Copyright Notice
The following manuscript
EWD 401: The characterization of semantics

is held in copyright by Prentice-Hall International, who have granted
permission to reproduce it here.

The manuscript was published as Chapter 3 of

A Discipline of Programming. Prentice-Hall, 1976.



EWD401 - O

EWD401.html

The characterization of semantics.

We are primarily interested in systems that, when started in an
"initizl state™, will end up in a "final state" which, as a rule, depends
on the choice of the initial state. This is a view that is somewhat differ=snt
fram the idea of the finite state automaton that on the one hand absaorbs a
stream of input characters and on the other hand produces a stream of output
characters: %o translate that in our picture we must assume that the value
of the input (i.e. the argument) is reflected in the choice of the initial
state and that the value of the output (i.e. the answer) is reflected in the

final state. Uur view relieves us from all sorts of peripheral caomplicsfions.

Now [ assume that the design of such a system is a goal-directed
activity, in other words that we want to achieve something with the system.
For instance, if we want to wmake a machine capable of computing the greatest

common divisor, we could demand of the final state that it satisfies
x = GCD(X, Y) (1)

Im the machine we have been envisaging, we shall then also have
y o= GED{X, Y) -—because the game terminates when x =y ), but that is not
part of our requiremsrt when we decide to eccept the final value of x as

our "answer".

We call condition (1) the (deajred) "nost-conditian"  —-"pnst" hecause
it imposes & condition upon the state in which the system must find itself
after its activity. Note, that the post-condition could be satisfied by
many of the possible states. In that case we apparently regard sach of them

as ecually satisfactory and there is then no reason to require that the


http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD401.html

EWD40Y - 1

final state is & unique function of the initial state.

In order to use such & system when we want it to oroduce an answer
-—say "reach a state satisfying conditian (1) for a given set of values
of X and Y-- we must know the set of corresponding initial states, more
precisely: the set of initial states that is guaranteed to result in a fipal
state satisfying (1). If we can bring the system without computational effort
into gne of these states, we know how to use the system to produce for us
the desired answer! To give the example of Fuclid's cardboard game: we
can guarantee a final state satisfying the post-condition (1) for any

initial state satisfying

GCD(x, y) = GCB(X, Y) and O < x <500 and 0O <y < 500 (2).

(The upper limits have beed added to do justice to the limited size of the
cardboard. If we start with a pair (X, Y) such that ECD(X, Y) =-71%, then
there exists no pair (x, y) satisfying (2), i.e. for those values of X and Y
conditian (2) reduces to £ and that means that the machine in question

cannot be used to compute the GCD(X, Y) for that pair of values af X and Y.

For many (X, Y)—cnmbinations, many states satisfy (2). In the case
that O <X <500 and O <Y <500, the trivial choice is x = X and y = Y:
it is & choice that can be made without any evaluation of the GLD-function,
even withaut appealing to the fact that the GCD=functior is & symmetric

function of its arguments.

The ceondition that characterizes the set of all initial states that

are guaranteed to lead to a final state satisfying a given post-conditian

is called "the weakest pre-condition corresponding to that post-condition”.



EWD401 - 2

(We call it "weakest", because the weaker a condition, the more states
satisfy it and we aim here at characterizing all possible starting points

that are certain ta lead to orne of the desired Statea.)

If the system (machine, mechamism) is deroted by "S" and the desired

post-condition by "R", then we denote the carresponding weakest pre—condition

by wp(S, R)

If the initial state satisfies wp{S, R), the mechanism is certain to

establish eventually the truth of R. Because wp(S, R) is the weakest pre-
condition, we also know that iG the initial state does not satisfy wp(S, RJ,
the mechanism is naot certain to establish eventually the truth of R. In the
case that 5 is & deterministic machine --i.e. the final state is uniquely
determined by the initial state-~ it will then fail to do so, in the case
that S is a non-deterministic machine, the most we can say is that then it

may fail to do so.

Ae we proceed we shall see that there are a veriety of ways in which
the mechanism S may fail to reach a final state satisfying the post-condition
R. One of the possibilities is that it reaches a final state for which R is
false; another possibility is that it does not reach a final state at ail,
either because the system finds itself engaged in an endless task or bscause

the system has got stuck.

We take *the point of view that we know the possible cerformance of
the mechanism S completely if and only if we can derive for any post-condifiaon
R the corresponding weakest pre-condition wp(S, R) because then we have

cantured completely what the mechanism can do for us. In the jargun: it is



EWD401 - 3

then that we krow its "semantics”.

Twe remarks are in order. Firstly, the set of possible post-conditions
is in general so huge, that this knowledge in tabular form --in a table with
an entry for each R we would find the corresponding wp(S, R)—— would be
utterly unmanageable, and therefore useless. Therefore the definition of
the semantics of the mechanism is always given in another way, viz. in the
form of a rule describing how for any given postzcondition R +the corresponding
weakest pre-condition wp(S, R) can be derived. Such a rule —--which is fed
with the predicate R denoting the post-condition and delivers a predicate

wla

wp(S, R) denoting the correspending weakest pre-condition-- is called
predicate transformer". When we ask for the definition of the semantics of

the mechanism S m what we really ask for is its corresponding predicate

transformer.

Secondly, we are often --and I feel tempted to add "thank goodness'--
not interested in the complete semantics of a mechanism. This is because it
is our inteption to use the mechanism S for & specific purpose only, viz.
for establishing the truth of a very specific post-condition R for which
it has been designed. And even for that specific post-conditicn R , we are
cften not interested in the exact form of wp(S, R): often we are content

with a stromger condition P for which we cah show that

P = wp(S, R) _ (%)
(read: "P implies wp(S, H)“). This means that wherever in the state space
P is true, wp(S, R) is true as well: P is a sufficient pre-condition.

In terms of sets it wmeans that the set of states characterized by P is =

subset of the set of states characterized by wp(S, R) . If for & given



EwWD4C1 - 4

P, S and R relation (3) holds this can often be proved without explicit
formulation --or if you prefer "computation" or "derivation"-- of the
predicate wp(S, R). And that is & good thing for except in trivial cases
we must expect that the explicit formulation of wp(S, R) will defy at
least the size of our sheet of paper, our patience or our (analytical)

ingenuity (or any combination of them).

The meaning of wp(S, R) : "the weakest pre-condition for the initial
state such that the mechanism S will establish a final state satisfying
the post-condition R ™ allows us to conclude that, considered as function

of the post-condition R, the predicate transformer has a number of properties.

Property O, For any mechanism S5 and any post-conditions R and 0,
the equality "R = Q" alows us to conclude "wp(S, R) = wp(S, Q)" . In
words: if R and @ are two predicates denoting the same post-conditian,
than the derived predicates wp(S, R) and wwp(S, Q) dencte the same pre—
condition. One c&n argue whether it is worth-while to mention explicitly a
property that is so obvious: if it did not hold, we had been talking nanserse
all the time! I mention Property O for the sake of completeness. (I myself
have worked for more than a month with predicate transformers without having

formulated this property explicitly....)

Property 1. For any mechanism S we have "wp(S, F)} = F" . Suppose
that this was not true; under that assumption there would be at least one
state satisfying wp(S, F) . take such a state as the initial state for the
mechanism S : then, according to cur definitio of the weakest pre-condition
"the mechanism 5 will establish a final state satisfying the post-conditien

F ", But thie is & contradiction for there are by definition no states



EWDLOT - &

satisfying F . Property ! is known under the name of "The Law of the

Excluded Miraclem.

Property 2.. . 7 Far any mechanism S and any post-conditions O and R
" == R" allows us to conclude "wp(S, o) i>-Wp(5, R)". Indeed, hkcause

any initial state satisfying wp(S, @) is "such that the mechanism S -will
establish a finzl state satisfying the post-condition 0Q"; on account of

" = R" any such final state will satisfy R as well, i.e. any initial
state satisfying wp(S, Q) is such that the mechanism will estabhlish a final
state satisfying the post-condition R and therefore any initial state
satisfying wp(S, Q) will satisfy wp(S, R) as well. Property 2 is called

"The property of Manotonicity".

Property %. For any mechanism S and any post-conditions @ and R
(wp(S, 2} and wp{S, R)) = wp(S, Q and R) {4).

The lefthand side of (4) implies the righthand side because for any initial
state satisfying both wp(S, Q) and wp(S, R) we have the combined know-
ledge that a final state will be established satisfying both O and R.
Also, on account of the Praperty of Monotanicity we conclude from

(Q EEQ'R) =0 that wp(S, Q and R) £>-wp(5, o) ; similarly we conclude
that wp(S, 0 and R} => wp(S, R) and from the last twoc implications we
conclude that the righthand side of (4) implies the lefthand side. Both

sides implying eachother, they must be egual and thus Property 3 has been

proved.
Property 4. For any mechanism S and any post-condition O and R

(wp(5, Q) or wn(s, R)) = wp(S, 0 ar R) (5)



EWDAOT - 6

Also this is a direct conseuuence of the Property of Monotonicity.
From Q == 0 or R follows WD(S, ) ﬁ>*wp(5, Q or R) ; from R => 0 or R

follows wp(5, R) => wp(S, @ or R). And then, relation (5) follows.

We can make a stronger assertion for the special case “hat the
mechanism is deterministic. The deterministic machine has the special
croperty that its behaviour --i.e. if a firmal state will be reached and,
i¥ s0, which one-- is fully determined hy the initial state. While in
general we can only be sure that the final state will satisfy the post-con-
dition R provided that the initial state satisfies wp(S, H), we know for
the deterministic machine S <that the final state will satisfy the post-
condition R if and only if the initial state satisfies wp(S, R) : this
is because every initial state that could lead to a final stste satisfying
R must lead to that final state satisfying R . In the special case of
the deterministic machine the righthand side of (5} implies therefore the

leftharnd side as well and we have

(wp(5, R) or wpls, Q) = wp(s, R or Q) : (¢
In this book --and that may turn out to be its distinctive

feature-- I shall treat non-determinacy as the rule and determinacy as

the exception: a deterministic machine will be regarded as a special case
of the non-deterministic one, as a mechanism for which Property 4 is given
by (E) rather than by the somewhat weaker (5). This decision reflects a
drastic change in my own thinking., Back in 19%8 I have been one of the
firsts to develop the basic software for 2 machine with an I/U interrupt
and the dirreproducibility of the behaviour of such a --to 21l intents and
purposes: non-deterministic-- machine has been a traumatic experience. When

the idea of the I/0 interrupt was first suggested Iwas so terrified at the



EwD401 - 7

thought of having to build relisble siftware for such an intractable beast
that I have delayed the decision to incorporate the feature for at least
three months. And even after I had given in --T had been flattered out of
my resistancel-- I was highly uncomfartable. When the prototype was becomimg
king af operatiormal I had my worst fears fully confirmed: a bug in the
program could evoke the erratic behaviour so strongly suggestive of an
irreproducible machine error. And secondly --and that was in the time that
for deterministic machines we still helieved in "debugging"-- it was right
from the start guite obvious that program testing was guite ineffective as

g means for rasing the confidence level.

For many years thereafter I have regarded the irreproducibility
of the bebaviour of the non-deterministic machine as an added camplication
that should be avoided whensver possible. Interrupts were nothing but =
curse inflicted by the hardware engineers upon the poor software makers.
Out of this fear af mine the discipline for "harmoniously co-operating
sequential processes" has been born. In spite af its success [ was still
afraid for our sclutions --although proved to be correct-- seemed ad hoc
sclutions to the problem of "taming” --that is the way we felt about it!--
special forms of non-determinacy. The background of my fear was the zbsence

of a general methodclaogy.

Two circumstances have changed the scene since then. The one is
the discovery that, even in the case of fully deterministic machines,
program testing is hardly heloful, As I bave now said many times and written
in many places: program testing can be guite effective for showing the
presence of bugs, but is bopelessly inadequate for showing their absence.

The other one is the discovery that in the mean time it has emerged that



EWD401 - 8

any design discipline must deo justice to the fact that the design aof a
mechanism that is to have & purpose, must be a goal-directed activity. In
our special case it means that we can expesct our post-conditian to tbe the
starting point of our design considerations. In a sense we shall be "working
backwards". In doing os we shall find that the implication of relation (5)
is the essential part, for the equality of relation (6) we shall have very

little use.

Orce the mathematical equipment needed for the design of non-
ceterministic mechanisms achieving a purpose has heen developed, the non-
deterministic machine is no longer frighteming, on the contrary! We shall
learn to appreciate it even as a valuable steeping stone in the design of

an ultimetely fully deterministic mechanism.

Above we have mentinned that the complete evaluaticn aof wp(SJ R)
is often beyond our interest and/or power and that we are content with a
sufficient pre-condition such that P :>’wp(5, R) , i.e. that P is a
sufficient pre-condition to gquarantee that the mechanism S will reach a

fimal state satisfying R .

A closely related but subily different concept is that of the
"safe pre-condition™, We call "P  with respect to the mechanism 5 a safe
pre-condition for the post-condition R if an initial state satisfying P
gusrantees that the mechanism S cannot reach & final state not satisfying

R ", In formula we dencote this state of affairs by

{r} s {r}



EWD40! - 9

Note that the two negations in the end of the definitiorn of the
cancept of "a safe pre-condition" do not cancel: an initial state satisfies
a safe pre-condition either because it will lead to a final state satisfying
R or to no state at all (i.e. when the mechanism S feils to terminate

properly) or both.

The concept af a safe pre-candition derives its usefulness from

the following property. From

{P} s {r}

follows (wp(S, T) and P) = wp(S, R) . (7)

Here the term wp(S, T) describes the weakest pre-condition such
that S will reach "a final state satisfying T ", but as each state satisfies
T by definition, this reduces to "the weakest pre-caondition such that §
will reach a fipal state" or "will terminate properly". From this abservation

and the definitions, the abuve property follows immediately. It tells us that

"(wp(S, T) and P)" is a sufficient pre-condition for the establishment of

the truth of R

The above relaticon between safe and sufficient pre-conditions will
play a central role in the practice of program composition. The point is
that termirmation is in general & tricky problem, but in deriving a safe
pre-condition for the post-condition R we can igrore the termination
problem. When sstablishing the termination we can ignore the post-conditiaon
R ! In formula (7) the requiremants
1) that the mechanism will t=rminate, and
2) that the final state will satisfy R

have been factored nicely: two different concerns have beer separated.



