Copyright Notice

The following manuscript
EWD 554: A personal summary of the Gries-Owicki Theory
is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 188-199 of

Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York.
Any further reproduction is strictly prohibited.

EWD554 ~ O
html transcription

A personal summary of the Gries-Owicki Theory.

This is a very personal summary of the theory developed by Susan Speer
Owicki under supervision of David Gries. I had a flu, and on its first day I
just slept and shivered; later I passed the time in bed with trying to recon-
struct what I had learned from reading in Susan Owicki's doctoral thesis. If the
following fails te do justice to their work ~-someone has borrowed my copy of

her thesis!-- I am the only one to blame.

Thers has been a time that it was the function of our pregrams to instruct
our machines, éut times have changed: now it is more fruitful to cunsider it
the purpose of our machines to execute our programs. The same shift of attention
can be recognized in the more theoretical work that is concerned with the seman-
tics of programming languages. There has been a time, that this was a very
descriptive activity, trying to capture what happened in our machines during
program execution. The result has been a series of operational language definitions.
in which the semanties of programming languages was given via an interpreter that
under control of the program text changed the machine state over and over again.
By means of "abstract programs" and equally "abstract states" people have tried
to mold this approach into a viable tool, but it kept all the essential disad-
vantages of operational language definitions. Faced with a specific program they
tell you rio more than how to do a hand-simulation. Since Floyd, and later but
more noticéably Hoare, we héve been shown another approach, which seems more

promising.

Here a program text is regarded as a mathematical object all by itself,
which is postulated to establish a relation between two machine states. If we
were very pure, we should call them, say, thes "left-hand state” and the "right-
hand state". The relation between the two states is implicitly given by a set
of axioms and rules of inference that together delineate what, given a text,
one can prove about that relation. Taken all by itself, this would be a VEry
formal and rather sterile game, but it so happens that the axioms have been
chosen very carefully, so carefully in fact, that when we identify the "left-
hand state"” with the initial state and the "right~hand state" with the Ffinal
state of a computer (as can be recorded in its stcre) a started sequential

computer can establish an instance of that relation (and even can do so without

implicit backtracking).

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD554.html

EWD554 - 1

In the preceding paragraph 1 have tried to capture the essence of this
so-called "axiomatic method" as clearly as possible, because it has generated
after its introduction much misunderstanding and discussion (which has generated
more heat than light). Even as much as Fiué‘years later the axiomatic method
has been blamed for not demonstrating that it captured correctly the computational
model, that was supposed te underly it,"the computational model on which it was
based". The axiomatic method is not "based" upon a computational model, the most
we can say is that it has been inspired by a computational model. Dnce the axiﬁms
are chosen, it is the abligation aof the implementation to provide a sufficiently
truthful model. With purely sequential programs, this approach has been very
successful, the Gries-Owicki Theory presents the first significant step towards

applying similar techniques to concurrent processing as well.

Taken literally, the previous sentence makes no sense. From a very puristic
point of view, neither Floyd, nor Hoare (nnr I in the early seventies) talked
about "sequential programming" or "sequential programming languages". We talked
about texts, and about proving things about them. The aspect of "being sequential"
had absclutely no meaning on that level of discourse, it became only meaningful
when we tried to visualize a computer establishing an instance of the relation,
when we tried to visualize “a computation". And the axioms we considered were
such that the only safe and realistic implementation of such a computing engine
that we could envisage, was one in which the actions took place one after the
other. Apart from that "implementation detail" the whole notion of sequentiality
was not applicable in our level of discourse in which we had abstracted quite

rigerously from the class of computational histories.

From the same puristic point of view, the Gries-Owicki Theory does not
deal at all with concurrent processing. It is again‘a formal system relating
a pair of machine states to each other by means of a text. Only the proof
rules --the axioms and the rules of inference-- differ. It so happens that,
when we would like to design a computing engine ‘able to establish an instance
of this relation, we suddenly see a straightforward way in which a number of
processors could be engaged concurrently on that task. So we are not designing
a "language for concurrent programming® or any similar misnomer, from our
mathematical point of view it is a programming language as any other, with

consequences and possibilities for the implementation that we should ignore at

the current level of discourse.

EWD554 - 2

A simple "sequential" program can be represented as
5= "S0; Sty ... ; Sm" .

