EWD209 - O
EWD209.html

A Constructive Approach to the Problem of Prbqram Correctness.

Summary. As an alternative to methods by which the correctness of given programs
can be established a posteriori, this paper proposes ta caontrol the prucess

of program generation such as to produce a priori correct programs. An example
is treated to show the form that such a control then might take. This example
comes from the field of parallel programming; the way in which it is treated

is representative for the way in which a whole multiprogramming system has
actually been constructed.

Introduction,

The more ambitious we became in our machirne applications, the more vital
becames the problem of program correctness. The growing attention being paid to
this problem is therefore a quite natural and sound development. As far as I am
aware, however, the problem has been tackled, posed roughly in the following
form: "Given an algorithm and given specifications of its desired dynamic
behaviour, prove then that the dynamic behaviour of the given algorithm meets
the given specifications.” After sufficient formalization of the way in which
the algorithm and specifications are given, we are faced with a well-posed
problem that is apparently not without mathematical appeal.

In this paper I shall tackle the problem from the other side: "Given the
specifications of the desired dynamic behaviour, how do we derive from these
an algorithm meeting them in its dynamic behaviour?". For certain mathematical
minds the latter problem will be less attractive {for one thing: the =zlgorithm
to be derived is not uniguely defined by the specifications given); it seems,
however, to be of much greater practical value because, as a rule, we havg -to
construct the algorithm as well. '

This paper has been written because the approach seems unusual, while we
have followed it very consciously and seem ta have done so to our great advantage.
We slso publish it in the haope that it may serve as a partial answer to the many
doubts evoked by our claim to have constructed a multiprogramming system aof
proven flawlessness.

In this paper I shall illustrate the method by deriving an algarithm
meeting very simple specifications, the simplicity being chosen in order to
avaid an unnecessarily lengthy paper. In doing so I am running the risk aof
readers not believing in the practicability of the method when applied to
large problems. To those I can only make the following remarks. Firstly, that
the art of reasoning to be displayed below is faithfully representative of the
way in which we have actually designed a multiprogramming system with fairly
refined management rules. Secendly, that it is my firm belief that by cansequent
application of such methods our ability to deal witb large problems will rather
increase than decrease. Thirdly, that to anyome who doubts the practicability
of the method I can only recommend to try to apply it. Finally, that I know
only too well that I can force no one to share my beliefs.

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD209.html

EWD209 - 1

The problem.

For the purpose of demonstration I have chosen the following problem. We
consider twa parallel, cyclic processes, called "producer" and "consumer! respectively.
They are coupled to each ather via a buffer {in this example of unlimited capacity)
for "portions" of information. Once per cycle the producer puts a next portion into
the buffer, once per cycle the consumer takes a portion from the buffer. The buyffer
is allocated in the universe surroundig the two processes; after introduction and
initialization of this uriverse, the two processes are started in parallel, as
indicated below by the bracket pair "parbegin" and "parend". [t is also indicated
that the activity af the producer es well as the activity of the consumer can be
regarded in this stage as an alternating succession of two actions. We dapart in
our example from the (hopefully raw self-explanatory) structure given below; here
the actions invoked are to be considered as available primitives.

begin initialize an empty buffer;
parbeqin

producer: .begin local initializatian of the praducer;
P1: produce next portion locally;
P2: put portion into buffer;

goto P
end;

consumer: begin local initialization of the consumer;

C1: take portion from buffer;

C2: cansume mew partion locally;

goto C1

parend

For the proper co-operation of the two processes as described above we must
assume an implicit synchronization, preventing the comsumer to try to take a portion
fram an empty buffer. In the following we shall refuse to make any assumptions
about the speed ratio of the two processes and our task is to program the synchronizatic
between the two processes explicitly. (The synchronizing primitives I intend to use
for this solution will be described in due time.)

Note. For brevity I omit the proof —although for this simple example not too
difficult- that the above problem is well-posed in the sense that s synchronization
satisfying the above requirement does not contain the danger of the so-called
"deadly embrace", i.e. one or more processes getting irrevocahly stuck because
they are waiting for each other. I do so because this proof is more concerred with
the problem as posed than with the task of programming it and the latter is the
true subject of this paper.

EWD209 - 2

formalization of the required dynamic behaviour.

Our first step is the introduction of suitable variables in terms of which we
can give a more formal description of the specification of the required dynmamic
behaviour. Obviously, the number of portioms in the buffer is & vital quantity.
Therefore we introduce am integer variable, "n" say, whose value has to equal the
number of portians in the buffer. The rule to be followed this time is particularly
simple: first, initialize the value of tn" together with the initialization of
the buffer, so that the relation

"n = number of portions in the buffer" (1)

is satisfied to start with. From then onwards, adjust the value aof the variable
called "n" wherever the number of portions in the buffer is changed, i.e. at
putting a portion into it or taking a portion from it. As a result the relation (1)
will always be satisfied.

