Copyright Notice

The following manuscript
EWD 498: How do we tell truths that might hurt?
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 129-131 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.



EWD498 - 0

How do we tell truths that might hurt?

Sometimes we discover unpleasant truths. Whenever we do so, we are in
difficulties: suppressing them is scientifically dishonest, so we must
tell them, but &elling them, however, will fire back on us. If the truths
are sufficiently impalatable, our audience is psychically incapable of accepting
them and we will be written off as totally upréalistic, hopelessly idealistic,
dangerously revolutionary, foolishly gullible or what have you. (Besides that,
telling such truths is a sure way of making oneself unpopular in many circles,
and, as such, it is an act that, in general, is nﬁt without personal risks.

Vide Galileo Galilei.....) v

Computing Science seems to suffer severely from this conflict. Op the
whole, it remains silent and tries to escape this conflict by shifting its
attention. (For instance: with respect to COBOL you can really do only one of’
two things: fight the disesse or pretend that it does not exist. Most Computer
Science Departments have Dpted‘fér‘the latter easy way Dut.) But, Brethern,

I ask you: is this honest? Is not our prolonged silence fretting away Com-
puting Science's intellectual integrity? Are.we decent by remaining silent?

If not, how do we speak up?

To give you some idea of the scope of the problem I have listed a number
of such truths, (Nearly all computing scientists I know well will agree without
hesitation to nearly all of them. Yet we allow the world to behave as if we

did not know them....)
Programming is one of the most difficult branches of applied mathematics;
the poorer mathematicians had better remain pure mathematicians.
* The easiest machine applications are the technical/scientific computations.

The tools we use have a profound (and devinus!) influence on our thinking

habits, and, therefore, on our thinking abilities.

FORTRAN --"the infantile disorder"--, by now nearly 20 years old, is

hopelessly inadequate for whatever computer application you have in mind today:



EWD498 ~ 1

it is now {oo clumsy, too risky, and too expensive to use.

PL/I --"the fatal disease"-- belangs more to the problem set than to the

solution set.

It is practically impossible to teach good programming to students that
have had a prior exposure to BASIC: as potential programmers they are mentally

mutilated beyond hope of regeneration.

The use of COBOL cripples the mind; its teaching sheuld, therefore, be

regarded as .a criminal offence.

APL is a mistake, carried through to perfection. It is the language of
the future for the programming techniques of the past: it creates a new generation
of coding bums,

The problems of business administration in general and data base management
in particular are much too difficult for people that think in IBMerese, com-

pounded with sloppy English.

About the use of language: it is impossible to sharpen a pencil with a

blunt axe. It is equally vain to try to do it with ten blunt axes instead.

Besides a mathematical inclination, an exceptionally good mastery of one's

native tongue is the most vital asset of a competent programmer.

Many companies that have made themselves dependent on IBM-equipment (and
in doing so have sold their soul to the devil) will collapse under the sheer

weight of the unmastered complexity of their data processing systems.

We can found no scientific discipline, mor a healty profession on the
technical mistakes of the Department of Defense and, mainly, one computer

manufacturer.

The use of anthropomorphic terminology when dezling with computing systems

is a symptom of professional immaturity.



EwD498 - 2.

By claiming that they can contribute to software engineering, the soft
scientists make themselves even more ridiculous, (Not less dangerous, alas!)
In spite of its name, software engineering requires (cruelly) hard science

for its support.

In the good eld days physicists repeated each other's experiments, just
to be sure. Today they stick to FORTRAN, so that they can share each other's

programs, bugs included.

Projects promoting programming in "natural language” are intrinsically

doomed to fail,

Isn't this list enough to make us uncomfortable? What are we going to do?

Return to the order of the day, presumably...... .
18th June 1975 prof.dr.Edsger W.Dijkstra
Plataanstraat § Burroughs Research Fellow

NUENEN - 4565
The Netherlands

PS. If the conjecture "You would rather that I had not disturbed you by sending

you this." is correct, you may add it to the list of uncomfortable truths.

EWD



