next formal locations by Ma[-8] up to Ma[-5]
ete. with suitable n,mx viz. one higher than the block height of the
local variables of the block in which the procedure has been declared.

Note. If the number of local variable exceeds the limit, so that one or
more additional block parenthesis pair has to be introduced by the trana-
lator, then the procedures and switches declared within this blogk must
be treated as declared within the innerscat block.

The processing of the specifications and the value list will be described
as part of the procedure entry. In this ssction we shall restrict um
ourselves to formals outside the value list.

Here the translator will not distiaguish between the specifications
integer and real; to indicate this we shall use the tersz "sarithmetic™.

The processing of arithmetic formals

The formal locations Mn[-4em-alpha+0] ... Mn[-#‘u-alpha+3] be demoted
as f[0] ... f[3]. (alpha leaving space for return information.)

issentlally, these formal locations will be processed in three #ifferent
ways:

a} as actual parameter

b as right hand value

c) as left hand value.

Actual parameter

The structure of the object program transmitting a formal variable as an
actual one will be described as part of the calling sequence. The contents
of the formal locations have to be copiled on top of the stack,

EWD101=-5

Right hand value

The object program will eontain the imstruction
pos(¢[o])

The first formal location must be filled with such an inatruction
that after return to the body
F contains the value required
A and B are unchanged. (4 will contain the local reference point
and B will contain the atack pointer).
The return value of S, however, is immateriasl.

Left hand value

This has to be evaluated when asaignment has to be performed to a
formal variable of type arithmetic. On account of possible side effects
the proceedings will be az follows:

First a left bhand value will be evaiuated mm on top of the stack,
then the expression will be evaluated in the F-regiater, and finally
this value will be assigned according to the dats on tep of the stack,
A left hand value is a generalization of the concept "address".

The evaluation of the left hand value is commanded by the object
program by
DoS(F[1])

Upon return in the body the return values of S and F are immaterial,

4 agaln contains the local reference point, as it did before, and B is
increased according to the @ize of the left hand value, seeing to it
that again it points to the first free place.

The left hand value must be such that, when the value to be asgsigned
has been placed in the F-register and the left hand value is indeed
the top element, assignment can be effected with

Do(MC [-1])

after this cperation the return value of A ias still the local reference
peint, the contents of S are ismaterial, B is decreased in accordance
with the mize of the left hand value processsd and F is unaltered if
asgignment to a real has taken place. If, however, assignment to an
&ctual integer has taken plece, then F will contain the rounded value.

Checking of equal types in multiple asmignment

In a multiple assignment, all left hand aides must be of the same type.
if no formal left hand side is in the 1ist, the checking will be done
at translation time. If cne or more of the left hand values are formal
the check for type consiastency will be performed at run time as part
of the assignment statement.

As soon as all left hand sides have been evaluated on top of the mtack
they will be inspected all - imeluding the left hand sidee of non formal
arrays -; to do this, three systsm entries ars introduced:

SE7: check consistent left hand type
SE8: check integer left hand type
SEG: c¢heck real left hand type.

E¥D101-6

They are of the form of SUBCD instruction; they are preceded by
S:= pumber of left hand valuez to be inspected.

SE7 has to be used in a multiple assignment, all elements of which
are formal. In the case cof cne or more non-formal left hand sides the
tranaslator can have checked the consistency of the non«formsal ones,
and use SE8 or SE9, just sa the case may be.

The two orders, just generated may not be separated by a program
segment transition.

Upoa return from SE7, SE8, and SE9 - if the check was satisfactory -
A must contain the loesl reference point, B must have its previous
value, the return values of 5 and F are immaterial. (The assumption
here is, that checking will be done after evaluation of the left hand
values)} but before that one of the right hand value.)

Remark 1. The npumber of left hand values is given explicitly; the
alternative - derival from AP - would disable us to carry out khmmw
this check at the soe-called "intermediate assignment”.

Remark Z. The possibility to perform this consistency check at prooedure

entry has besen rejected on three grounds:

1; it would impose a scanning burden on the translator, (not serious)

2) it would require the formal logations to distinguish between integer
and real (what is otherwise unnecessary)

3) multiple assignment is inimportant anyhow, still more sc with formal
left hand sides.

Uther types of formal parameters will be dealt with later,

Complex arithmetic

This will be described mow, mow for two reasons: it is not ebvieus,
and we have hardly paid attention to it. Also it has & bearing on the
actual formal correspondence, when a actual of type arithaetic may be
supplied for a complex fowmal,

A gomplex number will cecupy in store four consecutive words, twe for
the real part and twe for the imaginary part.

In accordance with our attitude towards complex numbers, we shall
implement them az straight forward as possible, only trying to gain,
where the gain can easily be won,

The straight forward method puts &ll results on top of the stack, four
words for each operand and we only opsrate on top of the stack.

The first thing we decide ia that, in the case of a simple left hand
operand and a complicated expression at the right hand side, we shall
do an interchange whenevep linguistically possible. (This analyais
will be done for arithmetie variables anyhow. So this cannct produce
great additional diffieculties.)

Up till row the reason to do sc 1s saving of stack space. The next ¢
question is under what circomstances we intend to save time as well.

The only operations worth bothering about are the fetch, the asaignment,
the addition, the negation and the multiplication.

EWD101.7

The basic remark is that as long as addition, negation, aseignment and
fetch are concerned, we can perform our operations firet on the real
parts and then on the imaginary parta. all primaries being simple

"ai= b o+ e"
becomes then

F:= real part b; F:= F + real part c; real part Aiz F;
F:= im part b; Fi= F + im part ¢; im part a:i= F;

This is even OK if a soimcides with b or ¢ or both. It becomes more
diffieult if we have a product, because then thers is no non-interference
anymore between real and imaginary parts.

If I am not mistaken the following algorithm holds. If a complex product
has to be formed, investigate if any direct additions can be performed
on it. This defines which anonymous locations will accept the result

{if any). Make a 1ist of destinastiens (including arn anoaymous one in

the zase of further procesaing). Check, whether the fxix first faetor
occurs among the destinatisons; if so, save the real part. Check, whether
the second factor occurs among the destinations, if so, save its real
part. Finally produce the code for the resal part computation and sters,
seeondly create the ccde for the imaginary part, being sure te use the
saved real parts, It should be able to cope with

ai= bi= a» b |

If a non-complex primary is used as argument for a multiplication or
addition, we can exploit this. This will not be too hard.

This being settled we can resums the System Entries for the complex
arithmetic.

SE1Q complex division.
This will be & SUBCD instruction. The twc top elementis of the stask

must be complex values, the lower cne is replaced by the quetient of
the lower hne divided by the higher one.

Return value of B is 4 lower then the entry value, A must be unchanged,
the return value of S &nd F is immaterial.

S5E11 complex power.
The top element of the stack muat contaln the complex base, F must
contain the exponent value. SE141 starts to check, whether this value

is indeed integer and replaces the base by the power. Return value of
A and B unchanged, of S5 and F immaterial.

Complex asalgnsent

This only occurs in the case of separately evaluated complex left hand
values, derived from formal or subscripted (complex!) left hand sides.
The top of the stack will corntain a complex value, underneath will be
g left hand value. For every sssignment the objeet program will contain

pos(MB[-5]).

E¥D101-8

This will perform the assignmeat, remove the left hand value, shift
the complex value down and decrsase B aecordingly, Upem return, A

must contain the local reference pointer, the values of 5 and F are
immaterial. After the last assignment the g cbject program contains

B:= Bl

in order to get rid of the complex value.
{The last tracsportatisn is wanesesaary, but I think I prefer it that
way)

Precedure entry and sxit

Type procedures will leave their result on top of the astack.

We shsall first treat the non-formal case.

The ealling ssquemce for a procedure of type integer, real, complex
respectively starts with "B+1", "B+2W, “B44" respectively.

This has alec to be done im the case that the type precedure is called
as statement; the way in which the decrease of B (in order toc rejeect
the unwanted result) will be effected will be described later.

On top of the place left epem the calling sequence will put the formal
lecations, if any. On top of these, the ealling sequenoe will put the
return inforssation.

The staek picture at prcoedure sall will bde

M[B-10] :fle]

f;%;% formm] lecations of last actual
c2[3] parasster, 1f pressnt

M{B-é] thetimes number of actual parameters +6
tinmariant return sddress -
treturn D
treturs specifier

M[BmZ] tinvariant starting address of the procedure
M[B—1] tcentext D

B — caaes places reserved for the standard locals,

The present value of E will be loocal reference point of the fictitious
blotk of the procedure, see below,

e have the following return specifisrs

SE12 RNormel return from explicit procedurs.
This will result in a AP-value equal to 4 - MA[-6], when &
is the local reference point of the fietitiees block.

Thie will be the return specifier in all nen-formal calls,
except when explicit type procedures are called in the statement
situation.

E¥D101-9

SE51 Reject integer result.
This will result in a AP-value equal to

A - (MA[-6}+1),

This will be the return specifier when an explicit integer procedurs
has been called in the statement situation.