From now onwards the three actions initializing or changing the buffer
contents are regarded as actions including the proper operation on the variable

called "n". To indicate this, we may write Version 1:

begin integer n;

initialize an empty buffer ipcluding "n = O";
parbegin
producer: begin local initialization of the producer;
P1: produce mext portion locally;
P2: put portion into buffer inc}uding " ot=n + 1M,
goto P1
end;
consumer: begin local initialization of the consumer;
C1: take portion from buffer including "n := n - T,

C2: consume new portion locally;

goto O

Thus we have achieved that the specification aof the dynamic behaviour
can be formulated by the requirement that the inequality

n>0 (2)

will always he satisfied.

 (Remark. It may well be, that already in the transition from the original
version to Version 1 we can ohserve one of the aorigins of the efficiency of the
constructive approach. If we did regard the Version 1 as given and wanted to
identify the current value of n with the current number of portions in the buffer,
we would have to observe its initialization and its adjustments, but in excess to
this we would have to read the whole program in arder to verify that no ather
operations on it canm accur.)

EWD209 - 3

Analysis of the formalized requirements,

We now proceed from Version 1 and reguirement (2)., The latter requirement
is satisfied by the universe as initialized, we have only to synchronize the two
processes in such a way that it remains satisfied.

From the fact that requirement (2) concerns the value of the variable ralled
"n" only, it follows that the processes can only effectuate violation by acting on
this variable, i.e. only via the actions labelled "P2" and "C1" respectively,
Closer inspection of the requirement ("ngz O") and the actions show that the
action lahelled "pP2" (including noi= o 4+ IM) ig quite harmless, because

nEOimpliesn+120 s

but that the action labelled "C1" (including " ot=n = ") may indeed cause a
vionlation. More precisely, as

n=1 implies n ~ 1 > 0,
the action labelled "C1" ig harmless when initiated with

n> 1 (3)

while with n = Q it would cause vinlation; under the latter circumstance it has
to be postponed.

(Remark. Our last corclusion is, that the only possible harm is trying top
make the buffer more empty than empty. Its obvioushmess here is a direct consequnce
of the simplicity of this example. The point is, that this conclusian could be
reached by inspection of the formalized requirement (2) and the operations on the
variables concerned. In the case of a more refired management, the requirements
analogous to (2) are no longer a simple inequality and their analysis will really
tell you the danger points.)

Conseduence of the preceding analysis; the unstable gituation,

In the previous section we have concluded that the action labelled "C1" is
the only danger point. Having here only one consumer, we could have solved the
prablem logically by inserting just in fronmt of it a wait cycle

"CO: if n = O then goto COM

but we refused to implement this busy form of waiting, because in a multiprogrammed
environment it seems a waste to spend central processor time on a process that has
already established that for the time being it cannot go on. Therefore we have
implemented means -viz. the synchronizing primitives— by which a process can ga to
sleep until further notice (a sleeping process being by definition no candidate for
pracessor time), leaving of course to the other processes the obligation to give
this "further notice" ir due time. This is s0 closely analogous to usual optimizing
tachniques that 1 proceed with this multiprogramming example in full confidence

that the uniprogrammer will be able to apply similar considerations to his own tasks.

'We see ourselves faced with the decisian whether the action labelled "C1' should
take place or not. Earlier we have seen that this decision depends on the current
value af the variable called "nv, Recently we have seen that under certain circum—
stances we refuse to regard this as a private decision of the consumer (this would
imply the busy form of waiting) but wish to delegate it (via the mechanism of the
further notice) ta the producer. As long as it was a private decision of the
consumer, inserting it at the right place in the consumer's text was a sufficient
means to ensure that the decision was taken in accordance with the dynamic progress

EwD209 ~ 4

of the consumer. As soon as this decision may be taken by anocther process —here

by the producer— the dynamic progress of the consumer becomes a guestion of

general interest, in particular whether the consumer is ready to perform the

action labelled "C1" ., We introduce a boolean variable, called "hungry" whase

value has to indicate explicitly that the consumer's progress has reached the stage
that the decision to execute or to postpone the action labelled "C1" is relevant.,

To ensure that the variable called "hungry" has this meaning, we must

1) insert within the econsumer's cyele the assignment "hungry := true" just

in front of the statement labelled gy

2) include the assignment "hungry := false" as part of the action labelled
"ot

3) initialize in the universe the variable called "hungry" in accordance with

the starting point in the consumer's cycle.
The variable called "hungry" is an explicit coding of the consumer's progress,
analogous tot the variable called "n", an explicit coding of the number of partions

in the buffer. We arrive at Versipon 2:

begin integer n; Boolean hurgry;

initialize an empty buffer including "n := O";
hungry := false;
parbegin

producer: begin local initialization of the producer;

P1: produce next portion locally;

P2: put portion into buffer including "m :=n + 1%;
gota F1
end;

consumer: begin local initialization of consumer;
CO: hungry := true;
C1: take portion from buffer including "m := n = 1" and "hungry := false';

C2: consume new partion locally;

goto CO

From relation (3) and the meaning of the variable called "hungry" we now
deduce that the actionm labelled "C1" should take place whenever

n>1 and hungry (4)

becomes true, the asction labelled "C1" itself causing (4) to become false again,
In other words: we must see to it that (4) characterizes what we could call

"an unstable situation", for as soon as it emerges it should be resolved by the
action labelled "C1".

EWD209 - 5

Having no permanently active observer that will give alarm whenever the
unstable situation arises, we must allocate the inspection for the unstable situation
(and if found its subsequent resolution by action "C1") somewhere in the sequential
processes. The necessary and sufficient measure is to attach this inspection as an
appendix to each asction that may have generated the unstable situation from a
stable ane, pinning the responsibility to resolve the unstable situation down an
the process that has generated it.

Some elementary logic applied applied to (4) tells us that this transition
can anly be effected by an action assigning the value true to the variable called
"hungry" ar by an action increasing the value of the variahle called "n" (or by an
action doing both, not ocecurring in this example). In terms of Version 2: the
instability may be reached as a result of the action labelled "CO" (on account of
"hungry := EEEE") and by the action labelled "P2" (on account of "n := n +),

So the action labelled "P2" -allpcated in the producer~ might get attached to it
as an appendix the action labelled "Ci", originally allocated in the consumer!

At this stage of the discussion we must insert an interlude that has nothing
to do with this particular problem, nor with the mesin trainm of thought of this paper.
The interlude is inserted because I expect many a reader to be unfamiliar with the
basic problems of programming parallel processes, a field from which our example
happens to have been taken.

Interlude on synchronizing primitives.

We need primitives to control that processes may go to sleep or may be woken up.
For the purpose of this we introduce
1) special purpose binary valued variables, called "semaphores". A semaphore
may have the values O and 1. Semaphores are allacated in the surraunding universe
and are initialized before the parallel processes are started.
2) two special cperations, called the P- and the V-operation respectively. The
parallel processes shall access the semaphores via these operations only.

The P-operation on a semaphore can only be completed at a moment that the
semaphore value equals 1, Its completion implies that the semapjore value is
reset to Q. If a process initiates a P-operation an 2 semaphare with at that
moment a value equal to O, "the process goes to sleep, the P-operstion remains
pending on this semaphore",

The V-operation on a semaphore is only defined if its initial value equals Q,
It will then set the semaphore ta 1. If no P-operation is pending on this semaphore
the V-operation has no further effect. If one or more P-operations are pending on
it, the V-operation will have the further effect that exactly are of the pending
P-pperations will be completed (thereby resetting the semaphore to the value 0),
i.e. the process in which this P-operation occurred is woken up again.,

As a result a semaphore value equal to 1 implies that there are at that
moment no P-operations pending on it.

The semaphores are used for two entirely distinct purpases; both standard
usages will occur in the example,

EwWD209 - 6

On the one hand we bave the so-called "private semaphores" each belanging
to a specific sequential process, that will be the only one to perform a P-operation
on it, viz. where the process might need ta be delayed until some event has occurred:
the semaphore values O and 1 at the initiation of the P-operation represent the
situation that the event in question has not yet or has already occurred. As a
rule the universe initiates private semaphores with the value O,

On the other hand we have the semaphore(s) used for the implemerntation of
so-called "eritical sections", the executions of which have to exclude each other
in time. Such cfitical sections can be implemented by opening them with a
P-operation and rlnsing them with a V-operation, all ~n the same semaphore with
initial value 1. At each moment the value of such & semaphore for mutual exclusion
equals the number of processes aliowed to enter a section critical to it., The
purpose of critical sections is to cater for urambiguous modification and
interpretation of universal variables (such as "a" angd "hurgry" in our example).

Alternatively: at a certain level of abstraction we can visualize a single
sequential process as a succession of "immediate actions"; the time taken to
perform them is logically immaterial, only the states (as given by the values of
the variables) observahle in between the actions have on that level a logical
significance. It is only when we shift to = lower level of abstraction and
implement the actions themselves by means of (smallar} sequential sub-processes,
that the intermediate states as well as their periods of execution enter the
picture. And it is only at this lower level that "mutual exclusion in time" has
a significance. In a single sequential process successive actions (now regarded
as sub-processes) exclude each other in time automatically, because the next one
will only be initiated after the preceding has been completed. In multiprogramming
the mutual exclusion at the lower level of abstractian is no longer automatically
guaranteed and the fact that on the higher level we regard them as single "immediate
actions" requires then explicit recognition. This is exactly what the critical
sections cater for.

