15 June 1967 Ewo201 - 0

A sequel to EWD200.

In today's letter I shall deal with a subtle question, viz. the problem of
identity of elements in a set, a papulation, of variable size. Mind you, that in
the opening paragraph of EW0200 I have spoken of comporents "with a permanent
existernce, an undeniable identity", and indeed, if we have a set of 100 elements,
numbered (or should I say “identified"?) from O through 99, we have nn problem.

But suppose that this is a vector that is allawed to shrink and grow in
stack fashion and ‘let element nr.99 be removed from the top of the stack. This suggests,
that the remaining elements (with a permanent existence, an undeniable identity!)
keep their identity index, i.e. remain identified by their distance from the stack
bottom, This is essentially what is meant hy "identity", it provides a means in which
we can refer (and continue to refer) XKKXXKEXXH%!NKNﬁXEXHNHKKXX&XXNKXX!&HNXK&XKXEMHNXEX
to the remaining elements,

But if as a next move, a new element is added to the stack, we can raise the
question, what the identity index of the element Just added will be, There are at
least two different attitudes:

a) in the stack elements are identified by their distance from the bottom, therefore
the element just added will get as identity index the value 99

b) the element just added is & new object, definitely different from the old top
element, that has ceased to exist:; because somewhere we might {probably erroneuusly)
still have hanging around a now obscleet reference to the no longer existing old
top, it is essential the the new top will get a different identity, i.e. an identity
index that is still "wvirgin" with respect to this population (say: 100).

(There is even a solution in between: if it is possihle to scan the indices that
might refer to elements in the population, one car upaon removal af element nr a9
scan for this value and replace it, whenever faund, by some value meaning "undefined"
so that XX the new top can again get the identity index 99 without the danger aof
identifying with each other the old and the new top,)

The whole point in this discussion is to make clear that population shrirmking
or growing are undefined aperaticns, unless we define the algorithm that controls
the generation of new identities, of new identity indices when the thing grows.
And we have given two examples of such algorithms, case a):the lowest free index
value and case b): the lowest virgin index value,

The first conclusion is that if we allow our variable size machine to vary in
some aspect of its size, this is only a well defired mperation provided we have decided
upon the pattern according to which identity indices far the elements to be added
will be created. This decision is not trivial.

In designing our variable size machine we must make such a choice for the
standard patterns according to which it may vary. My proposal is to keep method
b) out of the hardware, for I shudder at the thought. In the case of a stack I
prefer method a) for a large variety of reasons.

For one thing: method a) is much easier to implement. Furthermore method a)
gives a more oractical significance tp the identaty index, brcause the elements
"under" or “on top of" an identified element have IMNKXYRX identity indices that
can be generated by subtraction and addition. Finally, if we describe stack arith-
metic, we can describe in words the binary operation on the top in two different
ways, say the sum. We can say "The top two elements are removed from the stack and
the sum of the values removed is MHMEM is then put on the top of the stack", a
description in which the stack elements seem to be rconstant during their 1ife time,
or we can say "The top element is removed from the stack and the then current top
is XMKXKNN¥M replaced by the sum of its original value and that of the value removed".
Methad a) has the advantage that both descriptions of the addition give the same
identity MRAXXMMX¥KM to the stack element whose value eouals the sum.

LW02M 1

The final remark is that method b) ignores the fact that the varying size ovhject is
indeed a stack!

In my present stage of thinking I restrict myself mentally to size variations
in which the identity indices with respect to a certain size aspect (such as a vectar)
will have consecutive values. For the sake of completeness [mentinn two consequences
for the program tc be carried out by the variable size machine.

The first consequence is that in the case of wilder life times we may have inside
the variable size machine unused nortions. If the aspect in guestion is storage and
we think the large size too expensive (this, [am sorry to admit, is a hard guestiaon
to decide.; then the program should have the decency to do same garbage collection, shou}

move information (physically, I presume) and shauld reduce XXEXXX¥¥ the size of its
machine,

A next consequence is, that the program inside the variable size machine has
the responsibility to see, that obsoleet references to no longer existing abjects
do not lead the process astray. Our decision is, that also this will not belong to
the responsibility of the system implementing the variable size machine,

In order not to confuse the issue, we cantinue to think today about machines
of which anly one aspect of the size can vary, and in order to he explicit, we
consider again 8 vector of storage locations,

The choice of method a) implies them that we can give another interpretation
of the variable aspect: we can regard the situation as if the procgram were working
all by itself in a very large (may be "infinite" in one of the appropriate meanings)
memory, all the time stating as well lower and upper bound of the area used. It is
another picture, may be it will provide in the long run an easier terminology. Up
till now I don't think so.

There is a very hard efficiency problem, that I shall indicate now, without
looking for an answer. 0ine may expect that the introduction of a constant size
aspect can be done much cheaper then the introduction of a variable size aspect,

If so, it might be cheaper (if a certain aspect does not vary too much and an

a8 priori upper bound of the size is known) to introduce immediately an constant size
aspect, leaving parts of the machine unused. This question would be solved if we
find that a variable size aspect can be implemented so satisfactorily, that it does
not pay to introduce the fixed size aspect as a snecial class,

There is a second efficiency prohlem. Undoubtedly it will be expensive to
have the variable size machine too large for a long perind of time; on the ather
hand the processing of the redefinitions of the size might be expersive. In the case
af a stack this can be overcome: there is no reed to let the machine size follow
all microscopic changes in stack length, onme can decide that machine size variations
will ¥X take place in larger grains. The trouble is the size of this grain and
(if the mast appronriate grain size is a system characteristic! the variahle size
machine can be programmed independent of the actual grain size. Heference to an
obiect that is not contained in the machine is vlearly nansense and will be detected;
that reference to an object inside the machine can be meaningless {(due to "majoration")
is a possibility. If so, this imposes a responsibility on the particular nrogram,
not unlike the previous ones.

