EwWD4s6 -~ O

Determinism and recursion versus non-determinism and the transitive

closure.

Two years ago 1| pondered about the design of an intellectually well-
manageable programming language, the impleméntétion of which would allow a
potentially very high degree of concurrency without imposing it (nmr, of
course, requiring the amount of temporary storage that would be needed to
simulate the concurrency.) Dne.can try to reach such a goal by the intro-
duction of multi-component datatypes like in APL, but then the price to be
paid seems to be a very elaborate repertoire of operations, and, having
seen where that leads to, I obviously did not want to go down "that slippery

road of reasoning"

I found myself considering the massaging ~-under control of a very
limited repertoire-- a set of n-tuples, the possibility of concurrence
being modelled by the simultaneous creation of a whole lot of such n-tuples.
Wanting to be kind to my hardware friends, I focussed my attention at a
very early stage to the question whether I could fix n . Extremely far-
fetched analogies suggested that if n could be fixed, it should be fixed
at 4 , and as a result the n-tuples became 4-tuples and were tentatively
called "guadrons". In a next stage my (Driginally hardware) friend C.5.Scholten
came with &#rn argument that, whatever could be done using n-tuples could be
done --after a fashion equally well-- with k-tuples, with k = entier((n+?)/2}+?
After this encouraging confirmation of my hunches, we got stuck completely

and the exercise was dropped for at least one-and-a-half year,

‘A number of months ago, the exercise was picked up again by W.H.J. F91Jen
and M.Rem (w:th some stress on the latter) and occasianally me. Analyring
the previous failure we came to the conclusion that the fixation n = 4 had
been premature, so we dropped it and from then onwards called our n-tuples
"sssocions". We tried again --and some of our efforts that need not concern
us here, have in the mean time again beern urmasked as dead alleys--, and
one thirg seems to have emerged more or less solidly: about our most central
primitive operation can be viewed as forming the transitive closure, i.e.
given a set of nodes of a2 finite, directed graph as "starting set', determine
the set of all nodes reachable via a directed path frem at least one of the

nodes of the starting set.

Ewildgsht - 1

The incentive to start the experiment two years ago was only partly
a desire to explore the programming of potentially high concurrercy, it was
also the result of my difficulties in writing a --"sequential", i.e. ALGOL-
like-—.program that should determine the convex hull of a (large) set of
given points in three dimensions. For the convex hull in two dimensions I
knew a host of algorithms; 1 tackled the three-dimensional version of that
pfablem in the expectation that from that exercise I should be able to learn
something about programming méthodology. The first thing I learred was that
I could not solve the problem nicely: what I tried became so messy --at least
to my standards-- that I aborted each effort long before I had reached a
working solution, So 1 dropped that problem for the time being --apparently

not ripe for it yet--and started to write a book instead.

The problem of the convex hull in three dimensions presents some
difficulties which are absent in the two-dimensional versicn: it is not
patently obvious how the result ~--and, therefore, intermediate states-~ should
be represented in an (essentially) "linear" store, nor is it patehtly clear,
how the two-dimensional surface should be processed by a "sequential"™ machine.
Wanting to include in my book a true and non-embellished design history,
--including the risk of failure~--, I needed a non-trivial problem 1 had never
successfully solved before. 1 choose the problem of the convex hull in three
dimensiors, and, after having reported what I had learned from my Non-success-
‘fui attempts, I started to try to solve the problem in earnest. I succeeded
--85 a matter of fact: 1] arrived at a solution which filled me with some pride--
and my solution had two characteristies which seem worth mentioning. The
one observation is that the need to introduce more-dimensicral arrays emerged
nowhere; the second observation is the central rale played —-at two/three |
places, in different disguises-- by the task to determine a transitive closure.
More precisely:

Given & finite set S and a subset B; for each element x of S,
zero or more other elements of S are by definition "the consequences of x".

Determine the set V , defined by

1) - each element of B belongs to Vi
2) if x belongs te V , so do its consequences
3) V contains only elements that belong to it on account of ' and 2.

The pattemof my program was as follows:

EWD456 -~ 2

C := B; Vi= empty;
do C # empty - chose an arbitrary element ¢ from C ;
- transfer ¢ from t to V
extend [with 2ll consequences of ¢ that do not
belong to the (disjoint) union C + V

od .

It is worth noticing that the intersection of C and V remains
empty and that under the assumption that the time needed for the test for
set-membership does pot depend on the size of the set concerned, the time
taken by this algorithm is abseolutely independent of the choice for c :

at each repetition the set V is extended with one new element.

In the case that the graph is a rooted tree, whose root node is taken
as B , the problem of finding the transitive clesure is also known under
another name: traversing a tree. Its standard salution is a recursive one,
stronger: the recursive solution for tree-traversal is often regarded as the
prototype application for recursive procedures. If we compare the recursive
tree-traversal with the above, more general, algorithm for the transitive
closure, we see that the role of C is taken over by the anonymous stack.
This can be done, because in the case of tree-traversal thé test, whether
consequences of ¢ are members of C+V can be suppressed: the absence of
cycles in a tree guarantees that we shall never "meet" the same node more

than once.

In my innocence, 1 had always regarded this recursive solution for
tree-traversal etc. as a, in some sense, basic and fundamental algorithm,
and for years I have taken the central role of anonymous stacks for granted.
It was a little bit of a shock for me to discover that the anonymity of the
stack is only allowed, provided fhat we restrict ourselves to a rather specia’
case of a more general (and perhaps in its general form more “fundamental")
problem, viz. the transitive closure. It made me wonder, whether in the last
figteen years —--since LISP and ALGOL 60, say-- we have perhaps over—-emphasize
recursive solutions, and have taken the last-in-first-out strategy for choos:i
¢ --often purely a matter of convenience, as far as storage management is
concerned!-- so much for granted, that the rediscovery of the freedom to
select an arbitrary element ¢ from C could ramk as a scientific discover.

of some sort.

EWD456 - 3

The above may shed some light Dnrcurrent linguistic exercises in arti-
ficial intelligernce work., A last-in-first-out queueing discipline engenders
--8% every ﬁperating system designer knows-- the danger of individual star-
vation, and if the purpose of the algorithm is to travers a finmite portion
of a potentially infinite tree, the last—in;first—uut stragey i1s clearly
unacceptable (whether other strategies will lead to acceptable performance
is a guestion that falls outside the scope of ﬁhis nate). When, however,
these linguistic exercises give birth to some system of recursive co-routines,
should we not then raise the question, whether such exercises are not drastic
enough, are only half-hearted attempts at freeing ourselves from the shackles
of recursive solutions, which, perbaps, have dominated the scene already too
long? (1f the mere suggestion that recursive solutions may fail to be & cure

for all our problems, don't blame me!)

The question, among other things, hinges upon the assumption that the
problem of the transitive closure for directed graphs in which arrows may
merge, is --besides being a logical generalization of the tree-traversal--
a sufficiently frequently recurring theme to give it the status of "central
proeblem". I cannot collect all evidence in the world, but I can give you
some. bLast Saturday morning the postman delivered two reports at my doorstep:
"A case for the for-statement™ by Edouard Marmier (ETH Zurich) and "Constructing
correct and efficientiprograms" by M.Sintzoff and A, van Lamsweerde (MBLE Brussel:
and I had a pleasant weekend studying them. When Marmier has remarked that
for the sake of robustness, implementations should enforce a certain require-—
ment --one of non-interference, essentially-~ he ends that paragraph by observi:
that even without additional information in the program text "...the problem
of enforcing the requirement is only of moderate difficulty, since it reduces
to the prohlem of forming the transitive closure af a directed graph. For
this, @ nicely implementable algorithm exists." The major part of the report
by Sintzoff and van Lamsweerde is concerned with the problem of reducing the
number of dynamie re-evaluations of symchronizing cornditions. But the whole
problem of determining, which sleeping processes can be woken up is one of
determining a transitiye closure! {A process goes to sleep when execution of
a critical activity would cause violation of the imposed invariant relation, -
Such a eritical activity remains pendirg until, after completion of another
critical activity, it is detected that it could and decided that it should

be fired. Such a secondary critical activity may enable other perding ones

T’concurrent

EWDA56 - 4

to proceed and the waking-up should continue until the fired critical activities

have caused a state in which none of the still pending critical activities

is kept pending without justificationt only then the waking-up obligations
have been fulfilled. The waking up has exactly the same cascading nature
--with "merging arrows" included-- as the detection of the transitive closure
of a directed graph.) Was it entirely accident, that these two reports were

dropped on my doormat simultaneously?

* *

While pondering about all this, it struck me that there is another
area in which we encounter rooted trees, viz. the states of terminating

computations in a (finite state) deterministic autamatan: if we so desire,

we can distinguish a forest of trees, with a one-to-one correspondence be-
tween terminal states and (roots Df) trees. The guestion of the weakest pre-
condition for terminating in a given final state amounts to traversing the
itree with that final state as its root node. But conmsider now the non-deter-
ministic automaton, in which some states may have a set of possible successor
states. From a very operational point of view, one may feel forced to intro-
duce some "ghost-input", because, without it, the automaton would not "know"
which way to go: logically, however, this amounts to squeezing the non-deter-

ministic automaton into the straitjacket of the deterministic one.

{1n the process of mathematical diseovery, the introdurtion of "some-
thing", from which then later can be “abstracted" is an utterly respectable
one. But, once such an abstraction has been discovered, from a methodological
point of view, I always feel that then the concept should be given its inde-
pendent right of existence if it is to bear fruit, First Descartes introduces
coordinates by choosing the axes arbitrarily; it is when the arbtrariness
of this choice is fully realized, that coordinrate-free methods are bﬂrﬂ; and
I hope never to forget my excitement wﬁen I saw the following proof (From
the lectures of J.Haantjes) of the fact that thes perpendiculars of a triangle
go through one and the same point. It defines H as the intesection of two
perpendiculars and shows that the line through H and the third anrgle is

also a perpendicular;

given: (a - h) * (b - c) =
given: (b -h) *{c -2a) =0 .
~{c-h) *(a+b)=0 Q.E.D.

EWD456 - 5

The usual high-school proof is by tortuously constructing another triangle,>0f

which the original perpendiculars are the bisectors. 50 much for the fruits!)

The removal of the restriction to deterministic automata means that
our "backward scan" can no longer be viewed 8s traversing a rooted tree, be-
cause such backward paths are naw allowed to merge. (In this discussion it
seems irrelevant that, if we want the weakest precondition it is not exactly
the predecessor relation that we want the transitive closure of; we have
something like V
1) all states satisfying R are in V
2) pach state whose successor set is in V , is itself in V as well.

The important thing is that we have departed from rooted trees.)

The methodological question that I am tempted to raise is the following:
could the praoblem presented by generalizing the current theory of denotatioral
sementics so as to cover non-determinism as well, be related to a preponderant
role of recursive definitions, in a way "pushing" trees where more general

graphs are needed?

A next question to which I may need the answer by the time that I can
formulate it precisely, is the following. Assuming that the formation of
some sorts of transitive closures do indeed play the fundamental role that 1
currently do not exclude --all evidence in either direction would be most
welcome!-~ and assuming that a "machine code" can be designed in which such
operations are regarded as primitive, while we hope that they can be imple-
mented by bighly associative techniques, invelving concurrent activity "all
over the place"; assuming further, that such a machine code suggests solva-
bility of a problem in an orders of magnitude less exploding number of steps
than today's complexity theory tells us. It certainly implies that my "machine™
will be hard to build; will it also imply the impossibility to do so? I just
don't know, to what extent the results of complexity theory can be carried
over to unusual technigues. Fer instance, finding the shortest connection
between two nodes of an undirected graph with positive edge-lengths is poly-
nomial or something in the number of nodes and/or edges. How much of that
argument, however, is applicable to the analogue device, that is made by
replacing the edges by gas tubes of proportional lengths and applying a

voltage difference between the two nodes? The spark will choose the shortest

EWD456 - 6

path. In polynomial time...?

If the above is clarifying or inspiring for any of its readers, I am
glad that he saw it. If it evokes possibly helpful comments, I shall be glad
to receive them.
¥
4pth October 1974 prof.dr.fdsger W.Dijkstra
Burroughs Burroughs Research Fellow
Plataanstraat 5
NUENEN - 4565
The Netherlands

