EWD540 ~ 0

Two views af proqramming.

by Edsger VW.Dijkstra.

In the world arcund us we encounter two radically different views of

programming:
View A: Programming is in essence very easy.
View B: Programming is intrinsically very difficult,

One can dismiss this discrepancy by concluding that, apparently, in
the two views the same word "praogramming" is used in two fquite different
meanings, and then return io the order of the day. Whether view A or view
B is the predominant one, however, has a deep influence, not only on the
persanel policy of computer using organizations ard on the curriculum
policy of our educational institutes, but even on the directicn of develop-
ment and research in computing science itself. It seems, therefore, worth-
while to explore the nature of the difference between the two meanings and
to identify, if possible, the underlying assumptions that would make each

of them appropriate. To do so is the purpose of this paper.

In.this exploration I have what could be regarded as a handicap: in
the controversy 1 am not neutral at all. I am a strong supporter of view H
and regard view A as the underlying cause of 1any sad mistakes. On the
other hand I don't think that having an opinion disqualifies me as an author,
certainly not if I warn my readers in advance and do not veign a fake neutral-
ity. As our analysis proceeds we shall discover how these different views of
programming {which is a human activity!) are related to different views of
Man. This, all by itself, is already a valuable insight, as it explains the
nearly religious fervour with which the battle between the defenders of the

opposing views —-creeds?-- is sometimes fought.

#* % *
The early history of autematic computing makes view A only tao
understandable. Before we had computers, programming was no problem at all.
Then came the first machines: bompared with the machines we have now they
were mere toys, and, compared with what we try to do now, they were used

for "micro-applications" only. If at that stage programming was a problem,

EWDE40 - 1

it was only a mild one. Add to this the sources of the difficulties that
at that timc absorbed --or should we say in retrospect: usurped?-- the

major part of our attentien:

1) arithmetic units were slow with respect to what we wanted to da: that
shoe pinched nearly always, and in the name of program efficiency all possible

coding tricks were permitied (and very few were not applied)

2) design and construction of arithmetic units were such = navel &ng,
therefore, difficul£ task that if a next aromaly in the instruction code
could save a number of flip-flops, the flip~flops were usually saved ~-also,
of course, because we had so 1ittle programming experience that we could
not recognize "anomalies in the instruction code" +too well-- i 2s a result

there was, besides pressure to apply coding tricks, also a great opportunity

for doing so

3) stores were always too small, a pinching shoe that, together with the
general unreliability of the first hardware, prohibited mcre sophisticated

ways of machine usage.

In that time programming presented itself primarily as a battle against
the machine's limitations, a battle that was to be won by a cunning, be it
not very systematic, exploitation of each machine's specific properties: it

was the heyday of the virtuoso coder.

In the nextiten to fifteen years processing units became a thousand
times faster, stores became a thousand times larger, and high-level! pro-
gramming languages came into general use. And it was during that period,
when on the one hand programming was still firmly associated with the pinch-
ing shoe, while on the other hand the shoe was felt to pinch less and less,
that it was expected that with another five years of technical pragress the
problems of pragramming would have disappeared. It was during that period
that view A was barn., It was at the end of that period that, inspized by
view A, COBOL was designed with the avewed intention that it should make
programming by professional programmers superfluous by allowing the "user™
--was it at that time that the term "user" gained currency?-- to write down

what he wanted in "plain English" that everyone could read and understand.

EWD540 - 2

We all know, that that splendid dream did not come true. The next
five years gave us, instead of the disappeafénce,of all programming problems,
the software crisis, and COBOL, instead of doing away with praofessional
programmers, became the major programming vehicle for ever growing numbers
of them; and another ten years later we still have machines with which
flaws in the basic software cause on the average one hour down-time for
‘every fifteen hours of production. There are, apparently, still serious

" programming problems....

The amazing thing is that, in spite of the overwheling evidence to
the contrary, view A survived. In explaining that amazing fact some paoint
with a somewhat accusing finger to large organizations, either to computer
using ones that, having attracted a large labour force based in view A ,
thereby have lost the freedom to part from it, or to computer manufacturers
and educational institutes that promote a widely-held view A , that they
are supposed to suppose essential for their market. Even if that finger
is nat raised without some justification, I just cannot accept it as a full
explanation of view A's survival, and must assume that view A satisfies
some deeper, psychological needs.

* *

How emerged view B 7 There were people who felt that the advent of
faster and bigger machines would replace the pinching shoe at most by a
fitting shoe, and that, therefore, the economics of program execution would
remain a serious concern of the programmer, a concern that would even become
more important as size of machines and applications would grow, and, with
more complex installations, would pose mare difficult problems. Also it was
observed fhat switching from machine code to a high-level programming lan-
guages did not guarantee all the benefits that were hoped for. In particular,
programmers still produced, as willingly as hefore, large chunks of ununder-
standable code, the only difference being that now they did it on a more
grandiose scale, and that high-level bugs had replaced low-level ones. They
also realized that the advent of high-level programming languages had not
reduced the essential need for accuracy: redundancy in high-level program-—
ming languages only reduces tﬁe ill effects of some inaccuracies. And thus

view B was bozn. (View B is pot the reaction to the software crisis

E‘t}D54O - 3

that surraced in 1968, for it is many years older. View B had, in fact,

predicted that crisis, but even that confirmation has not killed view A .)

* « *

After this interlude abeut the emerging of view B , we return toc our
Question, how and why, face tq face with the undeniable software problems,
view A , viz, that programming is in essence very easy, survives. The
‘answer is: by faith, not faith in better programmers, but faith in better
programming languages or (cunversatianal?) programming systems, and faith

in better management techniques.

I happen to be of the considered opinion that programming is one of
the more difficult branches of applied mathematics, because it is alsc one
of the more difficult branches of engineering, and vice versa. ‘hen 1 tried
to explain to one of my mathematical colleagues why I held that Qiew, he
bluntly refused to listen to my arguments and, instead, blamed me and my
fellow computing scientists for not yet having designed the programming
language that would make programming as easy as it should be! Should I have
asked him, why mathematicians have not yet developed a notation that would

enable everyone, no wmatter how ill-egquipped otherwise, to do mathematics?

After more probing one discovers that the proponernts of view A do
not deny the potential complexity of programs, nor the problem of composing
them, but believe that life will become easy for the programmer because all
the more difficult parts of the task will eventually be taken over by the
machine. They point to the advent of high-level programming languages that
made prograhming élready s0 much easier than in the old machine code days,
and recklessly extrapolate, that in future programming will become trivial.
But is this extrapolation justified? I have programmed extensively, both
in machine codes and high-level pfogramming languages, and the latter are
undoubtedly more convenient because all sorts of otherwise irrslevant
decisions with many clerical conseguences --such as details of storage layout--
need not be taken explicitly because one accepts the outcome of the compiler's
storage allocation algorithm, The transition to a high-level language freed
us from a number of trivia. In doing so, it has made programming an activity

with a smailer'ccmponent of drudgery, and therefore with a larger component

EWD540 - 4

af inventien: precisely those parts of the job with which one used to fill the
the day when feeling less bright, are the ones that have disappeared! The con-
clusion that the advent of high-level programming languages has created the
need for programmers of higher intellectual caliber has been fully confirmed
by my observations in Western Europe (where I could follow the development

gt close quarters) where in the late sixties many large computer using
uorganizations had problems in finding appropriate employment for the pro-
grammers they had attracted in the fifties, becasuse their profession had

outgrown their intellectual capacities,

But neither this Dbseivation, nor pointing out COBOL's failure to dao
away with professional programmers, makes any impression upon the faithful.
They will explain that the traditional high-level programming languages
were failures because they were still "procedural™, and that COBOL's failure
is evident because, for lack of interaction, it is not really plein English,
but that within five or ten years further progress in Artificial Intelligence
(AI for the intimi) will enable us to build "context dependent"”, "knowledge-
based" "automated systems for reasoning and understanding” such that the

"user needs only to talk to them".

I may be an incurable sceptic, but I find it very hard to believe
such claims to be justified. They are specific instances of the expectation
that we shall witress --1 quote from a letter I recently received-~ ", in
general, the assumption by the computer of progressively higher levels of
what is now considered human skill, knowledge and intelligence." It is not
my intention to repeat parts of the heated discussions we have had about
the significance of Artificial Intelligence (see, for instan;e, [1]), nor

is there any need to do so.

Firstly, looking backwards, one conclusion is certain: confusing Al's
hopes for the future with tomorrow's reality would ke foelly, and it would
be an act of utter irresponsibility not to prepare.uurselves for the case
that the dreams of AI will remain dreams as long as we live. Or, to put
it in other wofds, in view of the severity of today's pregramming problems,

general cautiousness forces us not to discard view B .

EWB540 - 5

Secandly, if his creations are going to be relied upon, it will be
the programmer's primary task to design his artifacts so understandable,
that he can take the responsibility for them, and, regardless of the answer
to the question how much of his current activity may ultimately be delegated
to machines, we should always remember that neither "understanding™ nor
"being responsible" can properly be classified as activities: they are more

like "states of mind” and are intrinsically incapable of being delegated.

* *
*

I think it unwise, particularly for a computing scientist, to under-
estimate the influence of that schocl of psychologists that, because they
found the human mind to difficult and elusive an object for their study,
turned to the study of rats instead,and even restrict that study —-as I
saw expressed recently-- "to the most mechanical forms of behavieur --often
so mechanical that even rats have no chance to show their higher faculties--".
By presenting their crude, mechanical models as a valid approximation for
the human mind, they have blurred the distinction between man and machine
dangerously, and we observe the two complementary phenomena: an anthropo-

morphic view of machines and a mechanical view of people.

This confusien is by no means confined to the high priests of AI. The
preponderance of anthropomorphic terminology ir computing science in general
--"memory", "interpreter", "programming languag:", "handshaking", "conversation",
to mention but a few-- is a wa:niﬁg not to be ignored. I would not know how
to think and talk without metaphors; I also know that each metaphor carries
with it the danger of false connotations. In the case of the anthropumorphic
terminology in computer science we have since long reached the stage that

the dangers of confusion far outweigh the benefits of the analogy.

Also the mechanical view af pecple seems among computing scientists
(and their managers) more widely spread than I can consider healthy. For I
suspect that it is this mechanical view that restricts the activity of pro-
grammers to the mechanical activity if writing code, and then measures

"orogrammer productivity"

by the number of lines of code produced. (Yhen
a very well-known and widely respected computing scientist recently used

that measure for programmer productivity in a lecture, the suggestion came

e

Edigse -

from the audience that, instead of talking about "the lines of code :roduced",
we should talk about "the lines of code used", and that, therefare, <he
speaker was booking them on the wrong side of the ledger. The speaker
answered that he stuck to his productivity measure, because he did nat know
of any alternatives that allowed proper quantification!) This can no longer
be classified as a harmless mistake, for the adoption of that nonsensical

"productivity measure" for grading programmers is guaranteed to promoze the

writing of insipid code. % %

The influence of psychology has been brought into the picture because

it explains the tenacity with which so many people eling to view A .

It is not so much the computer manufacturers, that want to do as if
they sell an easy product; it is not so much the managers of software projects,
that would like to view the programming activity as a simple and precictable
one; it is not so much our educational institutes, that would like o train

their students with predictable success.

It is the comfortable illusion of Men as elaborate automata that, like
a drug, seems to have freed its victims from the burden of responsibility.
Accepting programming as a hard intellectual challenge would place the full

weight of that burden back upon their shoulders.

[1] Flowers, B.H., "Artificial Intelligence: a paper symposium" April 1973,
Science Research Council, State House, High Holbozrn, lLondon WCIR 4TA .

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
NL-4565 NUENEN Burroughs Research Fellow
The Netherlands

