EWD279 - O

3

The programming laboratory proiect.

The purpose of the project is twofold: to find the constituents of a
better programming methodology and to apply them and ta try them out in the
design and controlled growth of a large, sophisticated system.

As target system I am envisaging a "programming laboratory", as I seem
to need this for the education of software engineers. I regard programming
primarily as an intellectual challenge and the full size and scope of this
challenge only become manifest when we try to program something "large". But
I carnot train future software engineers by only talking about large systems,
for without first hand experience they cannot visualize, nor imagine what I
am talking about. (This is precisely the programming problem: what happens
inside the machine escapes our unaided imagination by several orders of mag-
nitude!) The only way in which I can transmit what it feels like to partake
in a many-man-year project is by letting them partake in it, be it only for
a number of manths perhaps. The advantage of the above target is its high
demands on documentability, adaptability and extendability; it is my firm
intention to give quite specific contents to a concept of "modularity" - a
term which is often used as a motherhood statement- and expect the stated goals
to force me ta do so. Preliminary investigations, carried out during the last
year or so, have convinced me that the design of an environment satisfying
such requirements is not trivial; aon the contrary, [have come to regard it
as a8 worthy research object.

The kind of hardware I am looking for is a simple, very fast machine,
with a reasonably sized primary store, a very large backing store, a line
printer, a few keyboard terminals and paper tape peripherals and perhaps
a single magnetic tape unit for safety reasons, Up till now the following
considerations have been taken into account.

[am only too aware of the fact that 1 would never have been able to
conceive the run time system for the X1 ALGOL 60 implementation if tha X! would
have had built-in floating point arithmetic: if that had been the case] would
have felt obliged to use it and the relative prifce of the system overhead
would then have been excessive. That is the reason why I am looking for a
piece of simple, straightforward but fast hardware: I intend to write in its
machine code an interpreter for another machine, to do so once and then to
forget the given hardware machine code. If the hardware machine is sufficiently
fast, the resulting performance will remain acceptable for a laboratory envi-
ronment, while it will mitigate the speed requirements for the backing store
which must be very large, One reason is that at present the programmer
regards (pre)dncumentaticn as an additional burden, among other causes because
he cannot profit mechanically from it; ane of the purposes of reshaping the
programming activity is to fird methods by which much of what is now called
"documentation about the program" functions as an integral part of the program.
Secondly T would like to do away with the off-line preparation ef paper tapes
or cards as part of the activity of program composition. This points to having
the complete system documentation inside the machine, as readable as source
text.

The keyboard terminals are viewed as "the programmer's desk". I need
at least two of them, to create the environment of parallel interactions
(extensions or modifications) with the same program, perhaps an "operators
console” in addition to that. If the laboratory grows towards an environment
in which larger numbers of students can get experience, more might be needed
for reascns of more intense usage of the system.

T ™

EWD279 - 1

My guess is that, particularly in the beginning, the main function of
the line printer will be to act as a reproduction machine for the production
of bard copies of (part of) the system ipformation contained in the machines
storage. Readability of the printing will then be more important than extreme
speed.

The paper tape equipment is suggested as a means for getting started.
I think that I would like to use the X8 ALGOL system to get off the ground.
As the system grows, paper tape as back up system will be insufficient and
a magnetic tape unit might come in handy.

* X ¥

Since the above has been written, I have had two conversations in
Erlangen, relevant to the project.

Une was with a number of people from Munich, one of which has been present
at the NATD Confererice in Rome in the last week of last Cctober, where I had
presented the quintessence and aim of the notion of "pearls". They were at
that moment in the process of designing and implementing a tool for the
construction of operating systems and could include at least a modest means
catering for the "representational abstraction" as I had suggested. In
Erlangen they showed me this with pride, joy and gratitude: they had already
profited greatly from it. This was the second confirmation that the pearl
concept seems to be a sound one (the first one came in a letter from Elliott
Brganick, but that was less elaborate).

