EWD4t7 - C

On the abolishment of the subscripted variable,

(The following is written after discussions with C.Ligtmans, W.H.J.
Feijen, M.Rem and C£.S.Scholten, while during the first part A,.Martin is

looking over my shoulder.)

I have been trained to regard an array in the ALGOL 60 sense as a
finite set of elementary variables, whose "identifiers" could be "computed®.
For twa reasons this view does not satisfy me anymore and do 1 prefer to

regard an array as a single variable.

The one reason is to be found in my abhorrence for variables, whose
values are undefined, a state of affairs caused by the simultaneous intro-
duction of all local variables upon block entry; possibly long before they
are actually needed..TwD would-be remedies have been suggested (and imple-
mented) many times. The one suggestion is to extend the original range

with an additional value "uridefined" or "nil"; this is the kind of remedy

pure mathematicianse tend to invent, but it leads to all sorts of conflicts,
exceptions and logical patches. If one decides on a case of bigamy when

two different persons have the same spouse, what about two bachelors, married
to the same "nobody"? The other suggestion is to allow initialization and,
if not specified, by default a normal value will be assigned (say "Oo" for

an integer and "true" for a boolean variable); the one that follows the
second suggestion fools himself even worse, because he has even lost the
possibility of a run-time check for a common programming error. In the

case of scalar variables a meaningful initialization is no problem if the
variables are only introduced when needed; with a set of, adeguate sequencing
primitives there need be no problem in saving the static scope concept: at
each semicolon there need not exist any doubt as to which variables to-
gether build up the current state space and the commoen pragramming erraor
referred to above can be caught mechanically prior to execution. This
solution breaks down, however, in the case of arrays regarded as a large

¢ollection of elementary variables.

The second reason is of a combinatorial nature and moTe fundamental.
In ALGDL 60 the compound statement that causes the variables x and ¥

to interchange their values needs an additional variable, h say:



EWD417 - 1

hi= x; x:= y; y:= h
which is cumbersome and ugly compared to the concurrent assignment
Xy Yi= ¥, X .

A requirement of the concurrent assignment is of course that the variables
on the left-hadn side are all different: no one should care to give

"x, x:=1, 2" a meaniﬁg,(different from "error"), For a long time 1
hesitated to adopt the concurrent assignment on account of the problems

it causes in a case like

a[i], a[j]:z Xy ¥ .

Sthould it be allowed when i £ j » but mever when i = j ? Or is it per-

missible in the latter case if also x = y ? What about
a[i], a[j]’= a[j]l a[i] ?

Clearly we ere piling on complication upon another. However, I have now
come to the conclusion that it is not the concurrent assignment but the
notion of the subscripted variable that is to be blamed. In the axiomatic
definition of the assignment statement via "substitution for a variable"
--as in I guess all parts of logic-- one cannot afford uncertainty as

to whether two variables are "the same" or not.

We can regard a veriable of type "integer" as an integer-valued
function without arguments --and therefore with a domain cansisting of
a single anonymous point--, a function that does not change unless explicitly

changed (usually by means of an assignment).

Restricting ourselves to the anazlogon of a one-dimensional array,
we can similarly regard a variable of type "integer array™ as an integer-
valued function with one argument with a domain in the integers -~a function,

again, that does not change unless explcitly changed.

We now take the view that we shall only admit types such that an
algorithm can establish whether the values of two variables of the same
type are equal or not. In the case of integer variables x and y this
can be done by the boclean expression Xx =y , i.e. both functions x
and y are evaluated in the only point of their domain and these values

are compared.



EWD417 - 2

Given two variables of type "integer array" their values are egual
if, as functions, they have the same domain and in each point of the domain
both take on the same value. In order to be able to perform these compari-
sons, we must restrict ourselves to fimite domains and it must be possible
to extract from the current value of am array variable the currently
corresponding domain. For practical purposes we propose to restrict cur-

selves to domains consisting of consecutive integers.

If "av" is the name of an array variable, I assume a number of
functions of its value and operations upon its value defined. They will be
denoted by the identifier of the array variable, a'dot, and then a reserved

name. Unable to make my choice, I have introduced more than the minimum.

Depending on the domain only are the integer functions "av.size",

"av,first" and "av.last"; they will always satisfy
av.size > 0 and av.last - av.first = av.size - 1 .
The corresponding domain for the function av(k) is given by
av.first <k < av.last. .

The expression "av(k) —--which could be regarded as a special
purpose abbreviation for "av.val(k)“, a kind of abbreviation one can
introduce just oncel!-- is regarded as any other function call with an
integer argument transmitted by value: the argument needs only to be
defined and within the domain when the evaluatian of av(k) is actually

required.

As stated above, a scalar variable can be regardea as a function
(without arguments) that can be changed hy assignment, Similarly we need
operations to change the value of an array variable. For practical reasons
is do not consider "assignment" of an arbitrary value to an array variable
as a primitive operation: of the domain is large this can be & very costly
operation. I therefore prefer array values being built up sequentially

by "slight modifications".

Slight medifications are extending the domaim by one, at either the
"high" or the "low" end: in both cases av.size is increased by 1. With

the extension at the high end av.last is increased by 1, with extension



EWD417 - 3

at the low end av.first is decreased by 1. For the arqgument wvalue added

to the domain, a value must be supplied simultaneously, it is really

the well-known push-operation and with "x" an expression of the appropriate
type we could write Mav.hipush(x)" and "av.lopush(x}" ; or the inter-
section of the old and the new domain the value of the function av will

be left unaltered. Similarly, with initially av.size >0 and x a

variable of the apprepriate type, we can envisage the inverse operations

"av,hipop(x)" and "av.lopop(x)" .

A further domain changing operation I envisage is a translatian, say
"av.trans(k)" + which increases av.first and av.last both by k and

leaves for O:S i <av.size the value of av(av.first + i) unchanged.

The next thing is assignment. Conceptually there is no problem with
an assignment of the form avl:= av2, but if that operation is included
it should rot look so irmocent, and something like “avT.ass(av2)" is
already much better. The kind of assignment I am willing to write down
with ":=" are the ones in which the final size is small because the
function wvalues must be enumerated at the righthand side; 1 could live

with a format of the form
avi= (0: 0, 1, 2, 3)

which defines av.first = 0, av,last = 3, av.size = 4 and av(i) = i
for 0 <i <4 . Perhaps even this is already to ambitious and should
the righthand side be restricted to values with size = O. Note that
in this proposal even the empty domain "has a place": first and last
are always defired: we need this for the operation hipysh and lopush
to be defined, The same values that are zllowed in the assignment are

allowed upon the obligstory initialization.

The remaining operations to be discussed are the ones that modify
the value of av without changing its domain. An obvious candidate is
altering just one of the function values: the analogon of the well-known
assignment to the subscripted wvariahle av{k]:x E 3 in order to avoid
confusion I propose a radically different notation for altering just
one function value, say "av.alt(k, E)" in order to do justice to our
consideraticns that we change the whole function, a modification that

requires two value parameters. -



EwD417 - 4

Another operation that I have learned to consider as "fundamental" —-whatever
that may mean-- is "av,swap(i, j)“. Both arguments must lie in the current
domain; if they are equal, it is the empty operation, otherwise the

function values au(i) and av(j) are interchanged.

Note. It is unwise to regard the swap as a special case of a cyclic
rotation over one place in a cycle of length n with n = 2. Let us not
introduce --with a variable numer of parameters!-- av.rat(i, i, k) say:s
first of all no one would be able to remember in which direction the
values would be shifted ecyclicly, secondly the difficulties when not
all arguments are different --an awkward test, by the wayl-- are just
terrible. It is the total absence of these difficulties that Jjustifies

the view of "swap" as a fundamental primitive.-

Fimally,what about the declaration, what about our old "subseript
bounds"? The implied "bound checking” in av(k) . av.alt(k, E) and
av.swap(i, j) is of course with respect to the current value of the
domain, it is the test av.first =<k, i, j < av.last. For reasons of
storage reservation we can still think of supplying a lower and an
upper bound as part of the declaration; they are then ne more than
a lower bound for av.first and an upper bound for av.last respectively.

Alternatively, we could give an upper bound for av.size. I can think of

a) no bounds given

b) a lower bound far first

c) an upper bound for last

d} the combination of c) and d)
e) an upper bound for sirze.

We recognize the umrestricted stacks and the cyclic buffer of limited

capacity.

The drastic difference between these bounds and the old array
concept of ALGOL 60 is the following (if I understand the ALGOL 60
array and the notion of type correctly). In ALGOL 60 I have always
viewed the bounds as a constant attribute of the array, just as constant
as "the type of a variable". From that point of view the one-dimensignal
integer arrays of ALGOL A0 provide for iﬂfinity2 different "types":

viz, as many different types as we can define different bouncd-pairs.



EWD417 - 5

Here it is proposed that 21l one~dimersional integer arrays are
array variables of exactly the same type, while bounds possibly given
in the declaration are regarded as hints to the implementation, hints
the implementation may expleit or ignaore. They are regarded as more
than just a hint, they are also a permission --but not an obligation!--
to abort when the domain exceeds the stated limitations. The bounds
when stated in the declaration are not an aspect of the value of the

array variable.

The above seems clean and sound. I would welcome comments very much,
comments on various levels. It may seem clean and sourd, but yet there
may be logical difficulties hidden somewhere that I have not seen; if
sameone finds one, I would be immensely grateful. Also comments on
notations and names would be very welcome. (It took me very long to
find something for the name "alt" which was eventually suggested by
Feijen; and to say that I am proud of my "hipush" and "lopop" would
violate the truth.)

The use of the dot in this way --it is the first time I do it myself--
is something in which I have reasonable confidence: it gives us the
possibility for the introduction of "restrictedly reserved identifiers".

I did not state any scope rules, but the idea is that the fact that

av is of type "integer array" makes av.swap identify the operation it
should identify. With the dot-notation we can make the post-dot identifiers
subordinate to the type of the pre-dot identifier. If avl is of type
integer array, and av2 is of type boolean array, there is yet no
"poly-morphism” (T think it is called) involved when we.compare

av1.val(k) and av2.val(k): the one wval is an integer function, the
other wval is & boolean funmction. Clearer perhaps is the comparison

of av1.swap(i, j) and av2.swap(i. j); this seems nicer than

swap(au1, i, j) and swap(av2, i, j), where according Lo cemmon interpre-
tation these would be regarded as two calls of the same library procedure.
As said, 1 have a reasonable confidence in this use of the dot-notation,
but any warning for iis pitfalls is welcome, 7 h

BURRDUGHS prof.dr.fEdsger W,Dijkstra
Plataanstrant 5 Research Fellow

NUENEN - 4565
The Netherlands 20th March 1974