When we wish to describe in more detail the kind of relations between initial
an final state, say that we wish to establish a set of initial states corresponding
to a final state satisfying the relation R , we can interlace our sequence of

statements 5i with a sequence of relations Pi :

"{P0} s0; {P1} st; ... ; {Pn} sn {R} .
The axiomatic definition associates with each statement S5Si --assignment state-
ments to start with-- a so-called predicate transformer wp . If now we have
wp(Si, Pi+l)
wp(Sn, R)

for 0<i<n Pi

It

Pn

then, for the whole program 5 we have PO = wp(S, R} and we interpret PO
as the weekest pre-condition for the initial state such that starting program

S as a whole is certain to end up in a final state satisfying R .

This is, because from given units Si --say: assignment statements-- the
semicolon describes how a new unit can be formed. In formula the semantics of

the semicolon is given by
wp("S1; 52", P) = wp(S1, wp(s2, P))

from which, for instance, follows that the semicolcn is associativs. If we
wanted, for instance, to combine in program S the first two initial statements
to a single unit -~~indicated by square brackets-- we could indicate this as

follows:
m{po} [s0; s1]; {P2} 825 ... ; {Pn} sn {R}"

By combining SO and 51 in the above way into a single uﬁit, the relation P1
remains énonymous; implementation~wise it says that we prefer not to p. ; explicit
attention to the "intermediate state" that will preveil after the execution of

S0 , but before the execution of S1 . In the purely "sequential systems" we are
familiar with, our freedom in combining units into larger ones, thereby eliminating
the "internal predicates" is unrestricted: we are all the time free to choose

to consider a composite object either as an unanalyzed whole or as samething
composed out of par{s. In the Gries-Owicki Theory this freedom is restricted
(thereby giving the implementation greater ?reedum, such as the introduction of

concurrency).

EWD554 - 3

Wa have shown on the previous page how the concatenation via the semi-
colon gives rise to internal predicates. So do the other sequencing techniques

or "control structures™ in the case of "sequential programming” , e.g.

{r12} if Bl - {P1} 9

l B2~ {p2} 52
i {r12}

Here the rules are that P12 should be the weakest predicate satisfying

PKZ = (E1 or BE) (in order to avoid abortion)

(P12 apd B1)=> P!

(P12 and B2)=> P2
where P1 and P2 are given by P1 = wp{51, R12) and P2 = wp(52, R12) .
Again we are free to "eliminate" predicates such as P! or P2 , for instance
by replacing the second equation by

(P12 and B1)=> wp(51, R12) .

In our program we could indicate that elimination of P! for instance by
{p12} if [B1 - s1]

somehow suggesting that the whole first guarde& command is to be regarded as a
single unit. In "sequential programming™ such freedom of combination, of elimi-

nation of predicates, is unrestricted.

The notation of the square brackets is unattractive if we want to
indicate the elimination of the predicate following a repstitive construct. The
second problem that the repetitive construct introduces is the problem of termi-
nation. Provided

(P12 and B1) = wp{s1, P12)
(P12 and B2) = wp(s2, P12)

we can read and justify

{r12} do Bt - s
[B2~352
od {P12 and non (B or B2)}

as stating that the initial validity ¢f P12 is sufficient to ensure the final
validity of (P12 EEQ.EEE(B1 or B2)) , provided that the repetitive construct
terminates on this level. If the repetitive construct is followed by a next
statement, we can again eliminate its pust~éondition by straightforward proving

that it implies the pre-condition for that following next statement.

EWD554- 4

Lertain predicates are never eliminéted. We never eliminate the predicate
describing the total pre-condition, nor the predicate describing the total post-
condition. (In a sense they can never be regarded as the internal predicate of
a comﬁositiun.) Furthermore we shall never eliminate what could be described as
"the post-condition of a guarded command set". If the guarded command set is the
body of an alternative construct, this refers to the post-condition of the alter-
native construct; if the guarded command set is the body of a repetitive construct,
this refers to the invariant relation. The reason for this restriction is the
fnllnwingzreacq assignment statement and each set of guards has now a unique
preceding predi:até, where with "preceding predicate" we mean the last preceding,

non-eliminated predicate. For instance

{pO} s1; s2;

© {p1} s3; if B4 ~ {P2} sS4
[B5 ~ s5; 56
fi; .
{p3} s7;
{Pa} do B8 - s8; {pr5} 59 {P4}
[810 = s10 {pPa}
od; s11 {Rr}

Then we have:

PO is the preceding predicate of S1, and 52;

‘P1 is the preceding predicate of 53, B4, BS, 55, and S6;
P2 is the preceding predicate of 54

P3 is the preceding predicate of 57

P4 is the preceding predicate of B8, S8, B10, 510, and 511
F5 is the preceding predicate of 55.