More directly concerned with the configuration was a discussion I had
arranged with Horst Huenke from Bonn, concerning keyboard terminals. I have
been hesitating for a long time whether I needed printing keyboard terminals
(teleprinter or input/uutput writers) or keyboards with a character display
tube. For lack of experience with the latter I have been thinking in terms
of :the first for the last few months. In answer to my inquiry, Horst gave a
strong plea for the terminals with character display tube. He warned me
(himself) that his strong bias was undoubtedly also caused by

1) his extreme sensitivity to noises

2) the extremely paor input/output writer as coupled to an IBM 360,

But out of the discussion came two arguments in favour of the display unit,

both consequences of the fact that the human eye is so well adapted to ignoring
what it is not interested in, The arguments were the following (the first one I
had thought of, the second one was new to me):

1) When ane wishes to read something "in the system" -e.g. to look something
up- typewriter speed is so painfully slow that one cannot ask for the "page"

but must ask for the "line". This means that one must know the line and -if

one indeed knows it- must alsoc identify it via the keyboard. This is cumbersome.
2) Messages from the system must be more verbose for the novice than is
needed for the expert. It is no solution to give your "degree of expertise"

as this is not constant aver the system: you may be currently an expert in

one part but will no longer be one in a part which you have not been concerned wih
for a number of months,

In view of the fact that in the course of the project I hape to have
students joining it, this aspsct of human communication should not be ignored.
I am therefore aiming at character display terminals, As Horst pointed out
"A line printer is then an absolute must!"

So much for the configuration.

L

EwD279 -~ 2

A central theme of the project is the similarity between system usage and
system construction. The THE system was designed tao bridge a preset gap -viz.
from the given hardware to the five ALGOL-machinmes. Construction and usage of
the system were at that time viewed as completely different activities, different
in nature, teking place at different times and to be dane by different people.
This preset gap gave birth to a system af a comstant number of "layers", In the
mean time I regard the iptermediate product, consisting af the hardware, covered
by a few of the lower layers, as "a system" with its own right of existence and
I regard the asctivity of adding a next layer no longer so radically different
from what a user does when he feeds in his ALGOL-program into the completed
system: by loading his program, he just creates a next environment, i.e. the
environment in which his data are interpreted. The natural extension of the fixed
set of layers of the THE system is a stack of layers, provided that we can add
a layer which, in its turn, again can accept (manipulate and activate) a program,
i.e. the next layer.

Acloser scrutiny reveals that "a stack of layers" is insufficient, we
need a tree, because different enviraorments have to be created in parallel. (In
actual fact, this tree~structure can alresady be distinguished in the THE system,
where at the top, five different ALGOL—programs may be running.) As "two" is
the minimal degree of non-empty parallellism, at least two terminals will be
needed. I trust that the tree-structure will not only be a conceptual aid, but
that it will also play an essential role im the virtual storage management: the
fact that each activity, by definition, only requires the nested enviranments
to be found an its path to the root of the tree and that activities in parallel
branches are by definition conceptually independent, is tow fundamental a property
not to be exploited in a systematic manmner.

* X #

In our programming methodology we wish to do justice to the following points
of view and ohservations.
1) A program should be regarded as the design of a large class of possible
computations: these computations = the "making" of which is left to the machine -
are the final product about which the programmer must make his assertions.
2) Correctness proofs are essential. Programming first and then testing is
putting the cart before the horse, program¥XX¥ testing can be used to show the
presence af bugs, but never to show their absence. Program compositioen and
demanstration of correctness are two activities that should be merged. (To quote
A.k.Fraser: "I just want to make the point that reliability really is a design
issue, in the sense that unless you are conscious of the need for reliability
throughout the design, you might as well give up.")
3) The requirement that the correctness praofs can be given without undue
amounts of intellectual labour calls for conscious exploitation of our powers
of abstraction and a programming tool in the usage aof which our abstractions can
be suitably reflected.
4) A program should not be regarded as an object all by itself but as a member
of a family of related pragrams, i.e. either alternative programs for the same
task or similar programs for similar tasks; the function of the levels of abstraction
is to indicate to what extent the different members of the family can be mapped
on each other. We have to recognize the similarity between "the changed decision"
and "the postponed decision®,
5) The potentially large number of members of the program family considered
requires that the correctness proofs are concermed with the family rather than
with ar individual member. This requirement gives a rather clear picture of the
logical function of modularity; the programming tool has to allow (or even to
invite) the corresponding "textual encapsulation", '

L

EWD279 - 3

In programming practice today, much attention is paid to documentation
and one hears an urgent plea for pre~documentation. One is in trouble, however,
as long as pre~documentation (a flow-~chart, for instance) is regarded as describing
intentions, as documentation about what is going to du, as it calls for the painful
verification that the pre-documentation is still applicable., Rather than to regard
pre—documentation as "statements about the program to be made" I would like to
regard and treat it as integral part of the program itself, I want it therefore
inside the machine, mechanically exarting its influence as much as possible,
(And I want this "even at run time", provided that this remains a relevant concept:
I want to come to grips with the problems that are presently described by "changing
a program while it is running".)

The desire to have the different levels of abstraction not only reflected
in the process of program composition but also recognizably reflected in the
activities taking place during the course of the astual camputations, will greatly
affect the design. It is expected that this requirement will give a fresh
appraisal of the operations which are presently covered by names such as assembly,
lirking, loading, binding etc. The desire to retain at rum time mare structural
information can be expected ta increase the demands made on primary storage (by
a factor of two, say); this should be kept in mind while detailing the configuration.

Une of my first concerns will be to find "a binding policy" (or rather:
the basic primitives that allow us to exercise a class of binding policies}.
For this purpose I need a clear view of the degrees af combinatorial freedom
called for by my concepts of modularity. Secondly I need a clear view of the
requirements made by a virtual storage implementation. In order to camplicate
matters further -1 remind the reader that it was my honest intention to do
something difficult- it has been suggested that I should consider two levels
of backing store (say a fixed~head~disc as secand level store and a movable—head-
disc as third level store}. If this suggestion is followed, I shall not begin
by paying extensive attentian to the choice af an Moptimum" strategy for the use
af secand and third level store, I would begin by implemerting & straightforward
one, the major part of my concerns being absorbed by the requirement that the
replacement of one strategy by another would not be a major operation, As this
strategy has to be implemented rather laow in the system, this could easily be
a very difficult problem, i.e. the kind of problem I should like to tackle.
As a by-product we would eventually have a system in which we can easily
experiment with different multilevel backing store strategies.

* X ¥

I should like to add some comments on my attitude towards "efficiency". To
start with: I do optimize, but not purely on the usage of the mechanical resgurces,
I do optimize, however, on "brainpower" because I regard that already now as our
scarcest resource; with more and more pawerful machines becoming more and more
generally available, I expect that, in the years to come, brainpower will became
still more markedly the bottle neck. It is for this reason that I am guite keen
or program manageability, i.e. the ease with which we can effectuate the tramsition
from one version to another -and such 3 transition might be desired for the sake
of "mechanical efficiency". For certain design decisions —-the hard ones!- it is
vain to hope that one can postpone them or, when taken, can isolate their consequences;
there will be rather basic decisions that will not allow to be changed at a later
stage without overthrowing everything built on top of them. This is ane of the
undeniable facts of life. Here the anly primciple availsble is "minimum likelyhopd
of regret". from the past I know that in such cases I shall prefer the solution,
the performance of which is the least sensitive to the future way of usage: I would
rather decide to pay a constant price, "4" say, than the variable price “N" if

EWD279 - 4

keeping N low would impose an awkward burden on the programmer's shoulder or would
impose too tough a scheduling task on the system {and its user popuistion, for
that matter!).

If industrial support for this praject is offered, it should be seriously
considered, particularly because the hardware needed is likely to have financial
consequences which are somewhat unusual for the Department of Mathematics.
Clerical complications that could follow from such a support should (in some way
or angther) be kept to a minimum; furthermore it should be made perfectlt clear
to the supparting industry that this research has to be carried out without any
form of secrecy. Without the explicit permission to talk and to write about the
project to anyone I see fit, I shall certainly be unable to carry it out.

* ¥ %

