EWD292.html

to professor C.A.R.Hoara EwD292 - O
Department of Computer Sciance

The Queen's University of Belfast

BELFAST BTT 1NN

Narthern Ireland

Monday 31 August $970

Dear Tony,

May I ask you & few things? My first question is very simple: I should
like a new copy aof "FIND", the papar you esent to the members of WG2.3, bacause
! lost mine —someone borrowed mine— before I haed paid all sttention to it that
it deserves,

My second question is more demanding: I should like to have your comments
on the following thoughts. I ask this to you becsuse on the subjects dealt with
I consider you to be the world's expert., {(Yst I hesitate es my guestion might
be vary dsmanding: I cannot @BE8 predict how much re~adjustment from you side
is required to follow my considerations. In all probability I use the usual
words —such ss "valus" and “reference" in a slightly different maaning!)

I associate with a varisble the following things
1) it may have = neme —"x" say= so that & program may refer to it
2) it will have a finite life-time, during which it will have a uniquas
idantity
3) it will bes "of & type", i.e. associated with it will be a collection of
poseible values
4) at eny moment during its life~tims it will bave one of tha values of its
type ("any moment" with respect to a sufficiently coarse grain of timas, in
which "changing its value" is an instantaneous opsration)
5) given the identity of a varisble, its valus is uniquely defined; as many
variables may have equal values, given its value, its identity is inggeneral
not uniquely daefined
6) if "x* is the name of a variable, in program textat "ref x" will stand
for its identity, "x®" will stend for its velue with two sxceptions, viz.

a) when precedsd by "ref"

b} when standing at tha left of an aseignmant opsrator
7) besides the refarence prefix we have the svaluation operastor "val' Its
function is givan by

val raf x = val (ref x) = x ..

Excaption 6b) is introduced for compatibility ressons wmainly. It allows
us to write in the usual way

X x + 1
instead of ths more cumbersome
ref = x + 1
if I wanted to do this with the aesignment procedure "sesign" I would havs

to write sssigniref x, x + 1},

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD02xx/EWD292.html

from E.W.Dijkstra to C.A.R.Hoare, monday 31 August 1970 £wWD292 ~ 1

.

If "y = ref x" then "val y = x", so I could write alsa

val yi= x + 1 or assign(y, x + 1} .

The assignment operator does two things: it assigns a new variable to
a variable (with an identity,i.e. for which we nesd its identity), it also
destroys its pld value. Exception Bb) tells us that our notation convention is
to write down the indication of the value destioyed, the velus replaced:

x:= x + 1" ig read:

"the value of x is replaced by its value plus one™, If the left hand side starts
with val, the reference in question 88 is found by omitting "val®, otherwise

by prefixing it with "ref", (At the bedinning I was very unsappy about this
convention, after some time I found that it makes sense: you mention "ald®

and *new" value.)

If y is & value of type "raference” its type comprises the type of val y.

Given three real variables s, b and c, cempsre the two programs

1) printing the maximum value.

var max; real;

if a > b then mexi= a else mexi= b;
if c > max do mexi= c;

prant{max)

2} changing the sign of the maximum value
yar max: rof real; -
f a® b then max:= ref a glse maxi= ref b;
if ¢ > val max do maxi= ref c;

max:= — val max

lo-»-(
by

<
o
s

|

With the above two examplas I have made my first point, viz. to find e
clean interface expressing when evaluations have to take place, when I operate
on values, when on identities. Any well-motivated sufgestion about syntactic
sugar (for the declaration for instance) is wallcome.

The next point deals with types and typs control When declaring a varisbla,
its type should bs given either
var prime: boolasn
i.e. naming a typs, or
var prime: (true, false)

i.e. enumerating its possible values,

The latter arrangemsnt suggest to write

type WMEhintree:
(treel,
tree2(number: real, leftibintrees, rightibintree})

Here we introduce a type called "bintree® with two mutually exclusive
values, either "treel" ,which is ussd to denots an empty tree, or "trse2"
which is a node comprising three varisbles called YX¥ME¥ "numbar” (of typa
"real”} "left" and "right" both of type "bintres®.

from €.W.Dijkstra to C.A.R.Hoare Monday 31 August 1970 EWD292 - 2

»

Upon assignment of the value tree2, three suitable valuss should be suppliad
as actual parsmeters.

We can now write the booleen procedure "in* testing whether a given value
is in a tres or not and adding it to the tree when it is not.

boolean procedure in{T: ref bintree, num: val real)
cese vel T of
(= treet: [in:= false; val Ti= tres2(num, treel, treel)},
= tree2: {case number(val T) of
(= num 3{inse true}.
> num :{ini= in(zef left(val T), num}}.
< num :{ins= in(zef right(val T), num)}))

or, if you prefer a non-recursive procedurs

boolean procedure in(T: ref bintres, num: val real)
begin var curtrees ref bintree:= T; {this is en initializing decl.)
HEEAERRERURHININS
var found: boolean:= false;
var diff: real;
while val curtree = tree2 and non found do
begin diff:= number(val curtrse) ~ num;
Af diff = O then foundi= true

else
curtree:= if diff > 0 then ref left(val curtree)
else ref right(val curtres)

end;
Af non found do val curtreei= tree2(num, treel, treel);
in:= found

To use the type and the procedure one can declare
var TREE: bintresei= treel; in(zef TREE, 3.25) .

A complication arisas When ws want to writs a procedure removing the
minimum element fram a trse. In the heading we want to describe that initially
it should be a non-empty tres; ss a result of the call, howevsr, it could becoma
empty. I suggest as heading

real procedure minmove (T: ref tree? — bintres)

talling that initially the actual parametsr is reatrictsd to the subtype "trea2"
while eventually it may be of tha gensral type bintree. A non—recursive versian
then is {after the sbove heading)

begin var curtree: ref bintreai= T;
var laftree: ref hintres:= ref left(val T);
while val lefttee = tree2 do
begin curtres:= leftree; leftresi= ref laft{val lefiree) end;

minmovet= number(val curtree); val curtreeis right(val curtree)
end

(Note: the heading of "in*could ba:
boolean procedure in(T: ref bintree = tree2, num: val real))

from

E.W.Dijkstra to C.A.R Hoamre Monday 31 August 1970 EWD292 - 3

In all this I am aiming at an intarface such that a transletor can do all type
checking., I have BENGGENHEIEEN a atrong Teeling that if this cennot be done,
one has the wrong concept of typs! To ease this analysis I am willing to add
syntactic sugar (in the form of the type-controlled case cleuse of the type~
controlled while clause.) I hopa that a translator can check that the call of
"minmdve (ref TREE) will only occur with TREE = tres2.

I know that you have paid much attention to such questiona in an earlier
stage of your life: it is only now that I am beginning to bascome ripe for such
quastions and would value your commenta very much. Yours ars fine shoulders
to stand upon!

Thank you for your handwritten letter #ith the sketch of & prouf for the
transposition algorithm. I em ghikd that you snjoyed the algorithm. Some fiftasn
yvears ago 1 was introduced to Christopher Strachey by Aad van Wijngasrden at
some conferenca. Aad and I entered a restaurant and Christapher was sitting
alone at a table, Aad asked whether we could joirn him and we were introduced.
Christopher posed the problem end within five minutes —this was the time when
Iwes still & bright boy!~ I produced the sclution, Some months ago the problem
was posed to me again, I recognized the problem but had forgotten my solution:
this second time it tock me ten minutes to reconstruct it. This just shows
what age does to you! My grapevine tells me, that you have shown the slgorithm
both to Brian Rendell and Niklaus Wirth, Small world we live in!

Returning for a last time to the main subject of this letter: I am looking
for a program repressntastion from which it is at any moment obvious which
values are defined (and how) and which are not. The two mutually eaxclusive
forms of the value of a variasble of type bintree are suggssted by the analogy
of the racursive procedure which must contain a condition SESNASNEEING call
upon itself. The node which is either empty or "a set of fislds" is the spatial
B8 analogue of "if B do S" which, whaen exscuted takes one of two mutually
exculsive forms, either empty or S.

Shall I have the privilege of your snswer to my questions?

Yours esver

Edsaer

prof.dr.Edsger W.Dijkstra

	EWD292:

