LAY ¢ p
2 Vel ({,‘:‘wf)

On useful structuring
by Edsger W. Dijkstra

The purpose of this minor contributlon 1s to stress the
urgency to make a conscious effort at exploiting "structure" as
a useful thinking aid., Furthermore 1t gives some of the
conclusions such an effort has led me to so far,

To start with, I take for granted that 2ll of us acknowledge
that the software fallure is an undisputable fact: this
recognition was why this conference on software englneering
was organized, 1its acknowledgement 1s why we have acecepted
to partleipate, Hardware is rushing ahead of ocur programming
ability'and unless something drastic happens the situation
will only get worse and werse. For: with more and more
powérful machines becoming cgenerally available soclety will
be more ambitious In these appllications and will be
demanding more from the poor programmer who finds hils tasks
in the field of tension between the things to be done and
the =2vailable tooels., The scope of his task 1s just exploding.

At fac2 value our main shortecoming 1s that we have let
ourselves be lured into constructing claborate mechanisms,
tha actual behaviour of which has grown far beyond our
mental grasp or even worse: the misbehaviour of which 1s
well beyond our control. As a professlonal communlty we
play the Sorcerar's Apprentice over and over again,

Closer scrutiny rcveals the current source of the trouble:
viz, unstructured multitude and bigness, insufficiently
orgzanlsed complexity with ite bastards such as Chaos,
Unreliability, Unduw,.abllity and the like. To regain
control over what we are doing and what we are making
constitutes for me the main challenge of software
englneering.



Enos. )

-2

How, closer to the problem at hand, It would be helpful
1f all of us recognised that although the programmer only
makes programs, the true subject matter of his trade are the
possible computations <voked by them. In actual fact: the
computation is the happening that has to effectuate th:
desired effect or in other words, when a programmer claims
that hils program 1s correct, he actually makes a statement
about the computatlons!

Trivial as this remark may seem I nust state that it
has had a profound influsnce on my thinking and my programming.
Once I was really aware of my mind's task to bridge the
conceptuzl gap between the static program and the dynamie
computation, I havse restricted myself to the most
straightforward sequencingz clauses, finding myself in general
unable to cope with programs containing go to statemonts,
I will return to sequencing control later on, at present we
note that here is an e¢lement of structure greatly assisting
me in understandability of what we are mkking.

After long and, I must admit, rather painful struggles, I
camg to the follewlng concluslon: deing something and knowing
what you have done implles that your act is presented as
a choice from what you could have done. In particular:
making a program implles taking 2 whole c¢lass of programs
into acceount: alternative programs for the same Job or for
related Jobs, and programs on various levels of detail.

In doing sc I made the following observatlons which may
insplire you: thoy seemed relevant in the light of my

axpearience.

1. DBifforent members of the program class can only share
thelr correctness proof to the extent that they enjoy the
same structure., In other words: comparinz programs wilth the
aim of comparing the corresponding computations 1s only a
Prultful activity to th2 extent that they exhiblt the
same sequencing.



-3

2, A flowchart nesd not ba regarded as a vague sketch
of what we are golnz to do, a sketch that only makes. sense
when tha details have beaen filled in., On the contrary: at
the appropriats level of abstractlon 1t can be regarded as
a pr gram existing in its own right,

3. It may very well be that certain aspects of the
original problem statomant =arz only reflected at the lower
levels of greater detall: this Just means that at the higher
level one hag a program solvine a reneralised problem.

4, I tend to think of the program consisting of a set
of hicrarchical lay rs, performing in steps the transition
from what we have got into what we should like to have.

The rizht of exlstence of thase separate layers 1s that

in 2ach layasr an indespendent abstraction is implemented:

an ildentified cholce is condensed in its coding., One of the
trickiest kind of alternatives to compare turned out to

be analogous to the daosizn declsion whether something shall
be done by softwars or by a macnine instruction., This
obszrvation 1s, I think, ecncouraging.

Finally, to ride another little pet horse of mine:
axperience has glven me a strong indication that provided
the software 1s properly structursd 1ts correctness can be
c¢lalmed much more convincingzly by a convineing proof of 1its
correctness than ean ever be achlevad by the all too eommon
proceldurs of testiny and debuzeine, I know that the
truth of this statement 1s doubted by many, but always by
those who 3id nnt try to apply the method.