SE14 Reject real result. -

This will produce A2 = A - (MA[-6].+2);

it will be used, when an explicit real procedure is used in
the statement situation.

SE1 Reject complex result.
This will produce 4P = 4 - {MA[~6]+4);
it will be used when an explicit complex procedure is usmed in
the statement situation.

The formal callsare classified according to the information available
at translation time of the body.

if a formal procedure is specified non type it may only be called in
statement situation., All types of procedures are admissable as actual
cne, The calling sequence will start with B:= B + 4 aad SE15 will be
used as return specifier.

If a procedure is specified as arithmetic, the only actuals acceptable
on agcount of this specification are thoase of type integer and real,

If it is called in the statement situation, its calling sequence will
start with "B+2" (to give room for a result) and the return specifier
will be SE14,

If it is called in the expression situation, its calling sequence will
start with:
Fi= 0O
Mc[0}:= F;
the return specifier used will be:

SE16 Make real result.

This will produce the return value of AP egqual to A - HA[—G]; but
before that, it will check, whether 415 of the lower result word
equals 426 of the higher omns; if not, -0 will be filled in the lower
result word. (To cater for the case that the arithmetic actual was
integer and has produced a negative result).

If am procedure is specified as complex, the only actuals acceptable
are those of types integer, real and complex.

If it is called in the statement situation, its calling sequence starts
with "B+4'" and the return specifier will be SE15.

If it is called in the expression situation, the ¢alling sequence will
start with:
F:= 0
MC[0] := Fy
MC[O]:
and the return specifier used will be SE16.

} filling in an imaginary part = gerc

F; prepare place for real part

EWD101-10

Remark. Complex numbers will be represented, for this reason by
imaginary part follewed by the real part. We shall do this consistently.
(In contradiction to a previously stated convention.)

A complication arises because a single procedure identifier may he a
complete expression, it may be given as actual parameter where the
corresponding formal one has been specified arithmetic.

#hen a formal parameter has been specified arithmetic, the procedure
will accept an arithmetic procedure identifier as actual., It will
change, however, the formsl loecations in such a way that DOS(f{0])
will produce & right hand value in ¥ and DOS(f£[1]) will produce an
alarm {no left hand value;.

This checking will change f[0] in such a way that

a) two words on the stack are left opem for the result,
as the arithmetic procedure might be of type integer,
+0 will be filled in (at least in the lower word;.

b the proper calling sequence for a procedure without parameters
will bDe generated. This implies the construetion of an invariant
return address!

¢; as return specifier it will place

SE17: Real value in F,
This one is a combination of SE16 and SE1h4.
it starts by making a decent real result of the contents of the

locatiens left free After that it will reject them, but it will
return with the value in the F-register.

The fictitiocus block

As described sbove the ¢alling eegquence prepares in its anonymous
space placs for the result (if any), the formal locations (if any)

and the return information. This information becomes the "monymoua'
information of the fictitiocus bleck, On top of the return information
sufficient room must be avaklable for the standard loeals (WP,S5V-chain,
etc,). The AP-valus at the moment of entry will act as the local
reference point of the fictitious block.

The text of the procedure body starts with the fictitous block entry
consisting of three orders (not separated by program segment
transition):

Ai= block height of the fietitious block
5:= maximum block height inner block
S5E18 Create Display.

SE18 is a SUBCD inetruction., Upon return the values of S and F are
immaterial. A contains the local reference pointer, B will contain
the stack pointer. At this moment the walue of the atack pointer
will be squal to that of the WP of the fictitious block; thiz value
will aleso be stored at MA[Q], being one of the atandard locala,

EwD101-11

The task of SE18 is roughly the following.

it has to find place for a new display on top of the stack, the aize

of this display being desirable from 5. If the amount of space in the
current stacik page is insufficlent a new stack page has to be initiatad.

The number of places needed consecutevely will he 3 more than the entry
value of 5, for the Display to be crzated will have the following
formal:

D[-}] : PDC = Parameter Depth Counter
p{~2] : FBH = Fictitous 3lock Height
D[-f] : CBH = <Current Block :eight

D — D[O] ¢ global referance point
3[1] : reference point block height 1

etc.

D[sentry]

B — csanesans

{The number of places needed consecutikvely will be a little more than
Sentry + 3, because we must still be able to give some SUBCD-instructions).

SE18, Create Display will set the new PDC equal to O, FBH and CBE equal
to a , it will fil1]l the places D[Of...D[CBH-1] with the correspending
elemggggyof the context diaplay, D[CBH with the lccal refersnce point

of the fistlitious blosk.

~fter this preparation the fictitious block has been duly entered: in
extending the stack the fictitious block behaves ae any other block.

The next three orders check the nuamver of parameter supplied.
Unseparated the text will continue with
S:= Ma[-6]
T,5 = "(4anumber of formal parameters +6)",2
4, SE19
where Sk19 is an alarm exit for "wrong number of parameters’.
After this check the procedurs will investigate the actual parameters,
Actual parameterm investigation ia done by two unseparated instructicne
per porameter, viz.
S:= £[0) (with absolute MA-addressing)
followed by cne of the following apater entries {(all SUBCD-orders):

5820 Check formal arithmetic
521 Check formal boelean
S5Ez22 Check formal arithmetic array
5523 Check formal boolean array
522k Check formal procedure
SEes Check formal arithmetic procedure
SB26 Check formal boolean procedure
SE27 Check formal label

EWD101.12

S5E28 Check formal switch

SE29 Check formal string

SE30 Check formal complex

3831 Check formal complex array
S8E32 Check formal complex procedure

After return - when the check is satisfactery - S and F have
immaterial values. A and B must contain the usual information.

If the value list contains sealars, the fictitious text will econtinue
with
S8:= 16 {or something else, this is a translator gueation)
SE1
in order to reserv: unonymous apace for formal acalar evaluation
{case of simple implicit subroutine).

For each scalar in the value list it will contain the code sequence
asking for the right hand value followed by an assignment, overwriting
the formal locations (this can both be done with MA-addressing).

If arrays by value are to be processed they must be processed novw.
(see later) This may cause a WP-increase, but there is nothing wrong
with that.
fert
The whole picture of a procedurevibat will be
" Create Display (SE18)
Check Number of Parameters (SE19)
Check Yormal Parameters {SE20-SE32)
Process Value List (SE1)

loek Entry {SEQ)
. Translation of the body proper

Block exit (SE6)
| po(Ma[-3])

The block exit 356 annihilates the block entry SEO; if the procedire
body doez mot contain any local variables, ehich need space Tessrvation
in the stack, this bracket pair may be okitted.

The fietitioua block ehtry Create Display (SE18) is annihilated by the

last instruction: an execute of the return specifier supplied at the
call.

The rarameter Depth Counter PDC

The following applies tc the non-simple implicit subroutinem NSIS,
#hen counting the maximum inner bleck height, the NSIS counts for an
increase equal to 1.

#hen in implicit subroutine is called, this is done under control of
a so-called context D. Before entering the NSIS proper the PDC of the
context D is increased by one; upon return from the NS5IS it is again
decreased by 1. As an NS5IS might contain a call of another procedure
supplying again a NSIS as actual parameter, PDC might get larger than 1.

EWD101=-13

Py Nog 5 1 S outine NSIS

The NSIS i1s treated as a special kind of procedure with a "parameter
bloek” of a height 1 higher tharm the calling sequence.

The fact that an actual parameter is & NSIS is given in the formal
locations. Its block introduction, however, needs po parameters from
the text od NSIS. (The 1mplicit subroutine has no local variables.)
Before entering the NSIS, therefore, its context D is already the
current one, the FDC and the CBH asesociated with it have been increased,
a local reference peint has bheen introduced and a WP has been set.

The NSIS starts by asking for anonymoue space in the usual manner (with
SE1).

At the end it will contain the return from the implicit subroutine,
which will find its return information under control of the local
reference pointer. As part of the return operation PDC and CBH, will

be decreased by 1. Further detaile lzter.

List of system entries introduced

Blochk

Zntry

Anonymous Reservation

Create integer arrays

Create real arrays

Create heolean arrays

Create somplex arrays
Block Exit
Check consistent left hand type
Check integer left hand type
Chasck real left hand type
Complex diviaion

Complex
Specify
Specify
Specify
Spacity
Specify
Specify

power

normal preturn

return, rejected integer

return, rejected real

return, rejected complex

return, integer to real extepsion

return, result in F

Create Display

larm
Check
Check
Check
Checic
Check
Check
Check
Check
Check
Check
Check
Check
Check

exit wrong number cof paramsters

formal
formal
forsal
formal
formal
formal
formal
formal
formal
formal
formal
formal

formal

arithmetic
boolean
arithmetic array
boolean array
procesdure
arithmetic procedure
boolean procedure
label

switeh

atring

copplex

complex array

gomplex procedure.

EWD101-14