Besides non~abuorticn in the alternative construct and termination of the
repetitive‘construct, we have to prove
PO => wp(S1, wp(s2, P1))
Pl => wp(53, (B4 =>P2) and (85 => wp(S5, wp(s6, P3))))
P2 => wp(54, P3)
p3 = wp(S7, P4)
P4 => (B8 = wp(S8, P5)) and (B10 => wp(510, P4)) and (non (B8 or B10) => wp(511,R))
P5 => wp(s9, P4)

EWD554 - 5

Here are six relations. They are implications with an assertion at the
left-hand side, and at the right-hand side, besides other assertions, only

guards and statements of which the left-hand side is "the preceding predicate".

Suppose for a moment that, via other means we have established that PO
is ‘'strong enough to guarantee proper termination as well. Starting the obvious
sequential implementation in an initial state satisfying PO y @ computation
would ensue during which at the corresponding stages the machine would be in
a state satisfying one of the Pi's, and finally the machine would end in a state
satisfying R. What would we have to prove in addition if we would like to
ensure, that at all those stages another prodicate, @Q say, would be true as
well? This, of course, under the assumption that we would start the machine in

an initial state also satisfying Q .

Well, in principie, we should replace in our six relations all the pre-
dicates Pi and R at all their occurrences by Pi and Q and R and Q res-
pectively! The first line would then become
PO and Q@ = wp(S1, wp(52, P1 and Q))

Its right-hand side reduces as follows:

wp{St, wp(SE, P1 and Q) = wp(s1, wp(s2, P1) and wp(52,)

wp(51, wp(SE, P1)) and wp(51, wp(SE, Q)) .
Therefore, when the formulae at the bottom of page 4 --without the Q inserted

--have been proved, our only additional proof nhIigaticn is:
PO and @ = wp(st, wp(52, 0))

With respect to our original program we say that we have "proved the invariance

of Q".

Consider now two programs, operating on the same variahles. Suppose further,
that with respect to each program we have proved the invariance of the assertions
occurring in the other {or: occecurring in the others, when we have three or more
of such prcgrams). This is, of course, a very strong assumption. But if it is
satisfied, we have proved something useful about the following non-deterministic

implementation.

Let us start a machine in an initial state satisfying each program's ini-
tial assertion. We now zllow the execution of an arbitrary one of the programs

to proceed until its next assertion. Firstly we have proved that this-assertion

EWD554 - 6

will then hold, secondly we have proved that the initial asaertion(s) of the
aother pragram(s) have not been disturbed. Then, again, an arbitrary program is
allowed to proceed with its execution until the next assertion, etc. When all

programs have finished, all final asserticns will heold,

Mind you: we are not talking about concurrency yet. We are talking about
a nendeterministic machine, th~t can take care of the progress of a hunch of
sequential programs, and we have stated conditions under which we can certainly

allow a certain degree of interleaved execution, viz. from assertion to assertion.

As the reader will have noticed, I have mentioned a few times "suppese
that we have proved proper termination™, I made that caveat, because we would
like to apply our theory also to é bunch of programs with the property that for
the individual programs proper termination cannot be proved. The termination
of a repetitive construct in the one program may depend on the exscuticn of
the other program having reached a certain stage. This will certainly be the
case when we implement synchronizaticn constraints by means of a busy form of
waiting. In a case like that, we cannot ever "prove" the termination of the
bunch of programs without further assumptions about the daemon that makss the
choice how to interleave: the bunch would not terminate if every time the daemon
selected the waiting process to perform the next inspection of the unchanged
state of affairs! The fact that a proof of termination of the whole bunch may
require assumptions about the friendliness of the daemon justifies postpone-

ment of that issue.

