EWD288 - O |
EWD288.html

Concern fox Correctness as a Guiding Principle for Program Composition,

A State of the Art Report, at leaat when written by me, is always a mixture af
fact and fiction, It is mainly fact but, in a genuine effort to be up-to-dste, 1
cannot refrain from some extrapolation into the future,and a certain amount of

wishful thinking £P=m my side is bound to leave its traces. Let it be so.

Let me start with a well-eatablished fact: by and large the programming
community displays a very'ambivalent attitude towards the problem of program
correctness. A major part of the average programmer's activity is devoted to debugging,
and from this observation we may conclude that ths correctneas of hia programa
-or should we say: their patent incorrectness?- is for him & matter of considerable
concern. [claim that a programmer has only done & decent job when his program is
flawless and not when his program is functioning properly only most of the time,

But I have had plenty of opportunity to observe that this suggestion is repulsive

to many - professional programmers; they object to it violently! Apparently, many'
programmers derive the major part of their intellectual satisfaction and prdfsssional
excitement from not quite understanding what they are doing. In this sfreamlined age,
one of our most under-nourished psychological needs is the craving for Black Magic,
and apparently the automatic computer can gatisfy this nesed for the professional
software engineers, who are secretly enthralled by the gigantic risks they take in
their daring irresposibility. They revel in the puzzles posed to=t#wm by the task

~ of debugging. They defend -by appealing to all sorts of supposed Laws of Nature-
the right of existence of their' program bugs, because they are sp attached to them:
without the bugs, they feel, programming would no longer be what it used %o be!

(In the latter feeling I think ~if I may say so- that they are guite correct.)

All this becomes the more surprising when we contrast it with a mathematical
technique that is justly famous for its efficiency and its high (and generslly
accepted!) convincing power, viz, killing a conjecture by means of a single
counter-example. Everyone accepts the atrength of that killer, but when a program
fails, believe it or not, its ﬁuthar will defend himself by explaining that it

was only {!) a very, very special case where it went wrong!

In other words, compared with what it should {and what it could!) be, the
average programmer‘'s professional standard is shockingly low. Mind you, I am just

obaerving (and making a value judgement), I am not blaming the averages programmer,

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD288.html

EwD288 - 1

 for he has to work under rather unfortunate circumstances.

Firatb;as a rule he is not free in the choice of his programming tools and the
most widely used programming languages are rather inadeqguate vehicles: when FORTRAN
has besn called an infantile disorder, PL/1 must be called a fatel disease and for
COBOL I have no words..... In the case of programming languages] am very much interested
in their influence upon the thinking habits of their users: particularly in the case
of what is becoming known as "the pure FORTRAN environment" the strength of ita
intellectually degrading influence is, as & rule, grossly underestimated. Yet

thousands and thousands of programmers still have to live (and die?) in it.

Second»-and as I would like to avpnid a lawsuit for libel, I shall refrain from
mentioning any manufacturer's name, but I trust my readers to be able to supply what
I have omitted- language implementations and the operating systems supporting them
have growﬂinto baroque monstgﬁbsities with most curious and -worse!- changing
properties. And when programmers have to erect their "computational edifices” an
such shaky foundations, it is hardly amazing that they regard full confidence in
the correctness of one's program as a ridiculous presumption. In the old days one
of the most fundamental properties of automatic computers was that by means of one's
program one could keep complete control over what was going to happen. This property
was and still is essential for the computer's usefulness: many modern computing
systems, I am sorry to say, don't have this propérty an%mnre,and from adequate tools
they have become depressing burdens, The proliferation of error-loaded and therefore
unreliable software has done endless harm in the minds of those who tried to use it:
one does not gain automatically from experience and the struggle with "the third
generation" offers, alas, an example of how the wrong experience mey easily corrupt

the soundgness of one's judgement,

If the sorry state of affairs = described abave were a complete picture, it
would indeed be most depressing, and we might wonder whether we had not better look
for a suitable branch on the nearest tree. Thank gondness, the picture is not
complete, there are already ;& our side of aﬁr intellectual horizon the first solid
glimmers of hope; it is to those glimmers of hope that the remaining part of this
contribution is devoted. For me, the Conference on Software Engineering, sponsored
by the NATO Science Committee and held at Garmisch in October 1968, has been a
thrning—puint: it was the first time I witnessed tizmt a group of experts -all of
then so high in their local hierarchies that they could afford to be hanest-

unanimously admitt:ﬁ that s software crisis did indeed exist. This atruck me as very

impartant, because before its existence was admitted it was vain to hope that

EwDZ288 - 2

something could be done about it.

When we wish to raise the confidence level of our designs the first question
to ask is: "On what can we base our confidence? . This queation has been explored;
well, programmed computers may be amazing pieces of equipment, but as it tumned out,
many times more amazing are the flimsy grounds on which we have been willing to

believe that their output was the output we wanted!

A program can be regarded as an (abstract) mechanism embodying as such the deaign
of all computations that can possibly be evoked by it. How do we convince ourselvéa
that this design is correct, i.e., that all these computations will display the
desired praperties? A naive answer to this question is "Well, try them all.", but
this answer is too naive, because even for a simple program on the fastest machine
such an experiment is apt to take millions of years. 50, exhaustive testing is
sbsolutely out of the question. As a result, testing by randon sampling is hopelessly
inadequate as well, because even the most vigorous exercising possible will anly
cover a trqﬁly negligi;ble fraction of the possible number of cases, and whole
classes of in some sense critical cases can -and will!- be missed: only the most

obvious blunders will show up, The first moral of this story is that program testing

can be used very efficiently to show the presence of bugs, but never to show their

ahsente.

But as long as we regard the mechanism as a black box, testing is the only
thing we can do. The unescggle conclusion is that we cannot afford to regard the
mechanism as a black box, i.e. we have to take its internal structure into account.
One studies its internal structure and on account of this analysis one convinces
oneself that if such and such cases work "all others must work as well". That is,

-

the internal structure is exploited to reduce the number of still necessafy“H
test casesz for all othersatiss (the vast, vast majnrity) one relies on reasoning.
In spite of the fact that many, many programmers have dimly suspected that the
solution can only be found in this direction, they seldom make more than a half-
hearted attempt at it, the snag being that the amount of reasoning needed often

becomes excessive.

Yaf.this function of the mechanism's internsl structure opens a new and
promising way to attack the reliability problem, Once we have seen that the
required confidence level can only be reached by virtue of the structure of the

program, that the extent to which ### program correctness can be estesblished is

not purely a function of its external specifications and behaviour, but depends

EwWD288 - 3

critically upon its internal structure, we can invert the question and ask ourselves
"what forms of program structuring can we find, what elements of programming atyle

and what forms of disci?ine. all the confidence level of our

L

4o raase

final product?”.

So, instead of tryiné to devise methods for establishing the correctness of
arbitrary, given programs, we are now laoking for the subclass of "intellectually
manageable programs", which can be understood and for which we can justify without
excessive amgunts of reasoning our belief in their praper operatisn under all
circumstances. This is done in order to reduce the number of test cases needed;
in the case of programs -i.e. abstract mechanisms- there are now strong indications
that this approach can be so effective that the number of test cases needed is

eventually reduced to zero, i.e. that the correctness can be shown a priori.

If the amount of reasoning needed is to be kept tolerably low, it is absolutely
necessary that the number of cases between which we have to distinguish (in our
reasaningl) combine additively, rather than multiplicatively. This implies that
in program composition we must exploit our power of abstraction and our ability
to introduce useful concepts as effectively as is done in any other branch of
mathgmatics. (And what is more, we have to exploit these powers very consciously,
firsé£;+é;;?zéiék;¥ tradition in prugrammingjmégcnndly because programming is a

highly creative activity in which we aim at constructing things eventraddy of con Evenbuel

f degree of sophistication much higher than the average mathematical thenry.)

In answer to the above challenge, two developments are taking place, The first
is an investigation as to what structural properties make a program "intellectually
manageable”; the second is a search for a methodology for constructing such

intellectually manageable programs.

With regard to desirable program structure, one or two very clear conclusions
have been reached. When programming, one should constantly bear in mind that although
the program text is the last thing that leaves the programmer's hands, the true sub-

ject matter of his trade consists of the possible computations that may be evoked

Loy T e,

by his program,the-computations the "making" of which he delegates to the machine.

When we say, sloppily, that a program is 0K, we mean that the corresponding computations
satisfy the requirementa. In other words, we should regard the programmer's activity

not so much as "producing programs", but rather ss "designing a large class of

o
camputations". (From this point of view measuring programmer's productivity by the

EWDZ288 - 4

number of lines of code produced per month is as ridiculous as measuring a composer's
productivity by the number of notes scribbled on his score!) The obligation to keep
our intellectual grip on what may happen in time, while the static program text ia
the last thing we can lay our hands upon, the gbligation to understand the‘computations
as they evolve in time via the tangible program text, yields an urgent plea to keep
the sequencing rules, i.e. the mapping between the progress through the program text
and the progress through the computations, as straightforward as possible. In
sequential programming one can -and should- do this by abstaining from the goto
atatement and by performing all sequencing control by conditional, alternative,
selegtive and repetitive clauses and the subroutine mechanisms. In view of cur
obligation to bridge mentally the conceptual gap between the static program text and
the dynamic computations, the goto statement must be exposed as one of the
combinatorial complexity generators we have been looking faor.

Vihile

RQess the sbove conclusion deals with avoiding unnecessary complexity, the next ones
deal with the exploitation of our powers of abstraction for the purpose of mastering

the inherent complexity. They deal with pperational abstraction and representational

abstraction,

Operational ahstraction is well-known; in program texts it is reflected by
subroutines or by indentation. It is the kind of encapsulation that we find applied
in the structure of any mathematical theary: whenever a piece o% mathematical reasoning
appeals to a theorem, the only thing that matters on that level is what the theorem
asserts,and on that level it is equally immaterial how the theorem has been proved
(elsewhere, i.e. on another level). We can and should apply the same principle in
program structuring, where it is rewarding to separate for each program component
clearly "what it does" and "how it works", With the exception of the recursive routine,
the level @n which a component is used on account of what it doea is always disjmsmsk tinct
from the level which is concerned with how it works., Our vision becomes unnecessarily
blurred when we mix the two levels and try to understand the whole happening on ths

same, homogeneous semantic level: one has then destroyed a useful structure.

A specific application of the above sketched operatiaonal abstraction is the
following. Whenever a program component is composed by means of a sequencing clause,
encapsule it and find a description of its net effect in which the fact that it

contains such a clause is no longer #fapgparent. For instance, give to
"if x < O then x:= - x"

the dascription “replace x by its absolute value", a description which is equally

applicahle to both cases. And if you don't have & ready-made function (such as the

EWD288 - 5

absoluta value) at your disposal in terms of which to describe the net effect of
sucha compound companent, invent this function and be sure that its properties are
mathematically nice and also the ones you want. If you cannot find auch a function,
don't ignore that warning, for then you are on the verge of wessing things up! (To
give a hardware analogy: when programming in machine code one can 6nvoke the add-
instruction but in doing sa, it is &n that level of interest immaterial whather

the hardware invoked has a serial or a parallel adder.)

Representational abstraction is concerned with compound data structures, which
are ultimately represented by aggregates of variables of more primitive typea. The
level dn which only the collection aof possible values of a compound data structure
matier is quite distinct from the level which is concerned with the questin;éﬁnw
these composite. values can be represented by aggregates of values of simpler typea.
One of the most common sources of program errors seems to be that an operation on
a variable is inadvertently coded in terms of components of a specific representation,
(E.g. in a binary machine one might be tempted to rephrase the guestion "is this
integer even?" by "is the least-significant digit of this integer equal to zera?"
forgetting that this translation is not valid when negative numbers are represented

by 1's«comp1ement=.)

With the subroutine we have the two sides of the operational cain, viz. "What
does it do for you" versus "How does it do it"; with abstract data types we have the
two sides of the representational coin, viz '"What values can it take" versus "How
are these values represented". Most current programming languages cater wis=thse
%srzjigﬁbFEPt?Pﬁ mechanismf;gggggégighhéil";hf the dpérational abstraction/g ¥heir facilities
for representational abstraction, if any, are less convincing. The possibility Hﬂ C¥”1GU:“3

haws representational abstraction reflected in the program code as well seems,

however, to be equally essential,

The final subject to be touched upon is a methodology for constructing such

VR

"intellectually manageable" prugramé?:i;'the‘framework of this contribution, I can
only touch upon it, because it is very intimately linked with the much larger and
more general field of heuristics: "What are for the human mind the most effective
ways dﬁr finding solutions to problema?", To my amazement -apparently I am a very
naive person- I find even reasocnably creative mathematicians rather unwilling to face
this question: the mere suggestion that some sort of h;lpful answer ta that question
cauld be given at sll has a tendency to strike them as sacrilégious.(Again I suspect

that the mystery in which the act of crestion is|so tenaciously|kept enwrapped,

EWD288 - 6

satiafies one of our deeper, otherwiss undel‘:qmur_iahad paychological needs.)In tha
regtricted field of programming, such 8 methodology has 8 much better chance ‘UIOPSUrWVm‘
442w, firstly because, by sheer necessity, programmers have to be mors conscious of
mathodological aspects, secondly because they are often faced with (huga) problems

for which the ppasible existence of a solution, however, is pretty obvious.

My thesis is, that a helpful programming methodology should be closely tied to
carrectness concerns. I am perfectly willing to admit that I myself may be the most
complete victim of my own propaganda, but that will not prevent me from preaching
my gospel, which is as follows. When correctness concerns come as an afterthuught.
and correctness proofs have to be gi*ven once the program is already completed,
the programmer can indeed expect severe troubles. If, however, he adheres to the
discipline to pyoduce the correctness proofg as he programs along, he will produce
program and proaﬁJf? less effort than jest the prugrammfﬁﬁvﬁéuld have(égﬁggﬁ;;;;;;iig.

The framework of this contribution does not allow the inclusion of a worked-out

example. Instead I shall try to sketch haw the hand-in-hand construction of a program

and its correctness proof takesipla;;.fpo¢‘ex “dne Progrmmang (rroce s,

[found what I reqard as the quintessence of this methodology in the summer of
1968, when my attitude towards flow charts changed radically. Up till that moment,
1 had regarded a flow chart as something incomplete, as a plan, as a (half-pictorial,
but that is not essential) representation af my intentions, something that as a
description would only make sense if all further details, down to the bottom, had
indeed been supplied. But it was then that 1 saw that such a sketch of a program
still to be made, could be regarded as an abstract version of the final program, or
s&eanger even, that it could be regarded as "the program", be it for a -in all
probability hypothetical--machine with the proper repertoire of primitive actions
operating on variables of the proper types, If such a machine were available, the
"rough sketch" would solve the problem; usually it is not availabievand actions and
data types assumed have to be further detailed in next levels of refinement. It is
the éﬁzﬁgié‘of these next levels to build the machine that has been assumed to be
available at the top level, i,e. at the h;ghast_level of abstraction. This mast
sbstract version is now no longer Qﬁm;;hgﬁéiaﬁgut the final program, it is an
essential part of the total program; its correctness is independent of the lower level
refinements and can be established beforehand. To give this correctness proof before
proceding with the lower level refinements serves meny purposes. [t establishes the
correctness of the top level, Fine, but{more important is that we do this by applying

(‘:.u‘he*k‘ 15-\"_-‘
s .

LWULEY - T

well~egtablished theorems applicable to well-known sequencing clauses,and as a result
it becomes most natural to avoid clever constructions like the plague, But the most
important consequence is that the proof for one level ensures that the intarface
between itself and the lower levels has been given completely, as far aéitglevant
for thet level; and also, by fixing in the intarface only what the correctness

proof really needs, the interface can be kept free from overspecification.

Finally, @ word or two about a wide-apread suparstition, viz. that correctinmas
proofa can only be given if you know exactly what your program has to do, that in
real life it is often not completely known what the program has to do and that,
therefore, in real life correctness proofs are impractical, The fallacy in this '
argument is.to be found in the confusion between "exact" and "complete": although
the program requirements may still be “incomplete', a certain number of broad
characteristicsfgﬁy be "exactly" known. The abstract program can see to it that these
broad specifications are exactly met, while more detailed aspects of the problem
specification are catered for in the lower levels., In the stgs—wise approach it is
suggested that even in the case of a well-defined task, certain aspects of the given
problem statement are ignored at the beginning. This means that the programmer does
rnot regard thé given task as an isolated thing to be done, but is invited to view
the task as a member of.a whole family; he is invited to make the suitable
generalizations of the given problem statement, By successively adding more detail

in the lower levels he eventually pins his program down to a solution for the given

problem,

July 1970 ' prof.dr.Edsger W.0ijkstra
- Department of Mathematics
Technological University

EINDHOVEN, the Netherlands

	EWD288:

