EwD387 - O

On the axiomatic definition of semantics

The following is heavily influernced by the work of C.A.R.Hoare.
g ¥

Program testing can ke used very effectively to show the presence of
bugs, but is hopelessly inadequate for showing their absence and a convincing

correctness proof seems the only way to reach the required confidence level.

In order that such a convincing caorrectness proof may exist, two

conditions must be satisfied by such a correctness proof:

1} it must be a proof and that implies that we need a set of axioms to
start with
2) it must be convincing and that implies that we must be able to write,

to check, to understand and to appreciste the proaf.

This essay deals with the first of these two topics.

We are considering finite computations anly; therefore we can restrict
ourselves to computationzl processes taking place in a finite state machine
~although the possible number af states may be very, very large— and take
the poirt of view that the net effect of the computation can be described
by the tramsition from initial to final state. The cemputation is assumed
to take place under control of an algorithm, & program, and what we want
to do is 1o meke assertions about all possible computations that may be
evoked under control of such a program. And we want to base these assertions

ori the program text!

This implies that we must have a formal definition of the semantics

of the programming language in which the program has been expressed.

The earliest efforts directed towards such definition of semantics that
1 am aware of have been what I call "mechanistic definitions": they gave a
definition {or "a description”) of the steps that should be carried out in
executing a program, they gave you "the rules of the game", necessary to
carry out any given computation (as cetermined by program and initial EEEEEI)
by hand {or by machine)}. The basic shortcoming of this approach was that the
semantics of an algorithm were expressed in terms of "the rules of the game”,

i.e. in terms of another algorithm. The game can only be played for a chosen

EWD367 - 1

initial state, and as a result it 1s as powerless as program testing! A
mechanistic definitiorn as such is not a sound basis fur makimg assertions
about the whole class of possible computaticns associated with 2 program.

it is this shortcoming, that the axiomatic method sseks to remedy.

We coansider predicates P, Q, R, ... on the set of states; for each
possible state a given predicate will be either true of false and if we so
desire, we can regard the predicate as characterizing the subset of states
for which it is true. Thers are iwd special predicetes, named T and F: 7
is true for all possible states (characterizes the universe), F is false
for all possible states {characterizes the empty set). We call two predicates
P and Q equal {"F = Q") when the sets of states for which they are true are
the same. (Note that P # T =-or non(P = T)- does not allow us to conclude

P=F !

We cansider the semantics of a program S5 fully determinedm when we can
derive for any set of final states, as characterized by a predicate P (called
in this connection "the poast-candition®) the complete set af carrespanding
initial states, a set characterizes by the predicate that we denote by FS(P)
and that in this connpeéfion is called "the weakest pre-condition™ or "the
pre-condition® for shart. Here we regard the f5 as a "predicate transfarmez",
as a rule for deriving the weakest pre—conditicn from the post-condificn to

which it corresponds.

The semantics of a program 5 are defined when the corresponding predicate
transformer f$ is given, the semantics of a programming language are defined
when the rules are given how to cgnstruct the predicate transformer S

corresponding to a program S written in that language.

As most programming languages are defined recursively, we can expect
such construction rules for the predicate transformer of the total program
tc bhe expressed in terms of predicate transformers associated with components.
But, as we shall see in a mament, we must observe some restrictiens, for if
we allow ourselves too much freedom in the construction of predicate transformers
we may arrive at predicate transformers f5 such that F5(P) can no longer hbe
interpreted as the weaksst pre-condition corresponding to the post-condition

P for a possible deterministic machine.

EWD36T - 2

Our comstruction rules for predicate trarsformers f5 must be such
that, whatever f5 we construct, it must have the following four basic pro-

perties

1) P =0 implies f3(F) = £5(Q]
2) £5(F) = F

3) f3(P and Q) = £S(P) and 5(Q)
4} f5(P ar Q) = f5(P) or f5{Q)

Predicate transformers enjoying those four properties we call "healthy",

Property 1 assures that we are justified in regarding the predicates
as characterizing our true subject matter, viz. sets of states: it would be

awkward if F3{x > Q) would differ from f5{0Q << x) !

Property 2 is the so=~called "Law of the Excluded Miracie" and does not

need any further justification.

The justification for properties 3 and 4 becomes fairly obvious when we
consider, for instance P = (0<x<2) ard Q= {1 <x<3%) and require
that each initial state satisfying fs(P) is mapped into a single state
satisfying P and similarly for {, Conversely it can be shown that each
healthy predicate transformer fS can be interpreted as describing the net
effect of & deterministic machine, whose actions are fully determired by the

initial state.

From our st and 4th property we can derive a conclusion, Let P = (;
from this is follows that thers exists a predicate R such that we can write

Q =P or R; our tst and 4th property then tell us that
f5{Q) = fS{P oz R) = f5(P) or fS(R)

from which we deduce that

5l P=0Q implies fS{F)= fs(Q) .

The simplest predicate transformer enjoying the four basic praperties

is the identity transformaticn:
fS(P) =P

the corresponding statement is well krown to programmers, they usually call

it "the empty statement™.

EwD36e7 - 3

But it is very hard to build up very powerful programs from empty
statements alone, we need something more powerful. We really want to transform

2 given predicate P into a possibly differert predicate fS(P).

One of the most basic operations that cam be perfocrmed upon formal
expressions is substitution, i.e. replacing all accurrences of a variable
by (the same) "something else". If in the predicate P all occcurrences af the
variabls "x" are replacec by (E), then we derote the result of this transfor—

mation by P
E— x

Now we can consider statements 5 such that

fS{P) = Po ;
this is a whole class of statements, they are given by three things
a) the identity of the variable x to be replacec
b} the fact that the substitution is the corresponding rule for predicate
transformation

c) the expressicn E which is to replace every occurrence of x in P.

The usual way to write such a statement is
x 1= E

and such a statement is known under the name of an "assignment statement!.
g

We can formulate the

Axigm of Assignment. When the statement S is of the form ¥ 1= E y then

its semantics are given by the predicate transformer f5 that is such that
f 11 P fS(P} = P
ar a s(P) E— x

The substitution process leads to predicate transformers that are healthy.

Although from a logical point of view urnecessary ~we can take this
predicate transformer toc give by definition the semantics of what we call
assignment statements— it is wise to confrant this axiomatic definition with
our intuitive understanding of the assignment statemsnt —if we have one!-
and it is comforting to discover that indeed it captures the assignment
statement as we (may) krow it, as the following examples —written in the
format: {fS{P)} S {P}~ show:

{a=0 } xi=1 { a> O}

[y <2}x=1{x<2}

la>0ed (x +1) <9} xi=x+1{8>0andx<9}

EWD367 - 4

The above rules enable us to establish the semantice of the empty
program and af the program consisting of a single assignment statement. In
order to be able to compose more complicated predicate trarmsformers, we
chserve that the functiomal composition of two heslthy predicate transformers
is again healthy. 5o this is a legitimate way of constructing a new one and

we are lead to the

Axiom_of Concatenation. Given two statements 5% and 52 with (hsalthy)

predicate transformers f51 and f52 respectively, the predicate transformer

3, given for all P by
f5{P) = £51{f52(P))

is healthy and taken as the semantic definition of the statement 5 that we

denote by St : s

Functional composition is ascociative and we are therefore justified in
the use of the term "concatenation®": it makes no difference if we parse

“51 5 S2 ; S3" either as “{S1 ; S2); 53" or as "9 ;{52 ; S3)".

Relating the axiomatic defipition of the concatenation operator ";" to
our intuitive understanding of a sequential computation, it just means that
each’ execution of 1 (when campleted) will immediately be followed by an
executicn ﬁf 52 and, conversely, that each executian of 52 has immedistely
been preceded by an execution of 51. The functional composition identifies the

initial state of 82 with the final state of Gi.

Leoking for new programming language constructs implies looking for
new ways of constructing predicate transformers, but all this, of course,
subject to the restriction that the ensuing predicate transformer must be
healthy. And & number of obvious suggestions must be rejected on that grounds,

such as: £5(P) = non 751 (F)

for that would violate the taw of the Excluded Miracie.
Alsa £S(P) = ¥51(P) and £52(P)

must be rejected as such a f5 violates the basic property 4:

F5(P gx Q) = f51(P or Q) and fS2(P or Q) = {f5t(P) or £31(Q)} and {#52(P) ar f52(Q)}

while

fS(P) or £5(Q) = {f51{P) and f52(P)} or {¥51(Q) and £52(Q}}

EWD367 - &

and they ares in general different, as the first of the two leads to the

additional terms in the disjucntion

[fS1(P)} and f52(Q)} or {f57(Q) and f52(P}}.

Similarly, if we chaose
fS{P} = fS1(P} cr fS2(P)
property 3 is violated, because
fS(P and @) = FS1(P and Q) ar fS2{P 20d Q) = {FS1(P) ang *S1(Q)} or {£S2(F) and FS2(Q}]
while
FS({P} and f5{Q) = {fS1(P} or fs2(P)} ang {fsi(Q) or fs2(Q)}
and here the second one leads to the additianal terms in the disjunction

{£S1(P) and rs2(Q)} or {£S1(Q) ana fs2(F)} .

This leads to the suggestion that we look for fS1 and £52 (in general
f5.) such that far any P and 0
i

i £ i implies FSi(P) and fsj(n) = F.

Doirmg it orly for a pair leads tc the

Axiom of Binary Selectign. Given two statesments S1 and S2 with healthy

predicate transformers f5S1 and 52 respectively and a (computable} predicate

B, the predicate transformer fS, given for all P by
£5(P) = {B and f51(P))} or (nan B and f52(P)}

is healthy and taken as the semantic definitian of the statement S that we

denate by if B then S1 else 52 fi .

{This is readily extended to a choice between three, four or any
explicitly enumerated set of mutually exclusive alternatives, leading to

the so-called case-consiruction.)

For an arbitrary given seguence fSi we can not hope, that i # i implies
FSi[P) ggg_fsj(Q) = F for any P and Q, but we may hope to achieve this if
we can generate the fSi by & recurrence relation. Before we embark upan
such a project, howsever, we should derive a useful property of the predicate

transformers we have been willing to canstruct thus far.

EWD367 - 6

If two predicate transformers fS and S9! satisfy the property that for
all P: f5(P) = fS'(F), then we call "5 as strong as fS'" and "fS' as weak as
8",

(The predicate trarsformer given for all P by fS(P) = F is as strang
as any other, the predicate transformer given by fS{P) = T would he as weak
as any other if it were admitted, but it is not, because it is not healthy:

it violates the Law of the Excluded Miracle,)

We can now formulate and derive our

Thegrem of Monotany. Whenewver in a predicate transformer fS, formed by

concaternation and/or selection, one of the constituent predicete transformers
is replaced by one as weak Lstrong) as the original ane, the resulting

predicate transformer fS' is as weak {strong) as fS.

Obviously we only reed to show this for the elementary transformer

canstructicns.

Concatenation, cass 1:

Let S be: 31 ;52

let S0 be: 5105 82

let S1' be as weak as 51, then
fS(P) = fS1(Q) and £S'(P) = £51'(Q), with O = f52(P); as 51(Q) = £51'(Q) for
any Q, fS(P) = f5'(P) for any F. QED.

Concatenation, case 2:

Let S be: 5t ; S2

let 58 be: st ; 52

let S1' be as weak as 2, then
fS(P) = £51{Q) and fS'(P) = fS¥(R) where @ = fS2{P) and R = ¥52'{P). Because
for any P, @= R, it follows from the healthiness af T51, that FS(P)} = £5t{p).
QED.

Binary selection, case 1:

Let 5 be: if B then 51 else 52 fi
let SI! be: Af B then 51' else 52 fi

let 91" be as weak as S1, then
f5(P) = {B and f$1(P)} or {non B and fS2(P)}
= {B and fS1'(P)} or {non B and fS2(P)} = fS*(P). QED.

Binary selection, case 2 can be left to the indusirious reader.

EWD367T = 7

Let us now consider a predicate transformer & comstructed by means aof
cancatenation and selection, out of a number of healthy predicate transfarmers,
among which fH, (This predicate transformer may be used "more than once": then
it correspords %o a2 program text in which the cerresponding statement H occurs
more than onca.) We wish to regard this predicate transformer as a funciion
af fH and indicate that by writing G{fH), i.e. G derives by concatenation
and/or selection with other, in this connection fixad predicate transformers,

& new predicate transformer. We now consider the recurrerce relation
fH, = G(fH, .
;o= 6UFH,) (1)

which is a tractable thing in the sense that if fH_ is as strong (weak) as

0

FH it follws via mathematical induction from the Theorem of Manctomy that

19
fH. is as strong (weak) as ‘FH;+1 for alli i, We shauld like to start the
recurrence relation with a constant transformer FHO, that 1is sither as
strong or as weak as any other. We can do this for a predicate transformer
as strong as ary other by choosing fHO = f3T0OP, given by
f3TOP(P) = F for any P .

(The predicate transformer FSTOP satisfies all the reguirements for healthiness.)
And so we find ourselves considering the sequence of predicate transformers,

5TOP
0
and for 1 > 0: fH, = G(fH. 1) {2}

i

given by fH

with the property that

1) all in are healthy {(by induction)

2) for i < j and any P: in(P) = ij(F‘].

Hecause all FHi are healthy and any P = T, we also know that for any P

in(P) = in(T) .

We now recall that we were laooking for fSi such that for any P and [

and i ¥ J we would have fSi(P) and ij(Q) - F .

We can derive such predicate *ransformers from the FHi(P). As each
fH.(P) implies the next one in the sequence we could try for i >0
i
S, (P) = fH_ {P) and fH, , (P
5, (F) ;\P) and pon FH._ (P)

i.e. the FSi(P) is the "incremental tolerarce”, but —-both on account of the
conjunction and on account of the negation— it is not obviaous that such a

construction is a healthy predicate transformer.

EWD3E7 — &

Therefore we proceed a little bit mere carefully, first deriving s
result that is independent of the post-condition. Each fH_{(P) implies the
i
next one in the sequence for any P and therefore alsa for P = T. We now

f:“ s . ;
define K, = fH.(T) 2ng non fH._, (T} for i >0 ‘)
1 1 _ -

and derive about the K. the following properties, (If we so desire, we

i

can define KO = F.)

1) i 4§ implies K, and |<j =F (4)

This is proved by a reduction ad absurdum. Let i < j and suppase

K, and K. # F; then ther= ex‘sts a point x in state space such that
i J

K_(x) and K~(x) = frue .
1 - 1] I
However, K, (x) implies FHi(T)(x) which imnlies fHJ__1 (T}ix) =-because j-1 > i -

whichk implies Kj(x) = false and this is the cantradiction we were after. In

words: in each point in state space at most one K. is true,
i —Iue

2l T = Eir 1SS i k) (5)

From fHO{T) = f, we derive K1 = FH1(T} so (5) holds for i = 1. For the

induction step we observe that
in(T) =
fH H. (T fH, {T)) =
i\T) and {nen fH,_ (T} oz fH._ {T))
H{ (T} = fH
Ki 0 { Hi(T) and in_1()J Ki er TH,_

¢

or (T)

1

The healthiness of fH. allows another conclusion.
i

in{P} ar in(m P) = in(P or non P} = in(T) (6)
in(P) and in ron P) = in(P and nan P} = in(F) = F (7)

Taking in (6} at both sides the conjunction with non fH_(P) we reach
1
fH P d fH{P) = fH (T d fH_ (P}
; \non) and non i() i() and non 1(Vo
taking in the last two formulae at both sides the disjunction, we find
o = f fH. (P}
; (non) Hi(T) and non i()

and as FHi{non P} = fH_{non P) for =i
J
we conclude for j > i
in(T) and non in(P) = FHJ{T) and nan ij(P)

or Kiand non FHi(P) = non ij(P) {8)

EWD367 - 4

Now, at last, we are ready to prove the thearem [have been drivirg at

all the time, wviz.

in"\P) = (Ej: 1 <j<i: KJ_ and ij(p))

In one direction the proof is easy., Consider a peint x in state space,
such that fH,IP){x) = false; on account af the manotomy of the FH. we can
i — i
conclude that then j < i implies fH_{P)kx) = false, therefors the right-hard
= ; lalse

side is false as well,

)

Corsider now a point x, such that in(P)Lx) = true. Then fH;(T)(x) = true

and according to (4) and {5} there is exactly ore value m in the range
I <m<1isuch that K (x) = true. Furthermare, on account af the mono tomy
>m= m Lrue

of the fH , there is a unique value k in the range 1 <k <1 such that
i

J >k implies M (F}{x) = true
J

j <k implies fH_(P)(x) = false .
J

Now relation {(8) excludes the case m < k, for then we wauld have
Km{x) and non me(P}(x) = true

implying (as i >) non fH.(P)(x), contradicting cur assumption. Therefore
= £en Tty
m >k, implying K and" fH (P)Lx) = true, which leads to the conclusion that
= m—= " LIHE

the right—hand side is true as well. And thus relation (9) has been proved.

And now most of the hairy work has been done. Because FHi is a healthy

predicate transformer, fS., given by
i

— FH
FSi(P) = K, and Hi\P)

is healthy as well. (Because K. is a predicate independent of P, it is the
1

predicate transformer associated with

Aif K, then H. else STOP fi)
But on account of (4) we now have: i £ j implies FSi(P) and ij(Q) = F
and this false conjunction was exactly what we were looking for! With the
aid of our infinite sequence of FSi we can now form two new healthy

predicata transformers, firstly
FH{P) = (A& i: 1 < i: fSi(P)) s

but that ane, although healthy, is not interesting because on account of {11}

it is identically F, and secondly

(10)

(11)

EWD367 = 10

FH{P) = (E i: 1 < it ,—“si‘w}) . {12)

this ore is not identically f and we call it a predicate transformer
"composed by recursien™, In fzrmula (12), for sach point x in state space, such
that fH(P)(x) = true, the existemtizl gquantifier singles out a unique value

of i.

Alternatively we may write
E e 1= 5:E 32 1 S 2 5: F5,0P)))
E 3125 fHP)) - (13}

I}

FHLP)

As formula (9) is equivalent ta

FHP) = (£ j: 1 < j<i: f5,(F))
1 —_ - - 1

we see, on account of {11} that, as we guessed

fSi(F') = f‘Hi(P) and nan in_1{P}

but in the mean time its healthyness bas been established.

* *

I apologize most 5incerely for the last few pages of formal labour,
which took me a few deys to write down , while a greater expert in the
prepositional calculus probably could have done it much more efficiently. It
is by now most urgent that we relate the above to our intuitive understanding
af the recursive procedure: then all our formulae becoms guite cbvious {and

the painfulness of my formal procfs becomes frustrating!)

First a remark about the Theorem of Monotony: it just states that if
we replace a camponent of a struscture by a more powerful one, the modified
structure will be at least as powerful as the original one. (Cansider, for
instance, an implementation of a programming language that leads to program
abortion when integer overflow occurs, i.e. when an integer value outside
the range ["M, +MJ is generated.When we modify the machine by increasing M,
all computations that were originaslly feasible, remain so, but possibly we

can do more.)

Now for the recursion. All we have been talking about is a recursive

procedure {without local variables and without parameters)} that could have

been declared by a text aof the form

EwWD367 - 11

proc H: R e P, sozrp

i.e. a procedure H that may call itself from various places in its body.

Mentally we are considering an infinite sequence of procedures H., with
i

proc HO: STOP corp
A, P o . H, o eeeann
proc H, Mg Mg im e EBE

Qur rules \

fH,. = f9TOP and for i > 0O: in = G(FHi_1;

0
are such that the proposition transformer FHi corresponds to our intuitive
understanding of the call of procedure H.. In terms of the procedure H,

in describes what 2 call of the procedure H can deo under the additianal
constraint that the dynamic recursicn depth will not exceed i. In particular,
FHi(T) characterizes the initial states such that the precedure call will
terminate with a dymamic recursion depth net excseding i, while Ki characterizes
those initial states such that a call of H will give rise to a maximum

recursion depth exactly = i. This intuitive interpretation makes our earlier

formulae quite obvious, fH(T) is the weakest precondition that the call will

lead to a terminating computation.

The Theorem of Momﬁtony was proved for predicate transformers formed
by concatenation and/mr selection. If in the body of H ome of the predicate
transformers f5 is replaced by fS', as weak(strong) as f5, then GB'(fH)
will be es weak (strong) as G{fH}, giving rise to an FH{ as weak (strong)
as FHi; as a result the Theorem of Monotony balds alsg for predicate transformers

constructed via recursion.

Cur axiomatic definition of the semantics of a recursive procedurs

fH, = FSTOF
and for i 2= 0: fH_ = G{fH,6)
i i-1

and FH(P) = (£ i: i > 1: in(P)) (14)

is nice and compact, in actual practice it has orme tremendous disadvantage:
for ail but the simplest bodies, it is impossible to use it directly, FH?(P)
becomes a line, fH2(P) becomes a page, etc, and this circumstance makes it
often very unattractive to use it directly., We canmgt blame our axiomatic
definition of the recursive procedure for this unattractive state of affairs:
recursion is such a powerful technigue fer the construction of new predicate

transformers, that we can hardly expect a recursive procedure "chosen at

randem”" %o turn out to be a mathematically manageable object. So we had better

EwD367 - 12

discover which recursive procedures can be managed intellectually and how. This
is nothing mare mor less than asking for useful theorems about the semantics

of recursive procedures.

Ou intuitive understanding of the Ki —i.e. the initial states, such
that a call will lead to & maximum recursion depth = i- suggests a theorem:
if 1 > 1, it can only achieve its maximum recursion depth by primarily
generating a2t least one call that gives rise to a maximum recursion depth = i-1.

Therfore we conjecture

far 1 <i<j : K. = F implies KJ_ =F . {15)

Or account af the assumption

= (o f \T) =F
K, = fH(T) and nen H,_ \T)
we have
_ , . - .
T=onon K = {non FHiLT) or in_NT)} = {ﬂ-fi(T) = in_1\T)},
on the other hand we have FH, T(T) = in(T) and therefore fH {T) = fH, 1{T).
- : -

We would like to concludse

fH, = ﬂ‘-{i‘ﬂ {(16)

or, more explicitly,

f‘Hi(P)' = in__1(P) for any P . ks

The latter relatison is true, if it is true for any point x in state space,
If in(T)(x) = false, so0 are FHi(P)(x) and in_1(P)(x), and we are left with
the points x, such that in(T}(x) = true.

Because in is healthy we have for any P

fH;(P)(x) oz FH {non P)(x) = FH_{T}(x) = tzue

in(P){x) 2nd fH, (non PHx) = in(F)(x) = false ,
from which it follows that

in(P)(x) = non fH, (nen P)(x)

and similarly for the same arbitrary P and the same point x

B B S B R P B Ry
?HH(?)(X) = non in_1@_ Pi(x) .

If in,1(P)(x) = true, we see that in(P)(x) = true, because in_1(P) = in(F);

EWD367 = 1%

if FHi_1QP)(x) = false, FHi_1(nDn P){x) = true and so is in'non P (=i,

because FHi_1(nom P) =-FHi(n0n P), and thus fH_iP)(x) = false as well.
en sALsin] H JaL8e

Therefors (17) and (16) as well have been established. But on accourt

of the recurrence relation for the fH.
i

= fH

fH. = fH. implies FH. .
i+ i

i it
and wvia methematical induction ij = ij_1 for any j > i, in particular
ij(T) = FHj_1(T) and (15) has been established. (Whether in the sequel
we can make good use of (15) is still an open question; for the time being
we can regard its proof as an exercise.)

* *
*

Mow we are going to prove the Fundamental Invariance Theorem for

Recursive Procedures.

Consider a text, xalled H", of the form

te which corresponds a predicate transformer fH", such that faor twe
specific predicates'ﬂrénd R, the assumption @ = fH'(R) is a sufficient
assumption about fH' to prave [= fH"(R).

In that case, the recursive procedure H given by

roc H: HoevooHonnnls H.o..... corp
(where we get this text by removing the dashes and enclosing the resulting

text between the brackets proc and curp) enjoys the property that

@ and fH(T) => fH{R) . (18)

(The tentatice conclusion G == fH(R) is wrong, as is shown by the

counter-example proc H: H corp .)

We show this by showing that then Q must be such that for all i

Q and in(T) = in(R) (19}

and from (19), (18) follows trivially.

Relation (19) holds for i = 0, mathematical induction is the tool
and we propose to demonstrate that if (19) halds for i = i-1, it will

hold for i = j as well.

EWD367 - 4

Let us consider first, for the sake of simplicity, the case that the
text H22 contains a single reference ta H!'. In the evaluation of fH"(R),
let P! be the argument supplied to fH'; with

P2 = fH(P1)
Wwe can write fH"(R) = E(P2)

We can regard £ as a predicate transformer operating on its argqument
P2, but considered as predicate transfarmer it is not necessarily healthy:
it may violate the Law of the Excluded Miracle. It enjoys, however, the
other three properties:

P =Q implies E{(P} = (0}

E(P and Q) = E(P) and E(L)

E(P ox @) = £(P} or E(qQ)
and therefore alsa the fifth:

P ==10 implies E(P) = E(Q)

The statement that the conditions A and B are such that the
assumption A = FH‘(R) is @ sufficient assumption about fH', such that
we can prove B => FH"(R) is, in terms of P! and E, equivalent to the
two implications _

R = P
B == £(A)
In our particular case, it has been given, that this holds for

A =Qand B=0, i.e. we know

Q = £(Q)

When we are now able to show that

ij(T) = E(ij_1(T}) (20)
then Qand M (T) =€(Q and H, (1)),

and as a result Q and fH . 1(T} :>=fH'(R) is then a sufficient assumption
—_— i-

about fH' to conclude that O and ‘r‘HJ_(T) = fH"(R). As fH, depends on

fH,) as H" on H', this would conclude the induction step and (18) would

bave been proved.

We have two holes to fill: we have to shaw (20) and we have to
extend the line of reasoning to texts of HZ, containing more than ane

reference to H'. Let us first concentrate on (20).

EWD367 - 'S

We have defined fH, = E(fH_ 1). but because for any P, we have
J 3=

ij 1(P) = ij 1(T), ar identical definition would have been

fH, = G(4 (T) and fH4.)
i j-t j-

i.e. each predicate formed by applying fH 1 is replaced by its conjunction
j-

with ij 1(?}. And therefore, instead of

P1 = fS(T) (i.e. P1 is the argument supplied to fH' in the evalu-
P2 ij 1(m) atian of FH"{T).)
ij(T) = E(FP2)

we could have written equally well

Pt = £5(T)

P2 = . (P1)

1. (T) = £(P2 and fH__ (1)),
j 3=

But {P2 and ij_q(T)} =>'ij 1(T) and therefore, because the transfarmer

E enjoys the fifth property, we are entitled to conclude

ij(?) = E(ij_1(T)) i.e. relation (20).
Ta fill the second hale, viz. that in the text called H"™ more than

one refersnce to Hi méy ﬁccurr, is easier. Working backwards in the evaluation

of FH“(H} means that we first encaunter the inrermost evaluationis) of fH!,

whose argument does not contain fH'. For those proposition transformers we

apply our previous srgument, showing that for them the weaker assumption

Q and ij_1(T) = fH'(R) is sufficient., Then its value is replaced by Q

and we start afresh. In this way the sufficiency of the weaker assuption

about fH' can be established for all occurences of fH! —only a finite number!-

in turn.

For the recursive routines of the psrticularly simple form

proc H: if B then 51; H else fi

we can ask ourselves what must be knpown about B and 51, when we take for R

the special form @ and non B, Then
FH"({Q and non E) = {B and fS1{fH'({Q and non B»}.EE{Q and non B} .

In order toc be able to conclude Q = FfH"\Q and non B) on account of

Q= fH'{Q and naon B}, the necessary and sufficient assumption ahbout fS51 is

EWD3677 - 16

{Q and B} = £51,Q). (21)

Procedures of this simple form are such aseful elements that it is
generally felt justified to introduce a specific notaior fcr it, in
which the recursive procedure remains ancnymous: it should contain as

"parameters” the B and the S1 and we usually write
while B do 51 od (22}
When the statement 5 is of the form {22), we have now proved that
{Q and B} = f51(Q) implies {Q and f5(T) = f5(Q and non B).
This ig called "The fFundamental Invariance Theorem for Repstition®.

* #*

The extension to 2 set of recursive procedures should not pressnt

any essential new difficulty. Given the texts

proc Hl:Hi..... HZ.ounw H1.....H2.....corp
proc HZ: vesdHZ 0 ians Hleonnu [~ corp,

the combired semantics ars given by

fH1O'= fSTOP and fH2O = fS5TOP, while for XXX 1> Qs

fH2,), ALl

-1’ i-1

pur arguments can then be repeated, only twice as complicested. The Thearem

FH1 G1{fH1 .

i i-1"

fH2 .} and fH2, = G2(fHI .
i-] i i

of Invariance for the Recursive procedures is then as follows:

When thers exist specific predicates 01, RT, Q2 and R2, such that
Q1 =fH1 1{A1) and Q2 = fH2'(R2} are sufficient assumptions about fHI' and
fH2' to prove 01 = fHI"(R1) and Q2 = FH2"{R2), then we are allawed to

conclude that (o, o fHi(T)] = fH1(R1) and {02 and FH2(T)} = FH2{R2).

This extension we gladly leave to the over—industrious reader. Amang
other thimgs it implies that our results concerning bodies composed via
concatenation and selection carries over to bodies also compased via

repetition.

29 April 1973 End of EWD367