It is not only the repetitive construct, for which the daemon's degree
of being tamed can be an issue, also the alternative construct might, if we so
desire, call for a certain amount of friendliness of the daemon. It could,
for instance, be one of the daemon's restrictions, that an alternative cnnsfruct,
preceded immediately by its "preceding predicate" will never be selected for
execution in those machine states where its selection for execution would lead

to abertion af that program.
For the time being we assume that there is at least one sequence of choices
by the daemon that will lead to proper termination of all the programs, and we

assume the daemon to be friendly enough to choose such a sequence.

But even for that target, our formalism has to be changed: we have to

EWDS554 - 7

replace the weakest pre-conditions wp(S, P) which guarantee proper termination
in a final state satisfying P by the so-called "weakest libersl pre-conditions"
wlp(S, P) guaranteeing that the mechanism § will pot terminate in a state

DEi satisfying P . (This is the transition from total correctness, where the
production of the right result is guaranteed, to partial correctness, where only
the production of a wrong result is excluded. C.A.R.Hoare has taken this step

a long time ago, and apparently at that time without much hésitatinn; I don't‘
like it toa much and would mot like to take it unless I felt forced to do s0.)

* *
*

The next step is to introduce the possibility of comcurrent execution,
but to do it in such @ way that, firstly, it is easily implementable, and,
_secondly, that no further nondeterminacy is introduced. For this PUrpOSE we
divide the variables over various classes. Dn the one hand we have the private
variables; private variables are always private to a specific program, viz,

the only program that is allowed to refer to them. They are the local variables
of the program they are private to, the other programs cannot inspect their
values, nor change them. On the other hand we have the so-called common or

shared variables: they are the remaining variables, to which at least two

processes refer. It is clear that all interaction between the different programs

must take place via the shared variables.

Each program is executed from assertion to assertion; here we assume
that evaluation of a guard from a guarded command set implies the evaluation of
all the guards from that set. The step from each assertion to the (dynamically)
next assertion --our considered grain of interleaving-- we call "a unit of
action”. We now impose upon our units of action the constraint that they can

be implemented with at most one access to at most ope shared variable. With

a memory switch that, in case of competitien, orders the individual accesses

to memory in some way or another, it is now clear that we can allow concurrent
execution of as many units of actions as we have still incompleted programs.
The reason that we sre allowed to do so is that, no matter how we mix them,
there always exists an order im which the units of action, executed one at a
time, would have established the same net effect. Two units of action referring
to two different comman variables (Ur to no common variables at all) commute,
for two units of action referring to the same common variable we can take the

order in which the switch has granted them access to that shared variasble.

EWDS54 - 8

Our restriction as regards access to shared variables has severe con-
sequences: the guards of a guarded command set may refer to at most one shared

variable. On the other hand, we now know that, with B a shared variable

{p1}if B - s
ﬂ non B - 52
fi {r2}

will not lead to abortion. (Note, that in the case of two successive inspections
of B it is hard to prevent that, when the first inspection has encountered

the value jgiéé ;'the next inspection may encounter the value true .)

Note, that, if in the above example, B is not a common variable (noé an
expression referring to one), the guards af the guarded command set do not

refer to a shared variable, and that in that case S! may refer once to a common
variable, and S2 may refer once to a different common variable: we have two
possible units of action! For the time being, this is about the dnly thing

I intend to say about concurrency.

2o
o Fte Sy,
END.
Consider now the tﬁu programs
{PO} int:= true; ' {Qo} in2:= true;
{P1} do in2 afin1:= false; {Q?} do inl -|in2:= false;
- {r2} inl:= true {r1} {u2} in2:= true {Q1}
od; od;
Tuck]:= true; luck2:= true;
{P3}~critical section 1; {QB} critical section 2;
{P3} luck?, inl:= false, false; {QB} luck2, in2:= false, false;
{P4} noncritical section 1 {04} noncritical section 2 .
PROGRAM 1 7 PROGRAM 2

with PO: non luck! , we can prove

P1: not luck!l and ini

F2: aon luck? and non int

P3: int and luck?

P4: non luckl and non ini

and similarly fer the Q's in Program 2. furthermore we observe that all the Pi

imply P: luck! => in! , and, similarly, that all the Qi imply Q: luck? => in2 .

EWD554 - 9

We can now replace all the original assertions Pi in Program 1 by Pi and Qj
for any j : the proofs remain valid, because Program 1 does not refer to the
variables mentioned in [j . Similarly we can replace all the original forms of
Ri in.the second program by (i and Pj for any j : again the proofs remain
valid, because Program 2 does not refer to the variables mentioned in Pj . -
Having thus proved that the assertions of each of the programs are invariant
with respect to the other program, we can conclude the universal validity of
Pand 0.
s .

Finally we consider the relation R : non{luck 1 and Iluck 2) . Also
this relation can be added te all assertions, it is also everywhere valid. The
critical assignment in Program 1 that could destroy its validity is, of course

"luckl:= true", but it is safe, because
“wp("luck!:= true", R) = non luck2

a condition that is implied by @ and non in2 ., We interpret the universal
validity of R as the guarantee of mutual exclusion in time of the two critical

sections. x N

The classical use of critical sections has been the maintenance of an

invariant relati
* e-avion R(a, b, c)

between a number of shared variables --here denﬁted by a, b, c--, where
this invariance.cannot be maintained by a single unit of actipn, as a result of
which a modification of the variables a, b, and ¢ alﬁays implies a temporary
violation of IR(a, b, c), after which it is again restored. With the aid of
the additional variables we can replace it by a relation which is, indeed,

universally valid, viz.:
luck! or luck 2 or IR(a, b, €) .

Under the assumption that the pieces of program denoted by "moncritical
sections® do not refer to the shared variables a, b, and c© --nor to the private
variables &lu:kﬁ, of course-- the proof that the noncritical sections leave this
relation invariant is trivial. For the critical sections --the only pieces of
program that are allowed to refer to a , b, and c-- it suffices to give the

invariance proof for each of the critical sections in isolation.

At the beginning of critical section 1 --i.e. immediately after the

assignment "luckl:= true" , we can assert

EWD554 - 10

luck! and IR{a, b, c) . (1)

Internally, within the critical section 1 , we can introduce, wherever IR(a, b, c)

is temporarily violated, assertions of the type
luck! and IRTa, b, ¢, privi) (2)

where with "priv!" we have denated any other variables --besides lucki-- that

are private to Program 1., At the end of the critical section 1 --i.e. just be-

fore luck! is reset to false-- we must have again assertion (1) . We assume
a similar proof that critical section 2 , considered in iseclation, as a whole

does not violate IR(a, b, c) .

The reasons why these two separate proofs for the critical sections in
isolation suffice, is that assertions (1) and (2) are invariant with respect
to Program 2 (and vice versa). The internal statements of critical seXction 2
cannot violate them, because their preceding predicates all contain the factor

"luck 2", and the universal validity of R:
nun(luck1 and luck?)

ensures that the conjunction of these predicates and the assertions (1) and (2)
is F ; because false implies everything, these proofs of invariance are trivial.
The statements in noncritical section 2 cannot violate them either, because

they don't refer to the variables oceurring in (1) or (2).

Note. These proofs are so trivial that within critical sections the constraint
that what we consider as "units of actions" refer at most to one shared variable

can be weakened. Because, with a private variable "register"
register:= c; {registar = c} c:= register + 1

gives rise to an internal assertion "register = c"

which is trivially invariant,
it is tempting to consider then the alternative ci:=c + 1 as a unit of action.

Such shortcuts should only be introduced with creat care. (End of note.)

* *
*

Our solution for the mutual exclusion problem uses essentially two shared
variables inl and in2 . (They are really the only two variables that matter:
the variables luek! and luck2 are so-called "ghost variables" which have
only been introduced for the sake of being able to formulate what we mean by

"mutual exclusion" and of being able to formulate the proofs. In the actual

EWD554 - 1

programs to be executed they --and all operations cperating on them-- can be
eliminated.) We also know that this solution is not acgeptable when we reject
solutions with the danger of after-you-after-you biucking. This danger is
exorcized by Dekker's salution, which I give below in the fnllowing form. The
initial value of the shared integer "turn" should be either 1 or 2 .
I only give Program 1 ; Program 2 can be obtained from it by interchanging

1's and 2's.

{PO} int:= true;
{P1} if in2 ~ {P2} if turn = 1 ~ skip {P3}
ﬂ turn # 1 - {P4} inl:= false;
{P5} do turn £ 1 = skip {PS} od;
{P6} int:= true {r3}
fi;
{P3} do in2 - skip {P3} od
ﬂ hon in2 - skip
Ffi;
luckl:= true;
P
p

critical section 1;

tur

P8

{7}
{P7}
{P } luck?, inl := false, false;
{ } mancritical section 1

Studying this program in relative isolation, we derive, under the assumption

PO non luckl _ - . further
P1: pon luck! gnd int S
Pe: P1

P3. non luck! and inl and turn = 1

P4: non luck!

P5: non luck! and nen int

P6: non luck! and non in! and turn = 1
P7: luck? and in!

P8: non luk! and nan int

Again the relation luck!=> inl is implied by all of them, and together

with Program 2 we can derive the universal validity of non(luck! and luck2) as

before.

EWD554 - 12

The difference between this program and the program on page 8 is that
we need only weaker assumptions about the daemon if we would like to be sure
of termination of the program on page 11. With the program on page B, the
daemon could select an unbounded number of units of actions from Program 1
and an unbounded number of units of actions fram Program 2, without ever one
of ‘the critical sections being selected. With our new programs this is no longer

true.

Selection of an infinite number of units of actions from program 1
€
implies --because theér are only two loops in it, and from at least one an

infinite number must be selected-- the validity of

(p5 and turn £ 1) or (P3 and in2)

or (non in! and turn £ 1) or (inl and in2 and turn = 1) (z)

(Note that the term "™turn = 1" in the Pi is invariant with respect to Program 2.)

For Program 2 we have the corresponding relation

2) (4)

(hon in2 and turn £ 2) or (inf and in2 and turn

The conjunction of (3) and (4) reduces to

(non inl and non in2 and turn £ 1 and turn £ 2) .

And, indeed, when we start the two programs with, say, turn = 3, the

infinite looping of both programs is guite easily realized. If, however, we

start the two programs -- and so we assume-- with
turn = 1 or turn = 2 (5)

then it is easily seen that (5)'is invariant with respect to both programs,
therefore can be regarded as universaly valid, and thus implying the falsity
of the conjunction of (3) and (4). This falsity is g;:ﬁ; taken as the proof
of the absence of the danger of after-you-after-you hlocking (and, a fortiori,
the absence of the danger of deadlock).

The conclusicon that the machine exeeutiég the programs' units of actiaon
in interleaved fashion will eventually terminate, rests on the assumption that
the daemon will not be so grossly unfair as to select always the next unit of

action from the same program. From a formal point of view this is a most unattracti.

assumption.

EWD554 - 13

It would introduce a mechanism of unbounded nondeterminacy, it would

give us means fuar implementing
"set x to any positive integer"

without being able to give an upper bound for the final value of x . We

could, for instance, replace in program 1 the statement do in2 — skip od by
xi=1; do in2 -+ xi=x + 1 od .

The consequenées of intreducing unbounded non-determinacy are sufficiently

horrifying to reject the above approach.

Such a little loop with a skip as the repeatable statement is, of course,
too indirect a way of indicating that to all intents and purposes, this program
éhnuld not continue. We supply it with a kind of "fake continuation™. The only
way of not making assumptions about the fairness of the daemon is to restrict

it explicitly in its freedom. The alternative construct gives us a way out.

In normal sequential programming we have regarded an aliernative construct
with all its guards false as a reason for abortion, An equivalent rule for the
implementation would be: postpone progress of this computation as long as all
the guards are false. In a uniprograrming environment we have "once all false,
always all false" and this second rule would be as good as abortion., In a
multiprogfamming environment it would mean for the daemon that, as suggested
on page EWD554 - 6,"an alternative construct, preceded immediately by its
"onreceding predicate™ will never be selected for execution in those machire
states where its selection for execution would lead to abortien of that program".
By replacing in the program on page EWD554 - 11

do turn £ 1 - skip od by if turn =1 - skip fi
and ,

do in2 ~ skip od by if non in2 - skip fi
and postulating that the daemon will not select a unit of action that starts
with an alternative construct with false guards only, we have eliminated from

this examhle all unbounded repetitions. To what extent the ideal "no unbounded

repetitions in the individual programs™ can be achieved in general --possibly
by allowing certain special units of action to refer to more than one shared

variable-- is a question to which I don't know the answer at the moment of

writing.
14th of March 1976 prof.dr.Edsger W.Dijkstra
Burroughs, Plataanstraat 5 Burroughs Research Fellow

NUENEN - 4565, The Netherlands

