24th November 1975 EWDS35 - O

EWD535.html

An answer to Jack Mazola.

Thank you for your letter of 7 Nov. 1975. 1 was very pleased to read
that my writings had inspired John McClintock and you to do better than
your (or McClintock's) first effort. I had --and I offer my apologiesg if
this is a great disappointment-- difficulties in understanding your invariants,
because they are mixed expressions in two different languages: on the lef-
hand side of the implication we have boolean expression which at any moment
in time are defined by the current state of the aggregate, at the right-hand
side of the implication are phrases about past and future, and not all sen-
tences --such as "if he ever restarts"-- were too clear to me. The only thing
left for me to do was to try to convince myself that everything was OK in
my ©wn (Dld~FashiDned! see below) way. The fellowing is not a descripticon
of how I would develop the program ab initio: I cannot fake that, I have
been "spoiled" by studying your solution and, as a reauit, have lost my
virginity. The first thing I did was to study the following program (here

"x" is a local variable of each maching)

du non initialized -
done[me]:: false;
x:= 1; do donef[x] - x:= x + 1 od;
if x = me - initialized:= true
H x < me - skip
fi; .
dnne[me]:: true

od

and asked myself the question whether "initialized™ will become true, when

a number af the machines is started. The answer is "Yes™, provided the
machines that re not started have their done = true; the argument is that

of the started machines the one with the lowest number is certain to end

its inner loop with x = me and will therefore perform "initialize:= true".
Note that for this argument the initial value of done for the machines that

are started, is irrelevant.

The next question is: can we make of "initialize:= itrue" mutually
exclusive actions --so-called "ecriticel sectioms™. S0 I tried to de it by

inserting your waiter (note that in your letter, page 4, is a misprint, it

should be



http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD535.html

EWD535 - 1
"do X < HI - do non DONE[X] - SKIP od;" )

do non initialized -
done[me]:: false;
x:= ¥; do done[x] = x:= x + 1 od;

if x =me - do x <N - x:= x + 13
gg_ﬂgg'dane[x] -~ skip od
od;
initialized:= true
[ x <me - skip
fi;
dnne[me]:: true

od

Assume that at moment t machires 1 and j (i ¥ j) are both
ready to perform "initialized:= true". Then we have at moment +t:
done[i] = done[j] = false.
Let ti be the last moment <t such that done[i] was true;
let tj be the last moment <t such that dune[j] was true.
From the fact that machine i has reached the statement "initialized:= true"
we can conclude that dnne[j] = true has heen observed while done[i] was
already = false , hence ti <tj . Similarly we find that tj < ti , and .

this gives us the required contradiction. Mutual exclusion is guaranteed.

The next question is: can we have introduced deadlock by our additicn?
We cannot have a number of processes mutually blocking each other with their
done = false in that added waiting cycle, because the one with the largest
number of the set does not inspect the other valuegs done fraom the set. But
machine 1 may be kept in that inner cycle by a machine j (j >~i) happily
rotating in the cuter cyele, buf with such a speed that machine i always
misses the rare moments that dune[j] = true . Therefore the assignment

dune[me]:: true is followed by

xi= 1;
D x <me - do non done[x] ~ skip od;

xi= x + 1

Because of the arguments given by you this does not introduce the danger

of deadlock in the last waiting cycle.




EWD535 - 2

The last modification is to ensure that initialization now occurs
only once; because "initialized:= true" has been guaranteed to be executed
in a critical section, it suffices obviously to replace it by

do mon initialized — initialize; initialized:= true od (1)
and now I have arrived at a program that differs only marginally from your

solution, which I thought a very beautiful one.

* *
*

There is a second way in which I am no virgin with respect to thisg
problem: it is very similar to the critical section problem that I solved
in the Sep.1965 issue of the Comm.ACM., and naturally, the old patterns of
. reasening come again floating in my consciousness. To prove things about
such processes that may interfere with each other in such a fine-grained
fashion is a risky business, as I have learned the hard way.(In the meantime
you should have received EWD520, our next, and hopefully last, version af
the on-the-fly garbage collection.) The person with the most extensive
experience of proving things about such aggregates of programs is David
bries. One of the more valuahle tricks is to associate "ghost variables"
to which the programs only assign values. They --i.e. their values-- can
then be used to express things about the progress of the various programs,
they provide means for expressing formally and without ambiguity such things
as mutual exclusion. In this example, mutual exclusion is clearly needed
if a precaution like (1) is to ensure that initialization will only be
performed once. But even then, to formalize the +i <tj and tj <ti
argument of the previous page is no fun; as yet I have seen no more formal,
vet "decent™ argument. {A challenge when I have nothing else ta do!) for
practical reasons I would regard the argument an the previous page convincing

enough. As yet the formal proofs tend to become hairy....

* *x
*

Finally T would like to congratulate you with your decision not to be
content with the first solution and it justification. The experience that
the next effort gives something much nicer is a very common one, but it is
only believed by those who have had the experience themselves!

Yours ever,
Burroughs prof.dr.Edsger W.Dijkstra

Plataanstraat 5 Burroughs Research Fellow

NUENEN - 4565, The Netherlands