Resolution of the unstable situatiom and synchronization of the processes.

Our analysis of the unstable situation ended with the conclusion that the
action labelled "C1iM, originally allocated in the consumer, will be attached as
a conditional appendix to the actions labelled "CO" and "P2t respectively, to the
ones that might generate the unstable situatisn,

To pin the responsibility for the resolutior of the unstable situstion down
on the process that has generated it, the latter one must be uniquely defined
(which is not the case if the effective assignments '"n := 1" as part of P2
and "hungry := true" as part of CO are allawed to take place simultaneously)
and it must have resolved the unstable situation hefare the other process may
have ‘discovered it. In other words, creation of the unstable situation and its
subsequent resolution must be regarded as a single "immediate action™ in the
sense of the last paragrapb of the interlude. We shall implement them by critical
sections controlled by a semaphore, "mutex' say, that will be initialized with the
value 1.

EwD209 - 7

Finally, in Version 2 the sequential rature of the caonsumer guaranteed that
each execution of the action labelled "C2" would be preceded by one execution of
the action labelled "Ci1". This implicit sequencing can be made explicit with the
aid of a private semaphore of the consumer, "consem" say {to be initialized with
the value O} by concluding the action labelled "C1" with “V(cunsem)“ and opening
the action labelled "C2" with "Pconsem)", The sequencing has to be made explicit
because the action labelled "C1" may Now occur as an activity of the producer.

After these considerations the final version of the program is given. For
reasons of clarity and economy (of writing and thinking) the action labelled "civ
has br v i~ - ded in the body of a procedure declared in the universe,

Final Versian:

begin ipteger n; Boalean hungry; semaphore mutex, consem;

procedure resolve instability if present;
begin if n > 1 and hungry then

begin teke portion from buffer; n := n - s

hungry := false; V{consem)
end
Bnd;
initialize buffer; n := Q;
hungry := false; mutex := 1; comsem := 0;
parbegin

producer: begin local initialization of proaucer;
P1: produce next portion locally;
P2: P(mutex);
put portion inte buffer; n ;= n + 1
resolve instability if present
U(mutex);
gota P1
end;
consumer: begin local initialization of consumer;
CO: P(mutex);
bungry := true; resolve instebility if present;
V(mutex);
C2: F(consem); cansume new partion locally;

goto CO

end

parend

EWD209 -~ 8

The above is as faithful a reproduction as I can give of the kind of reasoning
we applied in the construction of a multiprogramming system, be it that it has been
interlaced with explanatory paragraphs, covering the insights we had already gained
at an earlier stage by just thinking about the problems involved in the programming
of parallel processes. (At that stage, for instance, the semaphores were born.) At
the end, when we were all familiar with this type of problem, the reasoning needed
to derive the program from specifications much more complicated than the present
example, used to be given on a single page pr less.

Cancluding remarks.

Firstly, one can remark that I have not dome much mors than to make explicit
what the sure and competent programmer has already done far years, be it mostly
intuitively and unconsciously. I admit sa, but without any shame: making his
behaviour conscious and explicit seems a relevant step in the process of transforming
the Art of Programming into the Science of Programming. My point is that this
reasoning can and should be dore explicitly.

Secondly, I should like to stress that by using the verb "to derive" I do
not intend to suggest any form of autamatism, nor to underestimate the amount of
mathematical invention involved in all nan-trivial programming. {On the contrary!)
But I do suggest the constructive approach sketched in this paper as an accompanying
justification of his irventions, as a tool to check during the process af invention
that he is not lead astray, as a reliable and inspiring guide.

Thirdly, I am fully aware that the style of reasoning 1 have applied, though
possibly appealing to some, might easily appal others. For this difference in taste
I blame them as little as they should blame me. I can only hope that they will find
a way to follow the constructive approach in a style satisfactory to them,

Finally, I should like to paint gut that the constructive approach to
program correctness sheds some new light on the debugging problem. Personally
I cannot refrain from feeling that many debugging aids that are en vague now
are invented as a compensation for the shorteomings of a programming technigue
that will be denounced as obsolete within the near future.

Acknowledgements.

Acknowledgements are due to my closest collaborators C.Bron, A.N.Habermann,
F.J.A.Hendriks, C.Ligtmans and P.A.Voorhoeve, for by working in the way they did
they convinced me of the practicability of the constructive approach when faced with
g large problem.

Acknowledgements are also due ~although they may be unaware of the fact- to
Peter Naur and my colleague Gerhard W.Veltkamp, To the first ome becuase he
convinced me that something should and could be done regarding program correctness,
to the second one for his inspiring faith in my efforts, his patience when listening
to me and bis unrelenting pityless criticism whenever I indulged in disguising
sloppy reasoning by means af a verbal show.

Eindhaven, August 1967

	EWD209:

