EWD503.html

Copyright Notice

The following manuscript
EWD 503: A post-scriptum to EWD501
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 141-144 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD503.html

Jrh July 1415 EWD503 ~ O

A post-secriptum to EWDS501.

Dear Tony!

Monday morning I went to XEROX to have a few copies made of EWDS501 and
from there via the THE home. At the THE I showed Wim Feijen, what I had written
during the weekend, and 1 discussed with him what I intended to write in the
afternoan.

In the afternoon I wrote EWD502 —-"0On a gauntlet thrown by David Grieg"-—;
‘when that was completed, Wim came along. He had studied EWD501, and his first
remark was, that the procedure cons on page EWD501 -~ 5 (1% - 7 lines from
belnw) can be simplified, thanks ta the initial emptyness of the train temp:

proc cons(c: intager):
con<g - con:= (con, me); me:= head(temp) od;
Ni= n - C; met= head(temp)

corp cons;

Another observation he made was that when, for instance in the procedure
acquire on tup of page EWDS501, the second line
nonbusy:= (nonbusy, me); me!= head(nonbusy)
is omitted, it is still correct, but now implements a last-in-first-out
strategy. I had these remarks in the back of my mind when I designed the
readers and writers manitor and the dischead monitor (see following pages).

Monday evening I was tired --Ria and I went away on the tandem--, Tuesday
was my day at the THE. In the morning I had some examinations, in the afternoon
we studied EWD501 with the little group and made a firat solution to the
readers and writers. Tuesday everning I embellished it, and thought about a
few linguistic alternatives. This morning I had to write a referese's repart,
this afternoon I designed the diskhead moenitor, and typed both monitors.

It is now early in the evening. Let me describe to you the linguistic
alternative I have been thinking about. Up “till now we have done as if the
monitor only exists after the initialization has been completed. But we could
regard the monitor "existing” as soon as the initialization starts, and regard
the initialization as performed by an (ancnymuus) process in monitor state.

The one consequence would be that all initializations in the monitors 1 have
written these last days, should end with an additional "mes:= nil". That obligati:
is hardly a recommendation, in contrast, perhaps, to the now created possibility
that after initialization the monitor process can place "me" on the shunting
yard, thereby remaining available for activities that would be hard to place
otherwise.

In the dischead monitor you will see that the 'sortprocess, that should
insert the new requester --placed in qul-- in the correct position into the
train upsweep will fail to do so, when the new requester should be placed
at the rear end of upsweep --this "appending is no insertionii., Ag a result,
requests and releasas have to begin with

"upsweep:= (upsweep, qut)"
just to be on the safe sida. (When qul = nil , the above shunting has no
effect.) This could he regarded as ugly. If the mopitor itself could sleep
on the shunting yard as well, I think that this could be remedied by attaching
the monitor at the rear end of upsweep , befores the new requester is placed
in the correct position. It gives us the possibility to have some activity
inserted after the last one, and that, in general, seems a sound and useful
facility.

EWD50% -

readers and writers: monitor:
begin ar, aw: integer;
readers, writers: train;
proc startread:
readers:= (head(writers), readers, me); me:= head(readers);
do aw~£ 0 - readers:= (ma, readers); me:= nil od;
ar:= ar + 1; me:= head(readers)

corp startread;
proc endread: .
if ar > Q0 - ars= ar - 1; me:= head(writers) Fi
corp endread;
proc startwrites

writerss= (writers, me); me: = head(writers);
do ar # 0 or aw # 0 - writers:= (me, writers); me:= nil o
aw:= 1; me:= nil
corp startwrite;
Ioc endwrite:
Af aw = 1 & swi= 0; readers:= (raaders, head(writers));
me:= head(readers)

;

fi
corp endwrite;
ar:= 0; aw:= 0
readers and writers

{T
pu
0.

This is my version of the readers and the writers, according te your
specifications of page k56, (Aljhough I wrote it on Tuesday evening, I should

say "our", as the problem was diseussed on Tuesday afternoon at the THE with
the usual group; particularly the contribution of Wim Feijen should be acknowledc

It hes, I think, some charming features. The invariance of
ar > 0 and aw = 0 or ar = 0 and aw = 1

is beautifully maintained, when we remember that the repetitive construct can
only terminate with its guard(s) false. (The alternative construets in endwrite
and endread, which may cause abortion, are ortly there for safaty.) The nice
thing is that these two guards derived from the invariant relation oceur only
once! The whole choice of strategy is reflected in the shunting and switching!
Isn't that nice?

The way in which in "startread" the presence of a waiting writer prevents
new readers to get access, also pleases me. At first it may strike you as a
coding trick, but after having played with these trains for a while, it comes
quite natural. The way in which "endwrite” gives priority to the readers is
also quite nice; at least, I think so,

In programming style, the above is very much different fram your approach,
in which the continuation after a "wait" can do no harm on account of what has
been checked by the ather pProcess, that caused the "signal®. In such a way one
can also get one's programs right, but in principle I think the approach a wrong
one: your procedures are logically more intertwined --8t least so it seems tp
me-- and it is therefore a stronger invitation to make logical spaghetti.

The canvincing beauty of the above contrast with the pragram on the next
page, where I did the dischead moniter without the scheduled wait, and without
the "condname.queue". That was not easy!

EWD5Q0% - 2

dischead: manitor
begin headpecs, newdest: cylinder;
direction: (up, dDwn)
busy: hoolean;
upsweap, downsweep, qul, gu2: train;
proc request(dest: cylinder);
upsweep:= (upsweep, qul); downsweep:= (downsweep. qu2);
newdest:= dest; _
if dest > headpos ar dest = headpos and direction = up -
quZ:= (upsweep); qul:= (head(qﬁajtrme); me:=: head(quT);
de busy — if newdest > dest — upsweep:= (upsweep, me)
me:= hEad(qUE)
n newdest << dest — upsweep:= (upsweep,‘qu1, me, qu2);
me:= nil

fi
od
u dest < headpos gr dest = headpos and direction = down —
qults= (dcwnaweep); qul:= (head(qu1), me); me:= head(qu2);
do busy - if newdest < dest —
downsweep := (dnwnswaep, me); me:= head(qu1)

ﬂ newdest > dest — :
downsweep:= (downsweep, qu2, me, qu1); me:= nil
fi
od !

fi;
Aif headpos < dest - directiaon:= up
u headpos > dest — direction:= down
ﬂ headpos = dest — skip
fi;
headpos:= dest; busy:= true;
corp request;
roc release; busyt= falsea
if busy — upsweep:= (upswéep, qu1); downsweep:= (duwnsweep, QU2);
if direction = uf -
downsweep:= (head(upsweap), dDwnsweep); v
me:= head(dnwnswaap
ﬂ dirgctior = down —
upsweep: = (head(dowusweep).,upsweep);
mes= head(upsweep)

[me:= nil

fi
fi
corp release;
headpos:= Q; direction:= up; busy:= false
end dischead

Salve errore et omissione, the above is a replacement for your dischead
manitor on page 555-556. It could be argued that the above could only be
programmed on a very warm day with thunderstorms --for you information: it is
such a day!~--. But it has not the danger of individual starvation when all
requests are for the same cylinder! Your "scheduled wait" does not talk about
this. Agremd? On account of the above 1 Understand that you yielded to the
temptation to introduce the scheduled weit. Note, how in the "relmase", some

shunting aveids the need for "condname.queue". That part of the construction
I think guite neat!

Greetings and best wishes! Yours ever

Edsae.-
L)

	Button1:

